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Abstract. Non-existence and uniqueness results are proved for several local
and non-local supercritical bifurcation problems involving a semilinear elliptic
equation depending on a parameter. The domain is star-shaped and such that
a Poincaré inequality holds but no other symmetry assumption is required.
Uniqueness holds when the bifurcation parameter is in a certain range. Our
approach can be seen, in some cases, as an extension of non-existence re-
sults for non-trivial solutions. It is based on Rellich-Pohožaev type estimates.
Semilinear elliptic equations naturally arise in many applications, for instance
in astrophysics, hydrodynamics or thermodynamics. We simplify the proof of
earlier results by K. Schmitt and R. Schaaf in the so-called local multiplicative
case, extend them to the case of a non-local dependence on the bifurcation
parameter and to the additive case, both in local and non-local settings.
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1. Introduction

This paper is devoted to non-existence and uniqueness results for various super-
critical semilinear elliptic equations depending on a bifurcation parameter, in a
star-shaped domain in Rd. We shall distinguish the multiplicative case when the
equation can be written as

∆u + λ f(u) = 0 (1)

and the additive case for which the equation is

∆u + f(u + µ) = 0 . (2)



2 J. Dolbeault and R. Stańczy

We shall also distinguish two sub-cases for each equation: the local case when λ
and µ are the bifurcation parameters, and the non-local case when λ and µ are
determined by a non-local condition, respectively

λ

∫
Ω

f(u) dx = κ

and ∫
Ω

f(u + µ) dx = M.

In the multiplicative non-local case, the equation is

∆u + κ
f(u)∫

Ω
f(u) dx

= 0 . (3)

In many applications, the term f(u)/
∫
Ω

f(u) dx is interpreted as a probability
measure and κ is a coupling parameter. Such a parameter arises from physical
constants after a proper adimensionalization. In the additive non-local case, the
problem to solve is

∆u + f(u + µ) = 0 , M =
∫

Ω

f(u + µ) dx . (4)

The parameter M is typically a mass and, in a variational setting, µ can be in-
terpreted as a Lagrange multiplier associated with the mass constraint, that is, a
chemical potential from the point of view of physics. We shall consider the four
problems, (1), (2), (3) and (4), and prove that if the domain Ω is star-shaped, with
boundary ∂Ω in C2,γ , γ ∈ (0, 1), and if f is a non-decreasing nonlinearity with
supercritical growth at infinity, such that f(0) > 0 in the case of (1) or (3), or
such that f > 0 on (µ̄,∞) and limµ→µ̄ f(µ) = 0 for some µ̄ ∈ [−∞,∞) in the case
of (2) or (4), then solutions are unique in L∞ ∩H1

0 (Ω) in a certain range of the
parameters λ, µ, κ or M , while no solution exists for large enough values of the
same parameters. Typical nonlinearities are the exponential function f(u) = eu

and the power law nonlinearity f(u) = (1 + u)p, for some p > (d + 2)/(d − 2),
d ≥ 3. In the exponential case, (1) is the well known Gelfand equation, cf. [36].

Our approach is based on Pohožaev’s estimate, see [55], which is obtained
by multiplying the equations by (x · ∇u), integrating over Ω and then integrating
by parts. Also see [63] for an earlier result based on the local dilation invariance
in a linear setting. In this paper, we shall only consider solutions in L∞ ∩H1

0 (Ω),
which are therefore classical solutions, so that multiplying the equation by u or by
(x · ∇u) is allowed. Some results can be extended to the H1

0 (Ω) framework, but
some care is then required.

This paper is organized as follows. In Section 2, we consider the multiplicative
local and non-local bifurcation problems, respectively (1) and (3). In Section 3, we
study the additive local and non-local bifurcation problems, respectively (2) and
(4). In all cases, we establish non-existence and uniqueness results, and give some
indications on how to construct the branches of solutions, although this is not our
main purpose.
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Before giving the details of our results, let us give a brief review of the
literature. Concerning (1), we primarily refer to the contributions of K. Schmitt
in [65] and R. Schaaf in [64], which cover even more general cases than ours and
will be discussed more thoroughly later in this section.

The parameter λ in (1) can be seen as a bifurcation parameter. Equation (1)
is sometimes called a nonlinear eigenvalue problem. It is well known that for certain
values of λ, multiplicity of solutions can occur, see for instance [40]. In some cases
there are infinitely many positive solutions, even in the radial case, when Ω is a
ball. Radial solutions have been intensively studied. We refer for instance to [19]
for a review of problems with positone structure, i.e. for which f(0) < 0 and f
changes sign once on R+. A detailed analysis of bifurcation diagrams can be found
in [52, 53]. Also see [43] for earlier and more qualitative results. Positive bounded
solutions of such a nonlinear scalar field equation are often called ground states and
can be characterized in many problems as minimizers of a semi-bounded coercive
energy functional. They are relevant in many cases of practical interest in physics,
chemistry, mathematical biology, etc.

When Ω is a ball, all bounded positive solutions are radial under rather weak
conditions on the nonlinearity f , according to [37] and subsequent papers. Lots of
efforts have been devoted to uniqueness issues for the solutions of the corresponding
ODE and slightly more general problems like quasilinear elliptic ones, see, e.g., [32].
Several other results also cover the case Ω = Rd, see [67]. There are also numerous
papers in case of more general nonlinearities, including, for instance, functions of x,
u, and ∇u, or more general bifurcation problems than the ones considered in this
paper. It is out of the scope of this introduction to review all of them. In a ball, the
set of bounded solutions can often be parametrized. The corresponding bifurcation
diagrams have the following properties. For nonlinearities with subcritical growth,
for instance for f(u) = (1 + u)p, p < (d + 2)/(d − 2), d ≥ 3, multiple positive
solutions may exist when λ is positive, small, while for supercritical growths, for
example f(u) = (1 + u)p with p > (d + 2)/(d − 2), d ≥ 3, or f(u) = eu and
d = 3, there is one branch of positive solutions which oscillates around some
positive, limiting value of λ and solutions are unique only for λ positive, small.
See [4, 27, 29, 43, 52, 53, 75] for more details.

