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Abstract

Although the Hardy inequality corresponding to one quadratic singularity, with
optimal constant, does not admit any extremal function, it is well known that such
a potential can be improved, in the sense that a positive term can be added to the
quadratic singularity without violating the inequality, and even a whole asymptotic
expansion can be built, with optimal constants for each term. This phenomenon
has not been much studied for other inequalities. Our purpose is to prove that it
also holds for the gaussian Poincaré inequality. The method is based on a recursion
formula, which allows to identify the optimal constants in the asymptotic expansion,
order by order. We also apply the same strategy to a family of Hardy-Poincaré
inequalities which interpolate between Hardy and gaussian Poincaré inequalities.
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1 Introduction

A considerable effort has been devoted to get improvements of Hardy inequal-
ities. On H}(Q), we define the Hardy functional by
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Hlul = [ Vul d:r—i(d—2)2/gd:v

|2

Email addresses: dolbeaul@ceremade.dauphine.fr (Jean Dolbeault),
bruno.volzone@uniparthenope.it (Bruno Volzone).
URL: www.ceremade.dauphine.fr/~dolbeaul (Jean Dolbeault).

25 June 2012



where Q = R? or € is a bounded domain in R? containing the origin, and
d > 3. The standard Hardy inequality asserts that

Hu] >0 VYue€ H)(Q). (1)

For an extension of to a finite number of singularities, see [27]. Inequal-
ity can be improved in various directions and we can list three lines of
thought:

(1) Prove that H[u| controls ||u|| ey for some ¢ € [2,2*) with 2* :=2d/(d—2),
or || V|| Le(q) for some ¢ € [1,2). See [3] for a recent result in this direction,
and [14)3028/4/13] for earlier contributions.

(2) Improve on the [, % dz term by showing that, with respect to the 1/|z|?
weight, not only |u|? is controlled, but also |u|?log |u|?. See [TBIITI16] for
recent papers in this direction.

(3) Improve on the 1/|z|* weight: see [22/23/6/[7/1825/243].

A simple and well known method to establish is based on an expansion of
the square which goes as follows. Let u be a smooth function with compact
support in 2 and observe that

0< [1Vu+ 52 2 ul do
Q

|2

_o)2 |u? 3 .
:/Q|Vu|2dx—|—(d42) Qw:zdx—df/ﬂ|u|2<v-w|2) dx = Hu]

where we have used an integration by parts and noted that V - ﬁ = %.

The Poincaré inequality with gaussian weight, or gaussian Poincaré inequality,
reads

/Rd u — af? dp < /R Vul2dy ¥ u e HY(RY, dp) 2)

with du(z) == p(z)de, p(z) = (2n)~Y2e /2 and 4 := fpau du. Our pur-
pose is to study improvements of in the spirit of what has been done
for . Let us list some known results for (2)):

(1) Spectral improvements are easily achieved under appropriate orthogonal-
ity conditions. See [8] for results and further references in this direction.

(2) Replacing |u|? by |u|?*log |u|? amounts to consider the logarithmic Sobolev
inequality instead of the Poincaré inequality; see [20] for an historical
reference. There is a huge literature on this subject, which is out of the
scope of the present paper.

(3) A very standard argument based on the expansion of the square has been
repeatedly used in the literature. Let us give some details, in the gaussian
case, as it is the starting point of our strategy.



For any open set € in R?, let us define the functional

B 2 d/ 2 1/ 2,12
Golu] = [ [Vul* du+ 5 [ uf dj—7 [ laf? uf® dp
By expanding [ga |V (ue™"*/4)[2 dz, we find that
Ggalu] >0 . (3)

If @ = 0, the middle term in Gga[u] can be estimated by (2)), thus showing
that the following improved Poincaré inequality holds:

Lo lul? dp < 2(d+2) [Vl du @)

(this inequality is an improvement in the sense that, as |z| — oo, the |z|?
weight diverges). A slightly more general case has been considered for instance
in [19420] (also see, e.g., [29]). The expansion of the square method raises the
following question. By we know that Gra[u] > 0 for any u € H*(RY, dpu).
With no additional assumption on wu, is there a nonnegative function W such
that

Gaalu] = [ W |ul? di

for any v € HY(R?, du) and, if yes, can we give an asymptotic expansion as
|z| — oo of the best possible function W, order by order ?

The purpose of this paper is to systematically investigate such improvements
for gaussian Poincaré inequalities, following the same scheme as for the Hardy
inequality. More precisely, using an elaborate expansion of the square method,
we derive an asymptotic expansion of the largest possible nonnegative func-
tion W and, order by order, find the best possible constants for any finite
truncation of the asymptotic expansion.

To clarify our purpose, we will first recall in Section [2 what can been done
for the Hardy inequality and give a short proof of it based on the method
used in [I§]. Then we shall adapt it to the gaussian Poincaré inequality, which
provides us with our first main result: see Theorem [3{in Section |3| A striking
parallel appears, which will be further investigated in Section |4} in the case of
a family of inequalities interpolating between Hardy and Poincaré inequalities.

Before giving details, let us quote a few additional references. Improvements
of the Hardy inequality already have a quite long history. In [I4], Brezis and
Véazquez have shown that in the case of a bounded domain €2, there exists a
constant Aq > 0 such that

AQ/QW dr <Hu] Yue HY(Q).



