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Université Paris IX-Dauphine
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1 Introduction

In this paper we first prove a new family of inequalities which is intermediate

between the classical Sobolev inequalities and the Gross logarithmic Sobolev

inequality.

Theorem 1.1 Assume that N = 2, 3, 4 and consider m ∈ [N−1
N
,+∞[ (m 6=

1
2
, 1). Then for any w ∈ Dγ(IRN) such that

∫

IRN
|w|2γ dx = M > 0 (1.1)

with γ = γ(m) = 1
2m−1

, the following identity holds

1

2

(

2m

2m− 1

)2 ∫

IRN
|∇w|2 dx+

(

1

1 −m
−N

)
∫

IRN
|w|1+γ dx+K(m,M) ≥ 0

(1.2)

where K(m,M) is a negative constant if m < 1 and a positive constant if

m > 1. Here the space Dγ(IRN) defined by

Dγ(IRN) = {w ∈ L1+γ ∩ L2γ(IRN ) : ∇w ∈ L2(IRN)} .

The expression of K(m,M), which is optimal for Inequality (1.2) under Con-

straint (1.1), is explicitely given in Section 2.2, Equation (2.11). Note that

Inequality (1.2) also holds in the case m = N−1
N

for any N ≥ 3 and that

K(N−1
N
,M) is then given in terms of the optimal constant of the Sobolev em-

bedding of D1,2(IRN) = {w ∈ L
2N

N−2 (IRN) : ∇w ∈ L2(IRN)} into L
2N

N−2 (IRN)

(see Section 2.4). Dγ(IRN) can be defined as the completion of D(IRN) with

respect to the norm

‖w‖ = ‖w‖L1+γ(IRN ) + ‖w‖L2γ(IRN ) + ‖∇w‖L2(IRN ) .

Dγ(IRN) is a subset of D1,2(IRN) if N ≥ 3 and D(γ=1)(IRN ) = H1(IRN ). The

case m = 1 corresponds to the Gross logarithmic Sobolev inequality: for any

w ∈ D1,2(IRN), if M = ‖w‖2
L2(IRN )

,

∫

IRN
w2(x) log[w2(x)] dx−M

[

N + log
(

M

(2π)N/2

)]

≤ 2
∫

IRN
|∇w|2 dx
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or, with v = w2 and M = ‖v‖L1(IRN ),

∫

IRN
v log v dx−M

[

N + log
(

M

(2π)N/2

)]

≤ 1

2

∫

IRN

|∇v|2
v

dx . (1.3)

The main ingredient in our proof comes from two recent papers by L.

Erbe and M. Tang [12] for a ball and by P. Pucci and J. Serrin [25] in the

whole space, from which the following result can be inferred:

Lemma 1.1 The radially symmetric solutions (ground states) of

∆u− uγ + u2γ−1 = 0 , u > 0 if 1 < γ <
2N

N − 2
(1.4)

and of

∆u− u2γ−1 + uγ = 0 , u ≥ 0 if 0 < γ < 1 (1.5)

such that lim|x|→+∞ u(x) = 0 are unique if N = 2, 3, or 4.

The sublinear case (γ < 1) is deduced from [12] while the superlinear case

(γ > 1) comes from [25]. Here we adopt the convention 2N
N−2

= +∞ if

N = 2. A more general result (higher dimensions) is given in Appendix A:

see Corollaries 4.1 and 4.2. As a consequence of Theorem 1.1, one may prove

that for m = 1+γ
2γ

≥ N−1
N

, m 6= 1,

L[v] =
1

2

∫

IRN
v(x) |x|2 dx − 1

1 −m

∫

IRN
vm(x) dx−K(m,M) (1.6)

≤ 1

2

∫

IRN
v(x) |x+

m

m− 1
∇(vm−1(x))|2 dx

provided v = w2γ ≥ 0 satisfies the additional condition
∫

IRN
v(x) |x|2 dx < +∞ . (1.7)

Inequality (1.6) becomes an equality for

vm− 1
2 (x) = w(x) = w∞(x) =

(

C(m,M) +
1 −m

2m
|x|2

)− 2m−1
2(1−m)

+
,
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for some constant which is determined by Condition (1.1). By the way, this

also determines the value of K(m,M).