Another well known fact is that, at least for star-shaped domains, Poho-
žaev’s method allows to discriminate between super- and subcritical regimes. This
approach has been used mostly to prove the non-existence of non-trivial solutions,
see [14, 57, 59], and [55, 63] for historical references. Such a method is for instance
at the basis of the result of [14] on the Brezis-Nirenberg problem. Also see [4] and
references therein for more details. The identity in Pohožaev’s method amounts
to consider the effect of a dilation on an energy associated to the solution and
therefore carries some important information on the problem, see, e.g., [28]. In
this context, stereographic projection and connections between euclidean spaces
and spheres are natural, as was already noted in [2] by C. Bandle and R. Benguria.



4 J. Dolbeault and R. Stańczy

In this paper we are going to study first the regime corresponding to λ small
and show that Pohožaev’s method provides a uniqueness result also in cases for
which a non-trivial solution exists. The existence of a branch of positive solutions
of (1) is a widely studied issue, see for instance [25, 58]. Also see [65] for a review,
and references therein. As already said, our two basic examples are based on the
power law case, f(u) = (1 + u)p, and the exponential nonlinearity, f(u) = eu, for
which useful informations and additional references can be found in [27, 40, 50, 66,
77]. We shall also consider a third example, with a nonlinearity corresponding to
the case of Fermi-Dirac statistics, which behaves like a power law for large, positive
values of u, and like an exponential function for large, negative values of u.

The functional framework of bounded solutions and a bootstrap argument
imply that we work with classical solutions. Apart from the condition that the
domain is star-shaped and satisfies the Poincaré inequality, e.g., is bounded in one
direction, we will assume no other geometrical condition. In the local multiplicative
case, several uniqueness results are known for small λ > 0, including in the case of
Gelfand’s equation, see [46, 64, 65]. One should note that in the framework of the
larger space H1

0 (Ω), if the boundedness assumption is relaxed, it is not even known
if all solutions are radial when Ω is a ball. The results of [37] and subsequent papers
almost always rely on the assumption that the solutions are continuous or at least
bounded on Ω. Notice that, according to [44, 62], even for a ball, it is possible to
prescribe a given isolated singularity which is not centered. In [62], the case of our
two basic examples, f(u) = eu and f(u) = (1 + u)p, with d+2

d−2 < p < d+1
d−3 , d > 3,

has been studied and then generalized to several singularities in [61]. Also see [54]
for an earlier result. These singularities are in H1

0 (Ω) and, for a given value of
a parameter λ set apart from zero, they are located at an a priori given set of
points. Similar problems on manifolds were considered in [6].

We refer to [3, 35] for bounds on the solutions to Gelfand’s problem, which
have been established earlier than uniqueness results but are actually a key tool.
Also see [48] for a more recent contribution. Concerning the uniqueness of the
solutions to Gelfand’s problem for d ≥ 3 and λ > 0, small, we refer to [46, 64, 65].
In the case of a ball, this is even known since the paper of D.D. Joseph and T.S.
Lundgren, [40], when combined with the symmetry result of [37].

The local multiplicative case corresponding to Problem (1) is the subject of
Section 2.1. The literature on such semilinear elliptic problems and associated bif-
furcation problems is huge. The results of non-existence of non-trivial solutions
are well known, see [26, 57, 64] and references therein. Also see [49] for extension
to systems. Concerning the uniqueness result on non-trivial solutions, the method
was apparently discovered independently by several people including F. Mignot
and J.-P. Puel, and X. Cabré and P. Majer, [15], but it seems that the first pub-
lished reference on uniqueness results by Rellich-Pohožaev type estimates is due
to K. Schmitt [65] and later, to R. Schaaf [64]. A more general result for the mul-
tiplicative case has been obtained in [13] to the price of more intricate reasoning.
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Numerous papers have been devoted to the understanding of the role of the geom-
etry and they extend the standard results, mostly the non-existence results, to the
case of non strictly star-shaped domains: see for instance [26, 57, 64] and several
papers of J. McGough et al., see [46, 47, 48], which are, as far as we know, the
most up-to-date results on such issues.

As already mentioned above, Problem (1) has been studied by K. Schmitt in
[65] and R. Schaaf in [64]. In [65, Theorem 2.6.7], it is proved that if one replaces
f(u) in (1) by a more general function f(x, u) in C2(Ω× R+) satisfying

(i) f(x, u) > 0, fu(x, u) > 0, u ≥ 0, x ∈ Ω ,

(ii) lim sup
u→∞

sup
x∈Ω

2 d F (x, u)
(d− 2) u f(x, u)

< 1 ,

(iii) [∇xF (x, u + 1)−∇xF (x, u)− u∇xf(x, u)] · x ≤ 0 for u � 1 , x ∈ Ω ,

then uniqueness holds for a star-shaped domain Ω. A survey on the existence
and continuation results for linear and superlinear (sub- and supercritical) growth
of the nonlinear term f in (1) can also be found in [65], as well as a study of
the influence of the geometry, topology and dimension of the domain, which is of
interest for our purpose.

In [64], R. Schaaf studies uniqueness results for the semilinear elliptic prob-
lem (1) under the asymptotic condition lim supu→∞

F (u)
u f(u) < 1

2 − M(Ω) where
M(Ω) = 1/d for star-shaped domains. In general M(Ω) is some number in the
interval (0, 1/d]. In the autonomous case, the above asymptotic condition is equiv-
alent to the assumption (ii) made by K. Schmitt in [65] or to our assumption (8),
to be found below. Our contribution to the question of the uniqueness for (1) relies
on a simplification of the proof in [64, 65].

Imposing a non-local constraint dramatically changes the picture. For in-
stance, in case of Maxwell-Boltzmann statistics, f(u) = eu, in a ball of R2, the
solution of (1) has two solutions for any λ ∈ (0, λ∗) and no solution for λ > λ∗,
while uniqueness holds in (3) in terms of M , for any M for which a solution ex-
ists, see [7, 40]. Non-local constraints are motivated by considerations arising from
physics. In the case of the exponential nonlinearity with a mass normalization
constraint, a considerable effort has been done in the two-dimensional case for
understanding the statistical properties of the so-called Onsager solutions of the
Euler equation, see [16, 17, 51]. The same model, but rather in dimension d = 3,
is relevant in astrophysical models for systems of gravitating particles, see [13].
Other standard examples are the polytropic distributions, with f(u) = up, and
Bose-Einstein or Fermi-Dirac distributions which result in nonlinearities involving
special functions. Existence and non-existence results were obtained for instance
in [7] and [71, 72], respectively for Maxwell-Boltzmann and Fermi-Dirac statistics.