The striking result of [1], by Adimurthi, Chaudhuri and Ramaswamy, is that
a whole expansion in terms of iterated logarithms can be done close to the
singularity (see also [2] for a generalization in W?(Q)). Filippas and Tertikas
gave in [22] the expression of the best constants for all terms of the expansion;
also see [3] for a more recent result, concerning |ul? in the remaining term,
for the limit case p = 2*. In view of the generalization to relativistic models,
Dolbeault, Esteban, Loss and Vega gave in [I8] an algebraic property which
simplifies the computation of the expansion, while Ghoussoub and Moradifam
in [24] have established a rather simple characterization of the best constants.
Some of the results of [22] are summarized in Theorem [1| below, with a sim-
plified proof inspired by the combination of all above mentioned works. This
proof will be a source of inspiration for the results on the gaussian Poincaré
inequality, which are entirely new, and also for the Hardy-Poincaré inequality

of Section [l

2 A key example: the improved Hardy inequality

Let r = |z| for any = € Q, and set
X1(r) == (a —logr)™"

for some ¢ > 1 and
Xk = X1 e} Xk,1
for all £ > 2. We also define

W, =

o |

k
[Ix; vek>1.
j=1

We shall always assume that 0 € Q. With dq = maxgg |z|, we choose a = agq
such that a > 1 is the unique solution of g = 1/(a —log dq), i.e. a = log dq +
1/6q, so that the interval (0, dq] is stable under the action of Xj.

Theorem 1 Let 2 be a bounded domain containing the origin and assume
that a = aq. With W = 3222, W;, we have

Jul®

/QW ;’2 dr < H[u] Yue HY(Q). (5)

Moreover, such a function W is optimal in the following sense. Assume that
holds for some nonnegative, bounded, radial function W. Then we have:

(i) if W converges as r — 04 to some limit { € [0,4o00] then { =0,
(ii) if lim, o, W = 0 and if % converges as r — 0, to some limit {1 € [0, +0o0]
then ¢1 <1,



(111) for any N > 2 and with the convention Wy := 0, if

W — k2 tw;
lim W =0, nm#=1 Vke{l,2...N -1}
r—04 r—04 Zj:l .

N-1.,
and if @ converges as v — 0, to some limit Ly € [0,+00], then

3 Wi
Iy < 1.

The first part of Theorem [I| has been obtained by Filippas and Tertikas in
[22, Theorem D, p. 190] and the statement on the characterization of the best
constants in the asymptotic expansion for all W can be found in [22, Theorem
B’, p. 192]. Here we give a detailed proof based on the approach used in [18].
Notice that if W is not radially symmetric, some results can be recovered by
applying Schwarz’ symmetrization to W (z)/|z|?.

Also notice that this expansion is independent of the value of a used in the
definition of X, as the behaviour of W for r close to 0 does not depend on a:
what we have achieved is only an asymptotic expansion of the improvement W
at the singularity.

Proof. For simplicity, we split the proof in three steps.

Step 1. Ezxpansion of the square. Suppose that f = f(r) is a continuously
differentiable function in an interval [0, R] with R > 0 such that Q C Bg,
where Bpr denotes the ball of radius R centered at the origin. Expanding the
square |Vu + f(r) % ul* with r = |z| and integrating by parts, we have

d:v—/ |Vu|2d:c+/ (fQ—f/ —d_2f> ul® dz

r2

0</‘Vu+fu

that is

/Q(rf'+< ~2) f - f?)} ’2 /IVuIde

Setting g = f — (d — 2)/2, we get

1 r_ 2 2
Z<d )/’|2d +/H2 rg—g)dazg/Q]Vu]d:L’.

At this point, we observe that any bounded, positive solution on a neighbor-
hood of » = 0, of the equation

rg —g*=w=>0 (6)

is such that g(r) < (ag — logr)™! for some ap € R as r — 0, and, as a
consequence, lim, o, g(r) = 0. This proves that the constant (d —2)?/4 in the
expression of H[u] is optimal and establishes Property (i).



Step 2. Optimal behavior at first order in the asymptotic expansion. It is worth-
while to notice that the function r — X, (r) = (a — logr)~! solves

rg —g¢>=0.
Also observe that g(r) = a X;(r) solves
2 2 2 o~ Ly
rg —g°=(a—a’)Xj gZXl
with equality if and only if o = 1/2.

Let H be such that g(r) = X;(r) H(s), with s = —log(X;(r)), so that s —
+o0o0 as r — 0,. Now we consider a solution to @ and only assume that
W > 0. We claim that if

W(r) _  rg(r)—g*(r) _ : 2
A IR ¢ o R (—H'(s) + H(s) — H(s))

has a limit ¢; as r — 0, then ¢; < 1. Let us prove it. If we have /; > 1, then

2 —
—H’—(H—l) Aol

2 4
and then we know that —m > 1, so that for some constant C', we have
————>C+s
H(s) - 3

for any s large enough. This means that lim, .., H(s) = 1/2. Then we also
know that
H ~ (1—51)/4<O,

a contradiction. This proves (ii).

If /1 =1, we can define h by
1
g(r) =t (h(t) + 2) with = X;(r) .
Then we find that
rg'(r) —g*r) 1

= 1= th'(t) — h*(t) ,

which is a good preparation for the next step.

Step 3. Induction. Consider the sequence (hy)g>1 of functions defined by

ha(r):=g(r), he(r) =t (hea(t) +3), t=Xi(r) €(0,00) ,



where g solves @ and W = 3222, W;. An elementary computation shows that

P ZI) L) - i)

This implies that for all £ > 1 we find

k
rg'(r) ) = D Wy(r) + Wi(r) (2 by (2) = iy (2)
J=1

with z = Xy(r) and r € (0,0q). With this formula, it is clear that holds
with hi.1 = hg for any k > 1, while proving the optimality of the constants
in the asymptotic expansion goes at each iteration as in the computations of
Step 2.