Even if the Condition (1.7) perfectly makes sense with w = w∞ for any

m > N−2
N

, it is hopeless to expect an inequality similar to (1.6) for an m ∈
]N−2

N
, N−1

N
[. More precisely, for any Λ ≥ 1

sup
w∈Dγ (IRN )

∫

IRN
w|w|2γ dx=M

(

1

2

∫

IRN
|x|2 · |w|2γ dx− 1

1 −m

∫

IRN
|w|1+γ dx−K(m,M)

−Λ

2

∫

IRN
|x · wγ +

2m

2m− 1
∇w|2 dx

)

= +∞ .(1.8)

For more detailed results, the case N ≥ 5 and a short list of references

concerning Sobolev inequalities, we refer to the introduction of Section 2.

In the second part of this paper, we use the results of Theorem 1.1 to

study of the asymptotic behavior in time of the solutions of the nonlinear

Cauchy problem,

ut = ∆(um), t > 0 x ∈ IRN (1.9)

u(0, x) = u0(x), (1.10)

where m is a positive number which we assume different from one, and u0 ∈
L1(IRN ) is nonnegative.

The case m > 1 arises as a model of slow diffusion of a gas inside a porous

container. Unlike the heat equation m = 1, this equation exhibits finite speed

of propagation in the sense that solutions associated to compactly supported

initial data remain compactly supported in space variable at all times (see

Aronson [2]). When 0 < m < 1, the opposite happens. Infinite speed

of propagation occurs and solutions may even vanish in finite time. This

problem is usually referred to as the fast diffusion equation. Let us observe

that the elliptic part when written in divergence form becomes

m∇ · (um−1∇u) ,
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and the nonlinear diffusion coefficient um−1 takes small values when u is small

if m > 1 while the opposite happens if m < 1.

These problems are known to be well posed in weak senses and to pre-

serve mass in time whenever m > (N − 2)/N . Solutions are regular and

positive (see [16]), but this is no longer true when m is below this threshold.

Discontinuities and finite time vanishing may occur as simple examples show.

For m > 1 solutions are at least Hölder continuous. Also known is that for

compactly supported solutions, their space supports are becoming ”ball-like”

and of class C1,α for long times (see [6]).

The long-time behavior of solutions to these problems has been the object

of a large number of papers. Since mass is preserved, it is natural to ask

whether a scaling brings the solution into a certain universal profile as time

goes to infinity. This is indeed the case and the role of the limiting profiles is

played by an explicit family of self-similar solutions known as the Barenblatt-

Prattle solutions [4], characterized by the fact that their initial data is a Dirac

mass. These solutions, which come out naturally from the scaling invariance

of the equation are given by the explicit formulas

UC(t, x) =
(

α

t

)Nα

· v∞
(

(
α

t
)αx

)

where α = 1
2−N(1−m)

> 0 and for m > N−2
N

, m 6= 1,

v∞(x) =
(

C − m− 1

2m
|x|2

)
1

m−1

+
, (1.11)

with ( )+ denoting positive part.

Observe that these solutions have a constant mass in space variable, uni-

quely determined by the parameter C, and that at time t = 0 they become a

Dirac measure at the origin. Explicitely, if we set M =
∫

IRN UC(t, x)dx then

the value of the constant C is given by

C = C(m,M) =

(

M

I(m)

)2(m−1)α

, (1.12)
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where

I(m) = |SN−1| ·
∫

rN−1

(1 + 1−m
2m

r2)
1

1−m

dr ,

with the above integral taken on the interval (0,+∞) if m < 1 and on the

interval (0,
√

2m
m−1

) if m > 1 (see Section 2.1 for more details). Of course

the analogues of these functions for m = 1 are nothing but scalar multiples

of the fundamental solution of the heat equation. More generally, the role

of self-similar solutions in the asymptotic behavior of solutions is a common

pattern to many evolution equations.