An evolution model compatible with Fermi-Dirac statistics and the conver-
gence of its solutions towards steady states has been thoroughly examined in [9],
while the steady state problem was considered by R. Stańczy in [71, 72, 74]. See [22]
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and references therein for a model improved with respect to thermodynamics, [72]
and references therein for more elaborate models, and [23] for a derivation of an
evolution equation involving a mean field term, which also provides a relevant, sta-
tionary model studied in [13, 73]. Also see [21, 30] for an alternative, phenomeno-
logical derivation of drift-diffusion equations and their stationary counterparts,
and [74] for the existence of radial solutions by fixed point methods in weighted
function spaces, under nonlocal constraints. The case of a decoupled, external po-
tential goes back to the work of Smoluchowski, see [20, 68]. For this reason, the
evolution model is often referred to as the Smoluchowski–Poisson equation.

Our purpose is not to study the above mentioned evolution equations, but
only to emphasize that for the corresponding steady states, non-local constraints
are very natural, since they correspond to quantities which are conserved along
evolution. Hence, to identify the asymptotic state of the solutions to the evolution
equation, we have to solve a semilinear elliptic equation with a non-local constraint,
which corresponds, for instance, to mass conservation.

2. The multiplicative case

2.1. The local bifurcation problem

We consider Problem (1) on a domain Ω in Rd. Our first assumption is the geo-
metrical condition that a Poincaré inequality holds:∫

Ω

|u|2 dx ≤ CP

∫
Ω

|∇u|2 dx (5)

for any u ∈ H1
0 (Ω) and some positive constant CP > 0. Such an inequality holds

for instance if Ω is bounded in one direction. See [69, Proposition 2.1] for more
details. Inequality (5) is called Friedrichs’ inequality in some areas of analysis (see
[34, 56] for historical references; we also refer to [39]). We shall further require that

∃ u ∈ H1
0 (Ω) such that u > 0 and

∫
Ω

|u|2 dx = CP

∫
Ω

|∇u|2 dx . (6)

This is straightforward in some cases, for instance if Ω is bounded, simply con-
nected, with a Lipschitz boundary, or if Ω is unbounded, simply connected and
such that the embedding H1

0 (Ω) ↪→ L2(Ω) is compact. For such a compactness
property, see for instance [5, Theorem 2.8] and [1, Theorems 6.16 and 6.19].

The goal of this section is to state a non-existence result for large values of λ
and give sufficient conditions on f ≥ 0 such that, for some λ0 > 0, Equation (1)
has a unique solution in L∞ ∩H1

0 (Ω) for any λ ∈ (0, λ0). We assume that f is of
class C2. By standard elliptic bootstraping arguments, a bounded solution is then
a classical one.

Next we assume that for some λ∗ > 0, there exists a branch of positive
minimal solutions (λ, uλ)λ∈(0,λ∗) originating from (0, 0) and such that

lim
λ→0+

(
‖uλ‖L∞(Ω) + ‖∇uλ‖L∞(Ω)

)
= 0 . (7)
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Sufficient conditions for such a property to hold can be found in various papers.
We can for instance quote the following result.

Lemma 1. Assume that Ω is bounded with smooth, i.e. C2,γ for some γ ∈ (0, 1),
boundary, f ∈ C2 is positive on [0,∞) and infu>0 f(u)/u > 0. Then (7) holds.

We refer for instance to [65] for a proof. The solutions satisfying (7) can be
characterized as a branch of minimal solutions, using sub- and super-solutions.
Although this is standard, for the sake of completeness let us state a non-existence
result for values of the parameter λ large enough.

Proposition 2. Assume that (5) and (6) hold. If Λ := infu>0 f(u)/u > 0, then
there exists λ∗ > 0 such that (1) has no non-trivial nonnegative solution in H1

0 (Ω)
if λ > λ∗.

The lowest possible value of λ∗ is usually called the critical explosion parameter.

Proof. Let ϕ1 be a positive eigenfunction associated with the first eigenvalue λ1 =
1/CP of −∆ in H1

0 (Ω):
−∆ϕ1 = λ1 ϕ1 .

By multiplying this equation by u and (1) by ϕ1, we get

λ1

∫
Ω

u ϕ1 dx =
∫

Ω

∇u · ∇ϕ1 dx = λ

∫
Ω

f(u) ϕ1 dx ≥ Λ λ

∫
Ω

u ϕ1 dx ,

thus proving that there are no non-trivial nonnegative solutions if λ > λ1/Λ. �

Next we present a simplified version of the proof of a uniqueness result stated
in [64], under slightly more restrictive hypotheses. We assume that d ≥ 3 and that f
has a supercritical growth at infinity, i.e., f is such that

lim sup
u→∞

F (u)
u f(u)

= η <
d− 2
2 d

, (8)

where F (u) :=
∫ u

0
f(s) ds. Notice that, in Proposition 2, Λ > 0 if (8) holds and if

we assume that f is positive.

Theorem 3. Assume that Ω is a bounded star-shaped domain in Rd, d ≥ 3, with
C2,γ boundary, such that (5) holds for some CP >0. If f(z) is positive for large
values of z, of class C2 and satisfies (7) and (8), then there exists a positive
constant λ0 such that Equation (1) has at most one solution in L∞ ∩H1

0 (Ω) for
any λ ∈ (0, λ0).