O

As a consequence of Theorem [I| we also have an asymptotic expansion as
|z| — oo of an improved Hardy inequality. By the Kelvin transformation, to
any u € HJ (), we associate v such that

v(@) = |a)* M u(lz| 22, (7)

where v is defined on QX := {x eRY: z/|z|? € Q} By standard computa-
tions, we know that

2 2
/ |Vul? dx :/ |Vo|? d / Jul® de = / vl dx
Q 0K Q ’513‘2 QK ‘x|2

and we can define W (r) := Wj,(1/r) using the notations of Theorem |1 which
can now be rewritten in the exterior domain Q¥ as follows.

Corollary 2 Let Q be a bounded domain containing the origin and assume

that a = aq. With W = Z;’il I/V]-K, we have

2
w el dx</ |Vv|2dx—f(d—2)/ il
Q

oKk |x|? 4

dr Yove Hy(Q).

< Jaf?

Moreover, such a function W is optimal in the following sense. Assume that
the above inequality holds for some nonnegative, radial function W. Then we
have:

(i) if W converges as v — oo to some limit £ € [0,+00] then £ =0,
(11) if lim, .. W = 0 and if % converges as r — 0o to some limit {1 € [0, +0o0]
1
then ¢1 <1,



(iii) for any N > 2 and with the convention W§* =0, if

W — ki wk
lim W =0, lim kZJ—O I =1 Vke{l,2...N—-1}
r—00 r—0o0 Z]:1W7K

N-1
and if EZJ;/KJ converges as v — 0y to some limit {y € [0,400|, then
=1

J
lny < 1.

3 Improved Poincaré inequality: the gaussian case

Let us consider now the gaussian measure

e~ l=1?/2
du(z) = p(z)dz ,  plx) = om) i
Suppose that d > 2 and define the functions
1 t log(1 —t¢
L+ log(1 —1) log(1—1t)—1

For any » > 0 we have t € (0,1) and the functions X, ¢ are well defined.
Besides, since X (t) < 1 for any ¢t € (0,1), we have that the interval (0,1) is
stable under the action of X. Moreover, for all £ > 0, we set

2
Yo(t) =1, Yk+1:(50Xk)2:%’
ZO(t):]-v Zk—i—l( ):Xk( ) fOI‘k?>O (8>

Wi(t) = Zu(t) if k = 0,1 and Wi(t (HY > Vifk>2.
Theorem 3 Suppose that d > 3. With the above notations, , we have

Guuli] > § (0= 2 [, 15 (L wil0) do

for any u € HY(dy), where t = 1/(1+r=2), r = |z|. Moreover, the expansion
1s asymptotically optimal, in the sense that at any order N > 0, if we consider
an improved inequality of the form

Gaalt] > § (d—2) /WP (zwk gowmfv(t)) dy



and if Ry(t) converges ast — 0to some limit {y € [0,00), then {ny < 1.

We may notice that no improvement can be achieved on the terms of order |z|?
and 1: if we had Glu] > €5 [pa |u|? |z|? du+0_1 [ga |u|? du for any u € H' (du),
then testing the inequality with u(z) = exp(—(1—¢) |z|?/4) shows that £_5 < 0
and /_; <0.

Proof. As we did for Theorem (1| we split the proof in three steps.

Step 1. Fxpansion of the square. Let g be any radial smooth function. Then,
for any w € H'(dpu) by expanding the square [ps |Vu + g(r)uz|*du and
integrating by parts, we get

2(,. 2 2 2
AJM Og+d9—r(9+90du§AJVMCW-
With the function h defined by
h(r) =12 (g(r) + 1) ,
we obtain a correction term to (3]), namely

Juf?

44—70hqﬂd—mh—hﬂdu

< |z[?
</ Vul?d +d/ ul?d —1/ lul? |22 dpt = Ggalul]
~ JRrd Y Jpa 74 Jpa = oralt] -
Consider the function f such that
(d=2)*f(r) =7 (r)+ (d—=2)h(r) = h*(r) . (9)
The expansion of the square now amounts to

[l

(=2 [ 5 f(r) du < Galu]

¢ |zf?
Our purpose is to identify the best possible function f.

Step 2. Optimal behavior at zero order in the asymptotic expansion. Our goal
is to maximize f as r — +oo. Assume first that 4 f(r) has a limit ¢/, > 1 as
r — oo. If we set h(r) = (d — 2) H(s) with s = (d — 2)logr, then H solves

H’+H—H2~i) as  § — 00 .

For s > 0, large enough, there exists € > 0 such that

H’Z(H—%)ereZa,



so that lim,_., H(s) = co. But we can also write that > 1, so that,

H/
(H-1/2)?
for some constant C,

1
—— < (C—s,
His)—3 =" 7
if s is taken large enough. Thus we get lim,_.o H(s) = 3, a contradiction.
On the other hand H(s) = % for any s € R is admissible, thus proving that

lim, . f(r) = 1/4 can be obtained.
Step 3. Induction. Observe that the nontrivial global solutions to the equation

rh 4+ (d—2)h—h=0

are given by h(r) = HC&% for an arbitrary constant C. This suggests
to set !

t=1t(r):= T ,as
If

h(r) = (d = 2) ho(t) ,
then f(r) can be rewritten in terms of ¢ as
Flr) ==t (1=t ho(t) + ho(t) — ho(t) -
If ho(t) = at for some a € R, then f(r) = t? a (1 —«) takes its largest possible
value, namely f(r) = t?/4, for a = 1/2. Now if

o(t) = 5 + Hoft).

we get
Fr) = = =t (=) () + (L= ) Ho(t) — HE(®)

If we set Hy(t) := 6(t) hi(s) where s = X (t), then we have
H(t) = 0'(t) ha(s) + 0(2) hy(s) X'(2)
and by the definition of X and 9, it is not difficult to check that

flr) -2

52(¢) = —s(L—s)hi(s) + hi(s) — hi(s) . (10)

Hence the r.h.s. in exactly takes the form of f(r), with ¢t and hg replaced
by s and hy respectively. Since lim; .o X (¢) = 0, we can iterate this procedure.

