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We consider the extremal functions for the interpolation inequalities introduced
by Caffarelli, Kohn and Nirenberg in [1], that can be written as
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where u is a smooth function with compact support in Rd\{0} and the parameters
are in the range: b ∈ (a + 1/2, a + 1] if d = 1, b ∈ (a, a + 1] if d = 2 and
b ∈ [a, a+ 1] if d ≥ 3, a 6= (d− 2)/2 =: ac, p = 2d

d−2+2(b−a) and θ ∈ [ϑ(p, d), 1] with
ϑ(p, d) := d (p− 2)/(2 p).

We also consider weighted logarithmic Hardy inequalities, introduced in [4],
which correspond to the limit θ = γ (p− 2), p→ 2+ and read as
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for any smooth function u such that ‖|x|−(a+1)|u‖L2(C) = 1, with compact support
in Rd \ {0}. The parameters are such that a < ac, γ ≥ d/4 and γ > 1/2 if d = 2.

Inequalities (1) and (2) can be extended to the larger spaceD1,2
a (Rd) obtained by

completion with respect to the norm u 7→
∫

Rd |x|−2a |∇u|2 dx. Extremal functions
are such that the inequalities, written with their optimal constants, become equal-
ities. We shall assume that CCKN(θ, p, a) and CGLH(γ, a) are optimal, i.e. take
their lowest possible value. By a Kelvin transformation (see [7]), the case a > ac
can be reduced to the case a < ac. For simplicity, we shall assume that a < ac.

The case θ = 1, p ∈ [2, 2∗] and d ≥ 3 has been widely discussed in the literature.
Existence of extremal functions for (1) has been studied in various papers in case
θ = 1: see [2] and references therein for details. Radial symmetry of the extremal
functions is an important issue, which has been established in a number of cases:
see [3, 6, 7, 10, 11, 6]. Extremal functions are then entirely determined and the
value of the optimal constants is known. On the other hand, symmetry breaking,
which means that extremal functions are not radially symmetric, holds for
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,

as it has been established in [2, 7, 9]. Moreover, according to [6], a continuous
curve p 7→ a(p) with values in the region a < 0, b < a+ 1 separates the symmetry
breaking region from the region where radial symmetry holds.

The case θ < 1 of Inequality (1) has been much less considered. Symmetry
breaking has been established in [4] in a region which extends the one found in
[7, 9]. If either d = 1 or d ≥ 2 but for radial functions, existence of extremal
functions for (1) has been proved in [4] for any θ > ϑ(p, d). However, the best
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constant is not achieved if θ = ϑ(p, d) and d = 1. Existence of extremal functions
without symmetry assumption and some results of radial symmetry have also been
obtained in [5, 8].

A symmetry breaking result for (2) has been established in [4] when

(4) d ≥ 2 , a < −1/2 and γ <
1
4

+
(a− ac)2

d− 1
.

It is very convenient to reformulate Inequalities (1) and (2) in cylindrical vari-
ables as in [2]. By means of the Emden-Fowler transformation

t = log |x| ∈ R , ω =
x

|x|
∈ Sd−1 , y = (t, ω) , v(y) = |x|ac−a u(x) ,

Inequality (1) for u is equivalent to a Gagliardo-Nirenberg-Sobolev inequality on
the cylinder C := R× Sd−1: for any v ∈ H1(C),( ∫
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with Λ := (ac − a)2. Similarly, with w(y) = |x|ac−a u(x), (2) is equivalent to∫
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)]
for any w ∈ H1(C) such that ‖w‖L2(C) = 1. We shall denote by C∗CKN(θ, p, a)
and C∗WLH(γ, a) the optimal constants for (1) and (2) respectively, when the set
of functions is restricted to the radially symmetric ones. From [4], we know that

CCKN(θ, p, a) ≥ C∗CKN(θ, p, a) = C∗CKN(θ, p, ac − 1) Λ
p−2
2p −θ

CWLH(γ, a) ≥ C∗WLH(γ, a) = C∗WLH(γ, ac − 1) Λ−1+1/(4γ)

where Λ = (a − ac)2. Symmetry breaking means that the above inequalities are
strict. Finding extremal functions amounts to minimize the functionals
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Radial symmetry for (1) and (2) means that there are minimizers of E and F
which depend only on t.

The method of [2, 9, 4] for proving symmetry breaking goes as follows. In case
of Inequality (1), consider a symmetric minimizer v∗ of E , depending only on t.
Up to a scaling and a multiplication by a constant, v∗(t) = (cosh t)−2/(p−2) solves

(p− 2)2 v′′ − 4 v + 2 p |v|p−2 v = 0 .

An expansion of E [v] at order two around v∗ involves the operator L := −∆ +
κw∗

p−2 + µ for some κ and µ which are explicit in terms of θ, p and d. Eigen-
functions are characterized in terms of Legendre’s polynomials and spherical har-
monic functions. The eigenspace of L corresponding to the lowest eigenfunction is

2



generated by w∗ (after a multiplication by a constant and a scaling). The eigen-
function λ1,0 associated to the first non trivial spherical harmonic function is not
radially symmetric. Condition (3) is determined by requiring that λ1,0 < 0, which
implies that CCKN(θ, p, a) > C∗CKN(θ, p, a). In case of Inequality (2), a similar
analysis can be done. The radial minimizer is a Gaussian function in t and the
operator L is the Schrödinger operator with harmonic potential.

Symmetry results in [6, 8] also involves some spectral analysis. By considering
sequences (vn)n∈N of minimizers of E appropriately normalized by the condition
‖vn‖2Lp(C) = 1, one proves that ‖∇vn‖2L2(C) is bounded when either b = bn con-
verges to a + 1, or a = an → 0− if θ = 1, or a = an → ac− if θ < 1. Minimizers
being solutions of an elliptic PDE, the convergence to a limit actually holds locally
uniformly, which allows to write a linear equation for Dωvn, where Dω denotes
an appropriate derivative with respect to ω. By spectral gap considerations, we
conclude that Dωvn ≡ 0 for n large enough: vn depends only on t.

Using scaling properties, it has been proved in [6, 8] that there is a curve sepa-
rating the region of symmetry for (3) from the region of symmetry breaking. The
same property holds for (2). However, in both cases, no quantitative estimates are
known about the position of the curve in the region a < 0. It is an open question
to decide whether it coincides with the region defined by (3) and (4) or not.
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