Proof. We follow the lines of the proof of [64] with some minor simplifications. Up
to a translation, we can assume that Ω is star-shaped with respect to the origin.
Assume that (1) has two solutions, u and u+v. With no restriction, we can assume
that u is a minimal solution and satisfies (7). As a consequence, v is nonnegative
and satisfies

∆v + λ
[
f(u + v)− f(u)

]
= 0 . (9)
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If we multiply (9) by v and integrate with respect to x ∈ Ω, we get∫
Ω

|∇v|2 dx = λ

∫
Ω

v
[
f(u + v)− f(u)

]
dx . (10)

Multiply (9) by x · ∇v and integrate with respect to x ∈ Ω to get

d− 2
2

∫
Ω

|∇v|2 dx +
1
2

∫
∂Ω

|∇v|2(x · ν(x)) dσ

= d λ

∫
Ω

[F (u + v)− F (u)− F ′(u) v] dx

+ λ

∫
Ω

(x · ∇u) [f(u + v)− f(u)− f ′(u) v] dx (11)

where dσ is the measure induced by Lebesgue’s measure on ∂Ω. Recall that F is a
primitive of f such that F (0) = 0. Take η1 ∈ (η, (d− 2)/(2 d)) where η is defined
in Assumption (8). Since u = uλ is a minimal solution and therefore uniformly
small as λ → 0+, for any ε > 0, we obtain |x · ∇u| ≤ ε for any x ∈ Ω, provided
λ > 0 is small enough. Define hε by

hε(u, v) := d
[
F (u + v)− F (u)− F ′(u) v

]
+ ε |f(u + v)− f(u)− f ′(u) v|

− d η1 v
[
f(u + v)− f(u)

]
.

Because of the smoothness of f and by Assumption (8), the function hε(u, v)/v2

is bounded from above by some constant H, uniformly in ε > 0, small enough. By
the assumption of star-shapedeness of the domain Ω, x · ν(x) ≥ 0 for any x ∈ ∂Ω.
From (10) and (11), it follows that

d− 2
2

∫
Ω

|∇v|2 dx ≤ d λ H

∫
Ω

|v|2 dx + d η1

∫
Ω

|∇v|2 dx .

Due to the Poincaré inequality (5), the condition

λ <
1

CP H

(
d− 2
2 d

− η1

)
implies v = 0 and the uniqueness follows. �

Examples

1. If f(u) = eu, Condition (8) is always satisfied. Notice that if d = 2 and Ω is
a ball, the uniqueness result is wrong, see [40].

2. If f(u) = (1+u)p, d ≥ 3, Condition (8) holds if and only if p > d+2
d−2 . Also see

[40] for more details. Similarly in the same range of parameters for f(u) = up

we only get the trivial, zero solution.
3. The Fermi-Dirac distribution

f(u) = fδ(u) :=
∫ ∞

0

tδ

1 + et−u
dt (12)

behaves like 1
δ+1uδ+1 as u → ∞. Condition (8) holds if and only if δ + 1 >

(d + 2)/(d − 2). The physically relevant examples require that δ = d/2 − 1,
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that is d > 2 (1 +
√

2) ≈ 4.83. For more properties of these functions see,
e.g., [9, 12].

2.2. The non-local bifurcation problem

In this section we address, in L∞ ∩ H1
0 (Ω), the non-local boundary value prob-

lem (3) with parameter κ > 0. Here Ω is a bounded domain in Rd, d ≥ 3, with C1

boundary.

We start with a non-existence result. Computations are similar to the ones
of Section 2.1 and rely on Pohožaev’s method. First multiply (3) by u to get∫

Ω

|∇u|2 dx = κ

∫
Ω

u f(u) dx∫
Ω

f(u) dx
. (13)

Multiplying (3) by (x · ∇u), we also get

d− 2
2

∫
Ω

|∇u|2 dx +
1
2

∫
∂Ω

|∇u|2 (x · ν) dσ = d κ

∫
Ω

F (u) dx∫
Ω

f(u) dx
(14)

where F is the primitive of f chosen so that F (0) = 0 and dσ is the measure
induced by Lebesgue’s measure on ∂Ω. A simple integration of (3) gives

κ = −
∫

Ω

∆u dx = −
∫

∂Ω

∇u · ν dσ .

By the Cauchy-Schwarz inequality,

κ2 =
(∫

∂Ω

∇u · ν dσ

)2

≤ |∂Ω|
∫

∂Ω

|∇u · ν|2 dσ = |∂Ω|
∫

∂Ω

|∇u|2 dσ ,

where the last equality holds because of the boundary conditions. Assume that Ω
is strictly star-shaped with respect to the origin:

α := inf
x∈∂Ω

(x · ν(x)) > 0 . (15)

Because of the invariance by translation of the problem, this is equivalent to assume
that Ω is strictly star-shaped with respect to any other point in Rd. Hence∫

∂Ω

|∇u|2 (x · ν) dσ ≥ α

∫
∂Ω

|∇u|2 dσ ≥ α κ2

|∂Ω|
.

Collecting this estimate with (13) and (14), we obtain∫
Ω

[
2 d F (u)− (d− 2) u f(u)

]
dx ≥ α κ

|∂Ω|

∫
Ω

f(u) dx .

As a straightforward consequence, we obtain the following result.

Theorem 4. Assume that Ω is a bounded domain in Rd, d ≥ 3, with C1 boundary
satisfying (15) for some α > 0. If f is a C1 function such that for some C > 0,

2 d F (u) ≤ (d− 2) u f(u) + C f(u) (16)

for any u ≥ 0, then (3) has no solution in L∞ ∩H1
0 (Ω) if κ > C |∂Ω|/α.
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Standard examples, for which Condition (16) is satisfied, are:
1. Exponential case: f(u) = eu with C = 2 d, cf. [7]. A sharper estimate can be

easily achieved as follows. The function h(u) := C eu+(d−2) u eu−2 d (eu−1)
is nonnegative if C is such that 0 = h′(u) = h(u) for some u ≥ 0. After
eliminating u, we find

C = d + 2 + (d− 2) log
(

d− 2
2 d

)
. (17)

2. Pure power law case: If f(u) = up, the result holds with p ≥ d+2
d−2 and C = 0,

cf. [36, 76]. There are no non-trivial solutions.
3. Power law case: If f(u) = (1 + u)p with p ≥ d+2

d−2 , then (16) holds with
C = d− 2.

Uniqueness results in the non-local case follow from Section 2.1, when the
coupling constant κ is positive, small. In case of nonlinearities of exponential type,
as far as we know, uniqueness results were guaranteed only under some additional
assumptions, see [10, 11]. We are now going to extend such uniqueness results
to more general nonlinearities satisfying (7) and (8) by comparing Problems (1)
and (3).