Assume first that W = 3272, Wj. By and (10), we find that

hi=hg .

10



Hence, if we define (Ry)r>o by
Ro(t) =4 f(r) and Ry := RpoXgy forany k>0,
then for any N > 1 we obtain

mﬁ):ﬁ+4ﬁgw—30—@h%@+hﬂﬁ—hﬂﬁ}

(
Zy(t) + Ya(t) Ra(1))
+Yi(t Zz(t)-l—y1( ) Yo (t) Ro(t)

Otherwise, we already know from Step 2 that
Ro(t) := 4] =t (1 =) hj(t) + ho(t) — k()]
is such that, if lim, .o Ro(t) = {p, then 4 < 1, and if ¢y = 1, then
Ro(t) = Zy(t) + Ya(t) Ra(t)  with  Ry() := 4] — ¢ (1 =) By(£) b (t) — B(#))]

and the conclusion follows by a straightforward iteration. OJ

Now we study the case d = 2. First, set t = 1/logr. Then we let a > 1 and
define R* = R*(a) = e'/*" where t* is given as the largest positive solution of
t = X(t) with

1
a—logt’
Notice that ¢ = X (¢) has a unique solution such that ¢ > 1. We also observe
that [0,¢*] is stable under the action of X (also see [I8] for further properties
of X). Also notice that ¢* > e*~!. With this new definition of X and §(t) =
t = 1/logr, we can now construct Xy, Y, = Z; and Wy, as in :

X(t) :=

XO(t):ta Xk+1:XOXk7
YE):]., Yk—l-l:X]? fOI']C>0 (11>

Wo(t) =0, and Wi(t) HY ifk>1.

Theorem 4 Suppose that d = 2. For any function uw € H'(du) with support
outside the ball of radius R*, we have

Gl > 1 , o (£ it0)

11



with t = 1/logr, r = |z| and Wy, defined by (11). Moreover, the expansion is
asymptotically optimal, in the sense that at any order N > 1, if we consider
an improved inequality of the form

1
=4 Jre |a:]2

Gualu] > (Z WA(0) + Wa(0) R (0)) d

and if Ry(t) converges ast — 0 to some limit {y € [0,00), then {x < 1.

Proof. The expansion of the square method reduces the problem to find the
best possible function f(r) = r h'(r) — h?(r) such that

Jul® 2 1 20,12 2
L fydi < [ 1Vl du— 5 [l e dut [l dn.

2 [a?

If f(r) ~¢ >0 asr — +oo, then it follows that H(t) = h(r) with ¢t = logr
solves

H —H?>~(
as t — 00. On the one hand, if £ > 0, then H(t) > £t ast — oo, i.e. h(r) >
% log r — 400, and on the other hand,

h’>1
h? — r

means that for some constant C' and for r large enough, we have

1
- >
C h(r) > logr

which implies that lim, ., h(r) = 0, a contradiction. As a consequence, ¢ = 0.
In other words, we have shown that the first term in the expansion (that is,
the term of order 1/|z|?) is Wy = 0.

The nontrivial solutions to the equation

rh/ —h*=0
are
B 1
C —logr’

with C' being an arbitrary constant. If we set t = 1/logr and consider hy such
that h(r) = ho(t), we easily infer that

fr) = —t*ho(t) — ho(t) -

If ho(t) = at for some a € R, the largest possible value of f(r) = —t? (o + )
is t2/4. Tt is achieved for a = —1/2. Now if

ho(t) = —; +H(t)

12



we get
2

Flr) = 5 = = 2 () + ¢ Ho(t) — HA()

As in the proof of Theorem [3] if we set
Ho(t) =thy(s) and s=X(t),
using the definition of X, it is easy to verify that

W = —s* h}(s) — hi(s) .

Now it is enough to argue as in the proof of Theorem [3|to conclude. 0

As a further remark, we notice that we can combine the results of Theorems
and {4 with the method used for proving to get, for any u € HY(RY, du)
such that @ = [pau du =0,

2(d+2)/ |Vu\2du>/ w? |22 dp+ (d — 2) Z/dW t) dy

if d > 3 and W), is defined as in , and, under the same assumptions as in
Theorem [4]

4/ IW|2du>/ 2val2du+Z/ —Wk
if d = 2 and Wy is defined as in , thus improving also for any d > 2.

Exactly as for the Hardy inequality, we can use the Kelvin transform and
provide an inequality for the measure

1 -1
dv(z) = @y © 20l ;.