Heuristically one thinks that if u(t, x) is a solution of (1.9)-(1.10), then the

scaling uλ(t, x) = λNαu(λαx, λt) which leaves the equation invariant should

converge in some sense as λ→ +∞ to a solution invariant under the scaling of

(1.9)-(1.10) having as initial data the Dirac measure with mass equal to that

of u0, namely to a member of the family of the Barenblatt-Prattle solutions.

This would then give account of the asymptotic profile of the original solution

u for large times.

This idea was first set and made rigorous by Friedman and Kamin [13]

in the context of u0 ∈ L1(IRN) ∩ L2(IRN), both in the cases m > 1 and

(N − 2)/N < m < 1. These results have been later improved and extended

by Vázquez and Kamin (see [18] and [19]). See also [31] for a recent survey

and some new results. Thus far it is known that if u0 ∈ L1(IRN) then

lim
t→+∞

‖u(t, .) − UC(t, .)‖L1(IRN ) = 0 (1.13)

and also

lim
t→+∞

tNα‖u(t, .) − UC(t, .)‖L∞(IRN ) = 0, (1.14)

both in the cases m > 1 and (N − 2)/N < m < 1.

Even though these facts have been known for some time, little seems to

have been found concerning the rate at which the convergence occurs. For

the heat equation m = 1 the following fact is classical.

lim sup
t→+∞

√
t · ‖u(t, .) −

‖u0‖L1(IRN )

(2πt)N/2
e−

|x|2

2t ‖L1(IRN ) < +∞ . (1.15)
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In other words the corresponding decay rate of (1.13) when m = 1 is of order

O(t−1/2). Our second main result asserts the validity of an analogous decay

estimate for m 6= 1.

Theorem 1.2 Assume that N = 2, 3, 4 and m ≥ N−1
N

, m 6= 1
2
, 1. Con-

sider a nonnegative function u0 ∈ L1(IRN , (1 + |x|2)dx) and assume that um
0

is bounded in L1(IRN). Let M = ‖u0‖L1(IRN ) and consider the solution of

(1.9) with initial data u0 and the Barenblatt-Prattle solution UC such that

‖UC(t, .)‖L1(IRN ) = M for any t > 0. Then there exists a constant C > 0

depending only on m, M and L[u0] such that

(i) if m ∈ [N−1
N
, 1], t 7→ t−

N(1−m)
2−N(1−m) ‖um(t, .)‖L1(IRN ) is bounded and

lim sup
t→+∞

t
1−N(1−m)
2−N(1−m) ‖um(t, .) − Um

C (t, .)‖L1(IRN ) ≤ C .

(ii) if m ∈]1, 2], t 7→ t−
N(1−m)

2−N(1−m) ‖u(t, .)Um−1
C (t, .)‖L1(IRN ) is bounded and

lim sup
t→+∞

t
1−N(1−m)
2−N(1−m) ‖ [u(t, .) − UC(t, .)] Um−1

C (t, .) ‖L1(IRN ) ≤ C ,

lim sup
t→+∞

(

t‖um(t, .)‖L1(Bc
t ) + ‖u(t, x)|x|2‖L1(Bc

t )

)

≤ C

where L1(Bc
t ) is the centered ball of radius
√

2m

m− 1
C(m,M) · [2 −N(1 −m)t]

1
2−N(1−m) .

At this point we may notice that if m < 1, by interpolation with relation

(1.14), we get that for any p ≥ 1

lim
t→+∞

t[1+N(p+m−2)] α
p ‖u(t, .) − UC(t, .)‖Lp(IRN ) = 0 .