Denote by uλ the solutions of (1). For λ > 0, small, a branch of solutions
of (3) can be parametrized by λ 7→

(
κ(λ) := λ

∫
Ω

f(uλ) dx , uλ

)
. Reciprocally, if

Ω is bounded and
0 < β := inf

u≥0
f(u) ,

then any solution u ∈ L∞ ∩H1
0 (Ω) of (3) is also a solution of (1) with

λ =
κ∫

Ω
f(u) dx

≤ κ

β |Ω|
.

This implies that λ is small for small κ and, as a consequence, for small values
of κ, all solutions to (3) are located somewhere on the local branch originating
from (0, 0). Moreover, as κ → 0+, the solution of (3) also converges to (0, 0). To
prove the uniqueness in L∞∩H1

0 (Ω) of the solutions of (3), it is therefore sufficient
to establish the monotonicity of λ 7→ κ(λ) for small values of λ. Assume that

f(0) > 0 and f is monotone non-decreasing on R+. (18)

Under this assumption, we observe that β = f(0).
Let u1 and u2 be two solutions of (1) with λ1 < λ2 and let v := u2 − u1.

Then for some function θ on Ω, with values in [0, 1], we have

−∆v − λ1 f ′(u1 + θ v) v = (λ2 − λ1) f(u2) ≥ 0 ,

so that, by the Maximum Principle, v is nonnegative. Notice indeed that for λ2

small enough, u1 and u2 are uniformly small since they lie on the local branch,
close to the point (0, 0) and therefore λ1 f ′(u1 + θ v) < 1/CP. It follows that∫

Ω

f(u2) dx =
∫

Ω

f(u1 + v) dx ≥
∫

Ω

f(u1) dx ,



Uniqueness results in supercritical equations 11

thus proving that κ(λ2) = λ2

∫
Ω

f(u2) dx > λ1

∫
Ω

f(u1) dx = κ(λ1).

Corollary 5. Under the assumptions of Theorem 3, if moreover f satisfies (18),
then there exists a positive constant κ0 such that Equation (3) has at most one
solution in L∞ ∩H1

0 (Ω) for any κ ∈ (0, κ0).

3. The additive case

3.1. The local bifurcation problem

Consider in L∞ ∩ H1
0 (Ω) the equation (2). In the two standard examples of this

paper the problem can be reduced to (1) as follows.
1. Exponential case: If f(u) = eu, (2) is equivalent to (1) with λ = eµ and the

limit λ → 0+ corresponds to µ → −∞.
2. Power law case: If f(u) = (1+u)p, (2) is equivalent to (1) with λ = (1+µ)p−1

and the limit λ → 0+ corresponds to µ → −1+. If u is solution of ∆u + (1 +
u+µ)p = 0, one can indeed observe that v such that 1+u+µ = (1+µ)(1+v)
solves ∆v + λ (1 + v)p = 0 with λ = (1 + µ)p−1.

Equation (2) is however not completely equivalent to (1). To obtain a non-
existence result for large values of µ, we impose the assumption that reads

lim
u→∞

f(u)
u

= +∞ . (19)

Proposition 6. Assume that (5), (6) and (19) hold. There exists µ∗ > 0 such that
(2) has no positive, bounded solution in H1

0 (Ω) if µ > µ∗.

Proof. The proof is similar to the one of Proposition 2. Let ϕ1 be a positive
eigenfunction associated with the first eigenvalue λ1 = 1/CP of −∆ in H1

0 (Ω). For
any µ ≥ 0,

λ1

∫
Ω

u ϕ1 dx =
∫

Ω

f(u + µ) ϕ1 dx ≥ Λ(µ)
∫

Ω

(u + µ)ϕ1 dx ≥ Λ(µ)
∫

Ω

u ϕ1 dx ,

where Λ(µ) := infs≥µ f(s)/s, thus proving that there are no nonnegative solutions
if Λ(µ) > λ1. �

Let us make a few comments on the existence of a branch of solutions, al-
though this is out of the main scope of this paper. Let f be a positive function
of class C2 on (µ̄,∞), for some µ̄ ∈ [−∞,∞), with limµ→µ̄+ f(µ) = 0. We shall
assume that there is a branch of minimal solutions (µ, uµ) originating from (µ̄, 0)
and such that

lim
µ→µ̄

(
‖uµ‖L∞(Ω) + ‖∇uµ‖L∞(Ω)

)
= 0 . (20)

This can be guaranteed if Ω is bounded and if we additionally require that the
function f is increasing, as in [71] for the Fermi-Dirac model. This is also true for
exponential and power-like nonlinearities. At least at a formal level, this can easily
be understood by taking ζ = f ′(µ) as a bifurcation parameter. A solution of (2)
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is then a zero of F (ζ, u) = u− (−∆)−1
f(u + (f ′)−1(ζ)) and it is therefore easy to

find a branch issued from (ζ, u) = (0, 0) by applying the implicit function theorem
at (ζ, u) = (0, 0) with F (0, 0) = 0, even if µ̄ = −∞. Using comparison arguments,
one can prove that this branch is a branch of minimal solutions.

We shall now address the uniqueness issues. We assume that (8) holds:

∀ η1 ∈
(

η,
d− 2
2 d

)
, lim sup

u→∞

F (u)− η1 u f(u)
u f(u)

= η − η1 < 0 .

As a consequence, for any µ > µ̄,

F (v + µ)− F (µ)− F ′(µ) v − η1v
[
f(v + µ)− f(µ)

]
is negative for large v, and the function H(v, µ, η1) defined by

v2H(v, µ, η1) = F (v + µ)− F (µ)− F ′(µ) v − η1 v
[
f(v + µ)− f(µ)

]
achieves a maximum for some finite value of v. With H(µ, η1) = supv>0H(v, µ, η1),
we have

F (v + µ)− F (µ)− F ′(µ) v − η1 v
[
f(v + µ)− f(µ)

]
≤ H(µ, η1) v2 . (21)

Next we assume that, for some η1 ∈
(
η, d−2

2 d

)
, we have

CP H(µ, η1) <
d− 2
2 d

− η1 , (22)

where CP is the Poincaré constant. This condition is non-trivial. It relates H(µ, η1),
a quantity attached to the nonlinearity, to CP which has to do only with Ω. It is
satisfied for all our basic examples.