In fact, like in Section [2| let © be an open set of R? containing the origin and
for any function u € C} () we consider v(y) = |y|* @ u(z) with y = z/|z|?,
i.e. the Kelvin transformation ([7]). It follows that v € C} (QK ) By standard
calculations, we find

[Vol? = [y 7 [Vu(@)* + (d = 2)* [y]** u?(2) + (d = 2) [y| ™y - V' (z) (12)

with y = z/|x|?. Integrating and performing an integration by parts to the
last term in the expression of |Vv|?, we get

[ul*

2 2
/Q |Voul*du = /|Vu| dv — (d —2) o o dv

13



If [, \x]_d_Z udv = 0, by applying to v we obtain the weighted inequality

[uf”
@ |zt

/ Vul?dv > (d—1) dv

With the change of variables y = z/|z|* and u given in terms of v by (7)), we
find that Gk [v] = Kq[u], where

2 2
/|Vu|2 Jul® du—f Jul® dv

a |z[* a |z[°

is nonnegative because of (3)). This implies the existence of a constant Cg
depending only on the dimension d, such that

2 Jul?
Cd/|Vu] dVZ/—dV
Q Q |z|

if [, |z|" > wdy = 0, which is the analogue of ).

As in Theorems [3land [4] we may add a whole asymptotic expansion as |z| — 0
to the right hand side of the inequality Kg[u] > 0.

Corollary 5 Assume that d > 2. If d = 2, let uw € Hy(By/g+,dp), where R*
is defined as in Theorem 4 and By/p- denotes the ball of radius 1/R*. Then

we have

1
KBy g [U] > = ZWk —1/log |z]) dv

= 4By p |$

If d > 3, let Q be any open set of R containing the origin. Then for any
u € Hy(Q,du) we have

Keolu] _2/ T A R
ol rx|2 1 |zfd2) ™7

Moreover, for all d > 2 the asymptotic expansion as |x| — 0 at the right hand
side of these inequalities is optimal, in the same sense as in Theorems[3 and[4)

Proof. Assume that d > 2, as the arguments in the case d = 2 are analogous.
If u € H}(S, dp), let us consider the function v € H}(QX, du) defined by (7).
Therefore we can use the same method in the proof of Theorem 3, up to the
replacement of R? by Q. Thus

|of?

Gole] 2 (4 =27 [ 15 F(r) dp

with the same f defined in @, and it is clear that the optimality arguments

14



described in the proof of Theorem 3 still hold. Besides we find

Goyr [1] zi(d—Q 7L e (Zwk )

where t = 1/(1 +r%2), r = |z|. Then using the Kelvin transformation (7)) we
can finally conclude. UJ

4 Improved Hardy-Poincaré inequalities
4.1  Hardy-Poincaré inequalities

In this section, we shall consider improvements of a family of Hardy-Poincaré
inequalities which has been investigated in [TO9TT]. Let hq(z) := (1 + |2]*)*
and define du,(x) = ho(x) dz, for any a < 0. From [11], we know that

Ao [ V1= oW dptar < [ [Vuf dpa V€ H' R dpta)  (13)

with the convention

po_1(u) == fgaudue_1 if a€(—o0,—(d—2)/2),
fa—1(u) =0 if ae(—(d-2)/2,0).

The inequality holds not only in H'(R? du,) but also in the larger space
{u € L*(R? djiq_1) : Vu € L*(R? du,)}. This is easy to establish by density
of smooth functions with support in R\ {0}. The optimal value of A, 4 has
been determined in [I1]. If d > 2, we have

Ag=-2a if ae(—o0,—d),
Aag=-2d+2a) if ae(—-d, —(d+2)/2),
Aa=1(d-2+420a) if ae(—(d+2)/2,0).

Notice that for « = —(d — 2)/2, we find A, 4 = 0 and the inequality becomes
trivial. See [12] for more details in such a case. In the limit case o = 0, if
we apply to ux(z) = A¥2u(\x) and take the limit A — 0, we recover
the Hardy inequality . If we apply to uy(z) = u(Az) with A = /2 |q|
and take the limit o — —o0, we recover the gaussian Poincaré inequality .
Inequality is therefore an interesting family of inequalities which inter-
polates between the Hardy inequality and the gaussian Poincaré inequal-
ity . Our purpose is to show that the results of Sections [2| and [3| can be
adapted to this more general family of inequalities.
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2
Let us take a < 0. If we expand the square ’V(u hay2)| , an integration by

parts gives

0< /Rd 1V (u hogo)| de

_ 2 |z|” 2 2

_/Rd|Vu| dpte + (2 — a)/Rd(leWu dpte — ozd/Rdu dpto-1 ,
that is

/ |Vu|2dua—ad/ u2dua,1>a(a—2)/ ﬂfzﬁdua.

R R - re (14 |2]2)?

Exactly as in the Gaussian case, we can get the analogue of . By the Hardy-
Poincaré inequality , if 114—1(u) = 0, we can estimate the second term of
the left-hand side by

—ad/ W1 < —adAL | |Vul dug .
R4 ™ JRd

Hence for all u € H*(RY, dp,) such that ji,_1(u) = 0 we find

[ D E— < =7 14
Jee T o e = ) IVl e 14

which is an improved Hardy-Poincaré inequality. Of course all these inequal-
ities are valid if R? is replaced by any open set  and the space H'(R?, du,)
by H} (2, du,). Next, for any open set Q and any v € Hg (€, du,), we define
the functional

oo ] ::/Q|Vu|2dua+@(2_ a)/ﬁ( Eds

2 2
————uduy — d/ Ao
14 [z2)2 ¢ MHaT @01 et

and we know that lg[u] > 0 for any u € Hj (2, du,).

4.2 A scheme for improving Hardy-Poincaré inequalities

To get a full asymptotic expansion, the strategy is similar to the one used in
Theorems [T} [ and [ but various cases have to be distinguished depending on
the dimension.