1. Exponential case: If f(u) = eu, we take µ negative, with |µ| big enough.
Indeed, using first the homogeneity, one obtains H(v, µ, η1) = eµH(v, 0, η1).
Since limv→0+ H(v, 0, η1) = (1− 2 η1)/2 and H(v, 0, η1) becomes negative as
v → +∞, as a function of v ∈ R+ H(v, 0, η1) admits a maximum value. To get
a more explicit bound, we take a Taylor expansion at second order, namely
eθ v(1 − 2 η1 − η1 θ v)/2 for some intermediate number θ ∈ (0, 1). An upper
bound is given by η1 e1/η1−3/2, which corresponds to the above expression
evaluated at θ v = 1/η1 − 3. According to (8), η = 0: taking η1 small enough
guarantees (22).

2. Power law case: If f(u) = (1+u)p, we haveH(v, µ, η1) = (1+µ)p+1H(w, 0, η1)
where w = v/(µ+1). Since limv→0+ H(v, 0, η1) = p (1−2 η1)/2 andH(v, 0, η1)
becomes negative as v → +∞, H achieves a positive maximum.

3. Fermi-Dirac distribution case: If f(u) = fd/2−1(u), we observe that

lim sup
u→∞

f ′(u)
u f ′′(u) + 2 f ′(u)

= η <
d− 2
2 d

(23)

if d > 2 (1 +
√

2), which is stronger than Assumption (8), as can easily be
recovered by integrating f ′(u) − η

[
u f ′′(u) + 2 f ′(u)

]
twice, for large values
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of u. Take η1 ∈ (η, (d− 2)/(2 d)). A Taylor expansion shows that

H(v, µ, η1) = f ′(u)− η1

(
u f ′′(u) + 2 f ′(u)

)
+ µ η1 f ′′(u)

= a
[
f ′(u)− η+η1

2

(
u f ′′(u) + 2 f ′(u)

)]
+ (µ− b u) η1 f ′′(u)

with a = 1−2 η1
1−η−η1

, b = η1−η
2 η1(1−η−η1)

and u = µ + θ v for some θ ∈ (0, 1). Both
terms in the above right hand side are negative for u large enough, which
proves the existence of a constant H(µ, η1) such that (21) holds. Notice that
by [12, Appendix], f and its derivatives behave like exponentials for u < 0,
|u| large. Under the additional assumption d ≥ 6, a tedious but elementary
computation shows that, as µ → −∞, the maximum of

u 7→ a
[
f ′(u)− η+η1

2

(
u f ′′(u) + 2 f ′(u)

)]
+ (µ− b u) η1 f ′′(u)

is achieved at some u = o(µ), which proves that limµ→−∞H(µ, η1) = 0. More-
over, for any d > 2(1 +

√
2) one can still show that this maximum value

behaves like exp(µ) and thus can be made arbitrarily small for negative µ
with |µ| large enough.

Assume that (2) has two solutions, u and u + v, with v ≥ 0, and let us write
the equation for the difference v as

∆v + f(u + v + µ)− f(u + µ) = 0 . (24)

The method is the same as in Section 2. Multiply (24) by x · ∇v and integrate
with respect to x ∈ Ω. If F is a primitive of f such that F (µ̄) = 0, then

d− 2
2

∫
Ω

|∇v|2 dx +
1
2

∫
∂Ω

|∇v|2(x · ν(x)) dσ

= d

∫
Ω

[
F (u + v + µ)− F (u + µ)− F ′(u + µ) v

]
dx

+
∫

Ω

(x · ∇u)
[
f(u + v + µ)− f(u + µ)− f ′(u + µ) v

]
dx .

Assume that (22) holds for some η1. If Ω is bounded, |x · ∇u| is uniformly small
as µ → µ̄+, and we may assume that for any ε > 0, arbitrarily small, there exists
µ0 > µ̄, sufficiently close to µ̄ (that is, µ0 − µ̄ > 0, small if µ̄ > −∞, or µ0 < 0,
|µ0| big enough if µ̄ = −∞), such that |x · ∇u| ≤ ε for any x ∈ Ω if µ ∈ (µ̄, µ0).
Next we define

hε(v) := d
[
F (z + v)− F (z)− F ′(z) v

]
+ ε | f(z + v)− f(z)− f ′(z) v |

− d η1 v
[
f(z + v)− f(z)

]
,

where z = u + µ. Using the star-shapedeness of the domain Ω, we have

d− 2
2

∫
Ω

|∇v|2 dx ≤
∫

Ω

hε(v) dx + d η1

∫
Ω

v
[
f(z + v)− f(z)

]
dx .
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Up to a small change of η1, so that Condition (22) still holds, for ε > 0, small
enough, we get

1
d

hε(v) ≤ F (z + v)− F (z)− F ′(z) v − η1 v
[
f(z + v)− f(z)

]
.

As ε → 0+, z converges to µ uniformly and the above right hand side is equivalent
to F (v + µ)− F (µ)− F ′(µ) v − η1 v

[
f(v + µ)− f(µ)

]
. For some δ > 0, arbitrarily

small, we obtain
1
d

hε(v) ≤ (H(µ, η1) + δ) v2 .

From (24) multiplied by v, after an integration by parts we obtain∫
Ω

|∇v|2 dx =
∫

Ω

v
[
f(z + v)− f(z)

]
dx .

Hence we have shown that(
d− 2
2 d

− η1

) ∫
Ω

|∇v|2 dx ≤ (H(µ, η1) + δ)
∫

Ω

|v|2 dx ,

By the Poincaré inequality (5), the left hand side is bounded from below by(
d− 2
2 d

− η1

) ∫
Ω

|∇v|2 dx ≥ 1
CP

(
d− 2
2 d

− η1

) ∫
Ω

|v|2 dx .

Summarizing, we have proved that, if
∫
Ω
|v|2 dx 6= 0, then, for an arbitrarily small

δ > 0,
1

CP

(
d− 2
2 d

− η1

)
≤ H(µ, η1) + δ

if µ − µ̄ > 0 is small if µ̄ > −∞, or µ < 0, |µ| big enough if µ̄ = −∞. This
contradicts (22) unless v ≡ 0.

Theorem 7. Assume that Ω is a bounded star-shaped domain in Rd, with C2,γ

boundary, γ ∈ (0, 1), such that (5) holds. If f ∈ C2 satisfies (8) and (22), if
limµ→µ̄ f(µ) = 0, then there exists a µ0 ∈ (µ̄,∞) such that Equation (2) has at
most one solution in L∞ ∩H1

0 (Ω) for any µ ∈ (µ̄, µ0).

In cases of practical interest for applications, one often has to deal with the
equation ∆u + f(x, u + µ) = 0. Our method can be adapted in many cases, that
we omit here for simplicity. The necessary adaptations are left to the reader.

3.2. The non-local bifurcation problem

In this section we address problem (4) with parameter M > 0, in a bounded star-
shaped domain Ω in Rd. Consider in L∞ ∩ H1

0 (Ω) the positive solutions of (4),
that is of

∆u + f(u + µ) = 0 (25)
where µ is determined by the non-local normalization condition

M =
∫

Ω

f(u + µ) dx . (26)
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We observe that in the exponential case, f(u) = eu, (4) is equivalent to the non-
local multiplicative case, (3). The condition (26) is indeed explicitly solved by
eµ

∫
Ω

eu dx = M = κ.

Non-existence results for large values of M can be achieved by the same
method as in the multiplicative non-local case. If we multiply (25) by u and (x·∇u),
we get∫

Ω

|∇u|2 dx =
∫

Ω

u f(u + µ) dx ,

d− 2
2

∫
Ω

|∇u|2 dx +
1
2

∫
∂Ω

|∇u|2 (x · ν) dσ = d

∫
Ω

(
F (u + µ)− F (µ)

)
dx .

The elimination of
∫
Ω
|∇u|2 dx gives∫

Ω

[
2 d

(
F (u + µ)− F (µ)

)
− (d− 2) u f(u + µ)

]
dx ≥

∫
∂Ω

|∇u|2 (x · ν) dσ .

By the Cauchy-Schwarz inequality, we know that

M2 =
(∫

∂Ω

∇u · ν dσ

)2

≤ |∂Ω|
∫

∂Ω

|∇u|2 dσ .

If (15) holds, then, as in Section 2.2,

α M2 ≤ |∂Ω|
∫

∂Ω

|∇u|2 (x · ν) dσ .

Summarizing we have found that∫
Ω

[
2 d

(
F (u + µ)− F (µ)

)
− (d− 2) u f(u + µ)

]
dx ≥ α M2

|∂Ω|
. (27)

This suggests a condition similar to the one in the multiplicative case, (16). Define

G(µ) := sup
z>µ

[
2 d

(
F (z)− F (µ)

)
− (d− 2) f(z) (z − µ)

]
/ f(z) .

If f is supercritical in the sense of (8), G is well defined, but in some cases, it
also makes sense for d = 2. For simplicity, we shall assume that G is a non-
decreasing function of µ. As a consequence, we can state the following theorem,
which generalizes known results on exponential and Fermi-Dirac distributions,
cf. [7] and [71, 72], respectively.

Theorem 8. Assume that Ω is a bounded domain in Rd, d ≥ 2, with C1 boundary
satisfying (15) for some α > 0. If f is a C1 positive, non-decreasing function such
that (8) holds and if G is non-decreasing, then (4) has no solution in L∞∩H1

0 (Ω) if

M >
|∂Ω|
α

(G ◦ f−1)
(

M
|Ω|

)
.

Here by f−1 one has to understand the generalized inverse given by f−1(t) :=
sup {s ∈ R : f(s) ≤ t}.
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Proof. From the above definitions and computations, we have

α M2

|∂Ω|
≤ G(µ) M .

Since f is non-decreasing and the solution u of (25) is positive, while M =
∫
Ω

f(u+
µ) dx ≥ f(µ) |Ω|, this completes the proof. �

Theorem 8 can be illustrated by the following examples.

1. Exponential case: if f(u) = eu and d ≥ 3, then G(µ) ≡ d+2+(d−2) log(d−2
2 d )

does not depend on µ. If d = 2, G(µ) ≡ 4. In both cases (4) has no bounded so-
lution if M > |∂Ω|G/α. We recover here the condition corresponding to (17)
and Theorem 4.

2. Power law case: if f(u) = up with p ≥ d+2
d−2 , then G(µ) = µG(1). Using

µ ≤ (M/|Ω|)1/p, it follows that (4) has no bounded solution if

M
p−1

p >
G(1)

α

|∂Ω|
|Ω|1/p

.

3. Fermi-Dirac distribution case: If f(u) = fδ(u) where fδ is the Fermi-Dirac
distribution defined by (12) with δ = d/2 − 1 and d > 2 (1 +

√
2), then f is

increasing, F = 2
d fd/2 is the primitive of f such that limu→−∞ F (u) = 0,

Gd := sup
z∈R

[
4 fd/2(z)− (d− 2) z fd/2−1(z)

]
= sup

z∈R
[2 d F (z)− (d− 2) z f(z)]

is finite according to [12, Appendix] and depends only on the dimension d.
It is indeed known that f ′δ = δ fδ−1, fδ(z) ∼ Γ(δ + 1) ez as z → −∞ and
fδ(z) ∼ uδ+1/(δ + 1) as z → +∞. From (27), we deduce that

α M2

|∂Ω|
≤

∫
Ω

[
2 d

(
F (z)− F (µ)

)
− (d− 2) z f(z)

]
dx + (d− 2)

∫
Ω

µ f(z) dx

with z := u + µ. By dropping the term F (µ), we see that the first integral in
the right hand side is bounded by Gd |Ω|, and the second one by (d− 2)µM .
Since f is increasing and u positive, f(µ) |Ω| ≤

∫
Ω

f(z) dx = M and therefore
µ ≤ f−1(M/|Ω|)). As a consequence, (4) has no bounded solution if

α M2 > |∂Ω|
[

Gd |Ω|+ (d− 2) M f−1
(

M
|Ω|

) ]
.