Step 1. Expansion of the square. Let g be any smooth radial function on R?. For
any u € HY(R? du,), if we expand the square |Vu + ¢(r)u z|> and integrate
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by parts with respect to the measure du,, we find
0< /d \Vu+ g(r)uz|” dug
R

200+ d)r* +d
Z/RdWUlZduaJr/Rd{—Tg'—( 1+)T2 g+ g uPdpu, .

Define now a function h(r) by
h(r) = (1+7*)g(r)— a.

We find that
bsalu] = [ () dpas (15)

where

f(r):= (1+7“2)rh'+[(d—Z)rQ—{—d}h—rth. (16)
The nontrivial positive global solutions to the equation
(L4 rh + [(d=2) 1 +d| h—r*h? =0 (17)
are given for d > 3 by

1472 1
hir) = (d—2) r2+ C(d—2)rd ~ O a2

as 1 — 400

where C' is an arbitrary positive constant, while the positive solutions when
d = 2 are given in a neighborhood of r = 0, by

1472

hr) = r2 (C —logr)
for some C' € R.

Step 2. Optimal behavior at zeroth order in the asymptotic expansion. Our aim
is now to maximize f(r)/r? as r — 4o00. To do that, assume that

ho 1442
f(;") A = T A -2 h— 2

r 72 r

has a limit £ (d —2)? if d > 3 and £ if d = 2.

Assume first that d > 3. With h(r) = (d — 2) H(s) and s = ©2log(1 +r?) —
+o00, we find that

H'(s)+ H(s) — H*(s) ~ i

and get a contradiction if £ > 1, by the same arguments as in Theorems [3| As
a consequence, limsup,_ . h(r) < (d —2)/2 and f(r) ~ 1 (d — 2)*{r? with
¢ < 1asr — +oo. Finally, it is straightforward to check that if f(r)/r? has
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a limit larger than (d — 2)?/4 as 7 — +o00, then h(r) ~ C'r? up to a positive
constant C' and we also get a contradiction.

If d = 2, we can work as in Theorem [4 If ¢ > 0 and also get a contradiction
using h(r) = H(s) and s = 3log(l + r?) — +oo. After some elementary
considerations, this shows that as r — o0, the limit of f(r)/r? is non-positive
if it exists.

Step 3. Induction. Assume temporarily that for some functions 74, d; and X
to be determined, we have

Xo(t) =t, Xpp1=XoXy,
Yot) =1, Y = (620 X5), (18)
Zo(t) =1for d >3 and Zy(t) =0for d=2, Zpi1 =40 X for k>0,

k—1
Wi(t) = Z(t) if k=0,1 and Wi (¢) = [[Y;(t) Ze(t) if k>2.
7j=1

The functions 74 and &, are determined as follows. With ¢t = 1/logr if d = 2,
t=7r>"%if d >3 and h(r) = ho(t), with c; = 1 and ¢y = (d — 2)? if d > 3, we
may write

f(r

CqT?

~—

= F(t.ho(0). 1)) (19)

for some function F. The above choice of ¢ is justified by the behavior for
r — oo of the solutions h to equation (17). Then we identify a function 74
such that

(i) for some constant § € R, f(t, ho(t), hg(t)) = B7a(t) + 0(’)/(1(15)) ast — 0,

(ii) if O takes its largest possible value, then we look for some function h
and s = X () such that

F(t, ho(t), k(1)) — Bra(t) = 8a(t)* F (s, ha(s), By(s)) . (20)

The functions X , 4 will be chosen in order to satisfy a relation of the type
A(t, X (1), X'(t), 8a(t)) = B(t, X (), 0a(t), 0(t)) = 63(2) (21)

where A, B are suitable functions. Then the analogue of Theorems [T}, [ and
holds. The main difficulty is to build the functions 7; and X. A restriction
comes from the requirement that some interval is stable under the action
of X. This program can be completed in dimension d = 2, 3 and 4, and also
in dimension higher than 4, in exterior domains.
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4.8 The case d = 2

If h(r) = ho(t) with ¢t = 1/logr, we get that

f(r)

r2

(1+e 1) 2 hh(t) +2e 7 ho(t) — R2(t) .
Implicitly define the function h; such that

(22)
ho(t) =

—Bt+ 0a(t) hi(s)
where 3 € (0,400) and d(t), s
and

X (t) are two functions to be determined,

wt) = (1+e 2 —2e 1t — 5.
Replacing hg(t) in we find

(23)
fg) - 572@)
= — (L+e 1) 128:(t) X'(t) by (s)
# (et -

We can then write

f(r)

r2

2(t) = —A(t) (1 + e~ )32 Ri(s) + 2¢ s B(t) hi(s) — C(t) h%(s)
where we have set

PP e 1) 126, X'

2(e7t — Bt) 6y — (
B =
(1+ex) X2 7

2
2e”X

and C := 63. We look for functions X and &, such that A = B = C, i.e.
satisfying equations . This amounts to

1+e7)t26,

(14+e2) 2 X’
5y =

24
(1+ex) X? (24)
and .
X' 0 n 1—pBtet
(1—|—€%>X2 209 t2(1—|—e%) .
By taking the logarithmic derivative of equation (24)), we obtain
5 2 2 X' 2 X X"
- = 2 - 2 + - 2 ~r + 7/
b2 2(1+er) (I4+ex)X2 t X X
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so that X solves the ordinary differential equation