For a similar approach, one can refer to [72].

Denote by uµ a branch of solutions of (2) satisfying (20). For µ − µ̄ > 0,
small if µ̄ > −∞, or µ < 0, |µ| big enough if µ̄ = −∞, a branch of solutions of (4)
can be parametrized by µ 7→

(
M(µ) :=

∫
Ω

f(uµ + µ) dx , uµ

)
. Reciprocally, if Ω is

bounded, then any solution u ∈ L∞∩H1
0 (Ω) of (4) is of course a solution of (2) with

µ = µ(M) determined by (26). If f is monotone increasing, we additionally know
that µ̄ < µ < f−1(M/|Ω|). To prove the uniqueness in L∞∩H1

0 (Ω) of the solutions
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of (4), it is therefore sufficient to establish the monotonicity of µ 7→ M(µ). Assume
that

lim
µ→µ̄

f(µ) = lim
µ→µ̄

f ′(µ) = 0 and f is monotone increasing on (µ̄,∞) . (28)

The function v := duµ/dµ is a solution in H1
0 (Ω) of

∆v + f ′(uµ + µ) (1 + v) = 0 .

As in the proof of Corollary 5, by the Maximum Principle, v is nonnegative when
µ is in a right neighborhood of µ̄, thus proving that

dM

dµ
=

∫
Ω

f ′(uµ + µ) (1 + v) dx

is nonnegative. Using Theorem 7, we obtain the following result.

Theorem 9. Assume that Ω is a bounded star-shaped domain in Rd with C2,γ

boundary. If f ∈ C2 is nonnegative, increasing, satisfies (5), (8), (22), and (28),
then there exists M0 > 0 such that (4) has at most one solution in L∞ ∩H1

0 (Ω)
for any M ∈ (0,M0).

4. Concluding remarks

Uniqueness issues in nonlinear elliptic problems are difficult questions when no
symmetry assumption is made on the domain. In this paper we have considered
only a few simple cases, which illustrate the efficiency of the approach based on
Pohožaev’s method when dealing with bifurcation problems. Our main contribu-
tion is to extend what has been done in the local multiplicative case to the additive
case, and then to problem with non-local terms or constraints.

The key point is that Pohožaev’s method, which is well known to provide
non-existence results in supercritical problems, also gives uniqueness results. One
can incidentally notice that non-existence results in many cases, for instance su-
percritical pure power law, are more precisely non-existence results of non-trivial
solutions. The trivial solution is then the unique solution.

The strength of the method is that minimal geometrical assumptions have
to be done, and the result holds true even if no symmetry can be expected. As
a non-trivial byproduct of our results, when the domain Ω presents some special
symmetry, for instance with respect to an hyperplane, then it follows from the
uniqueness result that the solution also has the corresponding symmetry.
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[9] P. Biler, P. Laurençot, and T. Nadzieja, On an evolution system describing
self-gravitating Fermi-Dirac particles, Adv. Differential Equations, 9 (2004), pp. 563–
586.

[10] P. Biler and T. Nadzieja, A class of nonlocal parabolic problems occurring in
statistical mechanics, Colloq. Math., 66 (1993), pp. 131–145.

[11] , Existence and nonexistence of solutions for a model of gravitational interac-
tion of particles. I, Colloq. Math., 66 (1994), pp. 319–334.
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[25] M. G. Crandall and P. H. Rabinowitz, Some continuation and variational meth-
ods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational
Mech. Anal., 58 (1975), pp. 207–218.

[26] E. N. Dancer and K. Zhang, Uniqueness of solutions for some elliptic equations
and systems in nearly star-shaped domains, Nonlinear Anal., 41 (2000), pp. 745–761.

[27] M. del Pino, J. Dolbeault, and M. Musso, Multiple bubbling for the exponential
nonlinearity in the slightly supercritical case, Commun. Pure Appl. Anal., 5 (2006),
pp. 463–482.

[28] J. Dolbeault, M. J. Esteban, and G. Tarantello, The role of Onofri type
inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg
inequalities, in two space dimensions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7
(2008), pp. 313–341.

[29] J. Dolbeault and I. Flores, Geometry of phase space and solutions of semilinear
elliptic equations in a ball, Trans. Amer. Math. Soc., 359 (2007), pp. 4073–4087.
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399.

[52] T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semi-
linear problems, J. Differential Equations, 146 (1998), pp. 121–156.

[53] , Exact multiplicity of positive solutions for a class of semilinear problem. II,
J. Differential Equations, 158 (1999), pp. 94–151.

[54] F. Pacard, Solutions de ∆u = −λeu ayant des singularités ponctuelles prescrites,
C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), pp. 317–320.
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[61] Y. Rébäı, Solutions of semilinear elliptic equations with many isolated singularities:
the unstable case, Nonlinear Anal., 38 (1999), pp. 173–191.

[62] , Solutions of semilinear elliptic equations with one isolated singularity, Differ-
ential Integral Equations, 12 (1999), pp. 563–581.

[63] F. Rellich, Darstellung der Eigenwerte von ∆u + λu = 0 durch ein Randintegral,
Math. Z., 46 (1940), pp. 635–636.

[64] R. Schaaf, Uniqueness for semilinear elliptic problems: supercritical growth and
domain geometry, Adv. Differential Equations, 5 (2000), pp. 1201–1220.

[65] K. Schmitt, Positive solutions of semilinear elliptic boundary value problems, in
Topological methods in differential equations and inclusions (Montreal, PQ, 1994),
vol. 472 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer Acad. Publ.,
Dordrecht, 1995, pp. 447–500.

[66] T. Senba and T. Suzuki, Applied analysis, Imperial College Press, London, 2004.
Mathematical methods in natural science.

[67] J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equa-
tions, Indiana Univ. Math. J., 49 (2000), pp. 897–923.

[68] M. Smoluchowski, Drei vortrage über diffusion, brownsche molekularbewegung und
koagulation von kolloidteilchen, Phys. Zeit., 17 (1916), pp. 557–571, 585–599.

[69] P. Souplet, Geometry of unbounded domains, Poincaré inequalities and stability
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