X' X 2B+ 28

X' X ¢ t(1+et)
which leads to
X' t ds
log— = —-2(8+1) logt+2 ——+C
&% (B+1) log /318“+€% |

for some constant C; € R. The solution with initial condition X (0) = 0 can
be written as

t S do‘ -1
X(t) = |Cy—efr | s720+D) ox (2 2) ds]
(t) l 0 /1 pl208 Lo (Lt ed)

for some positive constant Cy. We also notice that for ¢ > 0 small enough
and 3 € (0,1 — 1/€?], the function 7, defined by is positive. Notice that
t = 1/logr ranges in (0,4o00) as r ranges in (1,+00), and so we can take
any u supported outside the unit ball without further precautions. We remark
that if 8 > 1/2, then X(t) ~ 2771 ast — 0., so that X satisfies the initial
condition X (0) = 0. Besides, for a fixed t* > 1, the constants Cy and C} are
chosen such that X (t*) = ¢*, in order that the interval [0, ¢*] is stable under
the action of X.

Proposition 6 Assume that d = 2 and choose 3 € (1/2,1 — 1/e?]. With
the above notations and {Wy}i, defined by (18), for any v € H'(R? du,),
compactly supported outside the ball of radius R = e'/*" with t* > 1, if t =
1/log|z|, then we have

IRQ[U] Z ﬁ/ ( Z Wk(t)) |gj|2u2 d,ua—Q .
B2 \ k=0
At this point, optimality is clearly an open question because of the (3 factor.

4.4 The case d > 3

Assume that ) »

Yat) =72 (Z5 = te2) ifd > 4.
Since the function v, for d = 3 is positive only for r < 8 and we want an
asymptotic expansion for » — oo, we need a different choice of 3. More

precisely, we set

v3(t) = i\/% (10t2 - \/Z_|_2)_
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The function 7, for d > 3 will be the “remaining term” in coming out by
plugging the two different expressions of ho(t) for d = 3 and d > 4 in (19), as
we will see later. Moreover, we let for all d > 3

1 by t 14toe
t:@’ X(t):/o e"2%40) s and 5d(t)zymxl (25>
with
S do‘ 1 s dU
[T we = [ s
7/3(8) /0 \/E(1+0'2) an Vd(s) 2 Jo 1_’_0_% 1 =

Notice that

vy(s) = ;5 [arctan (1+V2s) — arctan (1-v/2s) + ;log Gig:‘zﬂ .

By definition of X, X (¢) <t for any ¢t > 0. The sequence {X}}, is therefore
decreasing, and in particular X (t) < t for all k. Now we look for the sets
where the functions W}, are nonnegative. First, we notice that v4(t) is always
positive if d = 3, 4.

Theorem 7 Let d = 3 or 4, and assume that {Wy}, is defined by (18)). For
any function u € H'(R?, du,) we have

1 o0
el > (@ =20 [ (S W0) o o2 s
4 R\ 15
Moreover, the expansion is asymptotically optimal, in the sense that at any
order N > 0, if we consider an improved inequality of the form
1 N N
lealu] > 7 (=2 [ SOW() + T Y50 Ba(®) | [l dpas
k=0

j=0

and if Ry(t) converges ast — 0to some limit £y € [0,00), then {n < 1.
Proof. Let us set h(r) = (d — 2) ho(t) with ¢t = r2=%. Then

f(r)

o=~ (L) hi) + (L4 g5 672 ) ho() —hi(®) . (26)

Next consider the function h; implicitly defined by

Lt 64(t) ha(s) if d=14
ho(t) =
IVE+ 6t a(s) ifd=3
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where §; = d4(t) and s = X () are two positive functions to be determined.
Replacing in ([26]), we find that

f(r) 1
v — 7 alt
(d_ 2)2 72 47d< )
t ]_—I—td 3
- 7(5dX/1—|—3d2 sh
X 1—|—Xd ( ) ( )
(2d—442dtT7 —(d-2)1)5,-2(d—2) (1+¢T-2) 13, 42
' 2(d—2+d XT2) (1 + 3581 2) hi(s)
— 02 h3(s) .

As a consequence, we get an expression that is similar to (26]), namely

1 f(r) 1
0 [(d —o) 4”(“]
— (14 572) shi(s) + (14 55 572) ha(s) — hi(s)

by imposing that X and §4 satisfy equations , where

(2d — 4+ 2dt72 — (d—2)t) 6, — 2(d — 2) (1 + t7=2) ¢ 8,
2d—2+d X77) '

B .=

It is not difficult to show that the functions X, d,4 in are solutions to ,
satisfying the conditions X (0) = 0 and lim,_o, d4(t) = 1.

At this point, we can iterate all the arguments. Indeed, as in the proof of
Theorem [3 if we set

and define
Rpi1 = RpoXpyy for >0

by , for any N > 1 we obtain

Ro(t) = izm Yilt) (1)
1

Z + [1Y;(t) Ru(t) .

0

Remark 8 Ifd = 3, 4, we can combine the results of Theorem[7 with inequal-
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ity to get a further improvement of , that reads as

2 (d—2)2 = 2 2
J v,z e | [ I e

for any u € HY (R, dpy) such that pe_1(u) = 0.

When d > 5, if ¢ := (8/(d — 2))2 1, we remark that for ¢ < ¢ we get Zy(t) =
va(t) > 0 and for all £ > 1 it follows that X (t) < Xx(¢) < ¢ thus Zp1(t) =
Ya(Xk(t)) > 0. Therefore we define R := (1/¢)"/%2, so that for any r > R we
know that Zy(t) > 0 for all £ € N. Hence, for d > 5, only external domains
should be considered.

4.5  FExternal domains with d > 5

Let us consider once more the Kelvin transformation . If €2 is an open set of
R? containing the origin, define for any u € C} () its Kelvin transformation
v(y) = |ly/* 4 u(z) with y = z/|z|*. Integrating and performing an integration
by parts to the last term in the expression of |Vul|?, we get

2
2 [Vul Loy [ W
/ |Vul© du, = / |2a d oat2a(d 2)/Q PRECER dfto—1

(d+2a)

whence, if [, |z|” udji,_1 = 0, applying to v we obtain

[Vul®

0 |x|2a

2
U
d/,ba Z [Aa’d — 2« (d — 2)] /Q |x|2(7a+1) d,uafl s

which is a new weighted Hardy-Poincaré inequality. The constant is positive
because « is negative and d > 2.

The change of variables y = z/|z|* and the definition of u given in terms of v
by (7)) allow to write lgx [v] = Jo[u], where

2
_2a u
JQ[U] :/Q’vu|2’$‘ 2 dua—i_@(d_zl)\/QW(aHd’ual

+O‘ / |x|2 (a+1) dfta—2

is nonnegative. This leads to the inequality

L IVul a2 dpto = aa —2) [ 5 |$|2(a+1 dpia—s - (27)

For dimension d > 5 we have seen that the terms Wj(¢) in the asymptotic
expansion are nonnegative out of the ball B, with R = ((d — 2)/8)d=2/(d=4),

23



Since Bfjp = R?\ Bg, we can use (in the spirit of Corollary 5) the Kelvin
transformation in order to add a whole asymptotic expansion as |z| — 0 at
the right hand side of . Indeed, we have the following

Corollary 9 Ifd > 5 and By g denotes the ball of radius 1/R, then we have

2

1 > u
JB, ul > = (d—2)? ( W, xd_2>dua_
el 2 @ =27 [ (S Wllel"?)) oy ditas

Bi/r

for any uw € Hj(Bi/r,dpa), and the asymptotic expansion as |x| — 0 at the
right hand side is optimal again, in the sense specified in Theorem 7.

Proof. For any u € Hg(By/g,dpa) let v € Hy(Bf)g, da) be the function
defined through (7). Then the proof of Theorem 7 gives

FRCEY I (G T
BI/R

with the same f defined in (16). Clearly the optimality arguments shown in
the step 2 of section 4.2 still hold. At the end, we obtain

lgr [v] > i(d— 2)2/K (;Wk(t)> |22 v? dptey—s -

1/R o

and the Kelvin transformation implies the desired result. 0

5 Concluding remarks and open questions

The Poincaré inequality (with gaussian weight) is a spectral gap inequality and
it is easy to obtain improved constants by imposing constraints on the set of
functions. The orthogonality with respect to all Hermite polynomials of order
less than k will automatically increase the value of the corresponding Rayleigh
quotient. This has been investigated for instance in [8] (also see references
therein) in connection with other interpolation inequalities. A similar approach
has also been developed for Hardy-Poincaré inequalities: see [2I] in case of
the measure du, introduced in Section [4} The links between Hardy-Poincaré
inequalities and the gaussian Poincaré inequality do not stop here: indeed, if

we use the scaling uy(x) = AT u(Ax), where A = /2 |al, we get
lga[uy] — Glul
as @ — —oo and the equation we have seen in the proof of Theorem [7]

(L) + [(d=2)r* +d| h =11 =0 (28)
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degenerates into the equation used in the proof of Theorem [3]
rh'+(d—2)h—h*=0. (29)

To see this last property, it is enough to notice that if h is a solution to ,
then for any A > 0 we have

(L+ M) N (A7) + [(d = 2) M r? + d] h(Ar) = X2 h2(\r) = 0

and by making the change of variable s = Ar, it is straightforward to get

(e 2) s gomO+ [ (@=2)5 4 5] hs) = 21209 =0

hence, if A = (/2|a|, assuming that h(\s) — h(s) as o — —oo, at least
formally we obtain that h solves .

In this paper, we have given improvements on the potential (characterized by
its asymptotic expansion as either |z| — 0 or |x| — oo) without imposing
additional conditions on the set of functions. However, as noticed in the intro-
duction, by requiring u = 0, we get the improved inequality . In that case
the measure is not the same for the L? term and for the Dirichlet energy. This
raises the interesting question of combining both approaches which, as far as
we know, is a completely open issue.

Improvements have been achieved as a series of positive terms that can be
added to the weight in the L? norm controlled by the Dirichlet form, thus
leaving the inequality as a comparison between two quadratic functionals.
The optimal additional terms are obtained by iterating a map involving some
logarithmic terms. As mentioned in the introduction, there are other improve-
ments which amount to control u? logu? terms by the Dirichlet form: the
logarithmic Sobolev inequality and the logarithmic Hardy inequality, for in-
stance. Is it possible to relate these two approaches 7

The basic tool of our approach is a simple expansion of a square. However,
by leaving the weight undetermined, we obtain a non-local integro-differential
equation which allows to identify the best possible growth order by order, and
build an induction scheme. Some care is however required when defining the
class of potentials under consideration. Optimality of improvements of inequal-
ities is a delicate matter which deserves further studies, if one wishes to relax
some of our assumptions. However, let us mention as a final comment that
one of the advantages of the expansion of a square is that, in our framework,
optimality cases are easy to identify and it is not the less remarkable aspect of
our results that the computation of optimal constants is then straightforward
in most of the cases.
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