Similar results hold in the case m > 1 (see Section 3 for more detailed

results and the case N ≥ 5). We can also make the following observation. If

m > N
N+2

(note that N
N+2

< N−1
N

if N > 2), then UC belongs to L1(IRN , (1 +

|x|2)dx) and Um
C belongs to L1(IRN , dx), for each fixed t > 0:

∫

IRN (UC(x)|x|2+
Um

C (x)) dx is well defined for m ∈] N
N+2

, N−1
N

[ even if Inequality (1.6) does not

make sense.
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2 Generalized Sobolev inequalities

Assume that N ≥ 2 and m > N−2
N

, m 6= 1. We define

L[v] =
∫

IRN

(

v(x)
|x|2
2

− 1

1 −m
vm(x)

)

dx−K(m,M) (2.1)

where K(m,M) is such that L[v∞] = 0, with v∞(x) =
(

C + 1−m
2m

|x|2
)− 1

1−m

+

and C = C(m,M) is given by the condition ‖v∞‖L1(IRN ) = M .

The case m = 1 is a special case where the above expressions have to be

replaced by their limit as m→ 1, m 6= 1 (see Section 2.3).

As mentioned in the introduction, a crucial tool in our approach is a

uniqueness result for nonnegative radial solutions of

∆u− up + uq = 0 (2.2)

where (with γ = 1
2m−1

)

1 < p = γ < q = 2γ−1 ≤ N + 2

N − 2
if

N − 1

N
≤ m < 1 ⇐⇒ 1 < γ ≤ N

N − 2
,

and (with the convention N
N−2

= +∞, m > 1
2

if N = 2)

−1 < p = 2γ − 1 < q = γ < 1 if m > 1 ⇐⇒ 0 < γ < 1 .

According to the results given in Appendix A: Corollaries 4.1 and 4.2), the

following conditions are sufficient

(i) (Fast Diffusion case) m ∈]N−1
N
, 1[ and N = 2, 3, 4, or m = N−1

N
if N ≥ 3,

or 5 ≤ N < 16 and γ ≥ 4(N + 2)

5(N − 8)
, (2.3)

(ii) (Porous Medium case) m > 1 and N ≤ 16,

or N > 16 and γ ≥ 4(N + 2)

5(N − 8)
. (2.4)

8



The main result of this section is the

Theorem 2.1 Assume that N ≥ 2, M > 0 and γ = 1
2m−1

. If Conditions

(2.3)-(2.4) are satisfied, then

G[w] =
1

2
(

2m

2m− 1
)2
∫

IRN
|∇w|2 dx+ (

1

1 −m
−N)

∫

IRN
|w|1+γ(x) dx

has a unique radial minimizer in Dγ(IRN) satisfying the constraint
∫

IRN
|w|2γ(x) dx = M .

This minimizer is given by

w(x) = w∞(x) =
(

C(m,M) +
1 −m

2m
|x|2

)− 2m−1
2(1−m)

+
, (2.5)

G[w∞] = −K(m,M) and G[w] = G[w∞] if and only if w = w∞ almost

everywhere.

The proof of this result is given in Section 2.5. We shall start with some

preliminary computations and scalings which determine the optimal range

for m. The case m = 1 (heat equation) and m = N−1
N

, N ≥ 3 (classical

Sobolev embeddings) are treated independently. Before going further, let us

give a straightforward corollary which is the case of interest for fast diffusion

or porous medium equations. Here v = w2γ with the above notations.

Corollary 2.1 Assume that N ≥ 2 and γ = 1
2m−1

. If Conditions (2.3)-(2.4)

are satisfied, then for any nonnegative function v in ∈ L1(IRN , (1 + |x|2)dx)
with M = ‖v‖L1(IRN ) > 0,

∫

IRN

(

v(x)
|x|2
2

− 1

1 −m
vm(x)

)

dx−K(m,M) (2.6)

≤
∫

IRN
v(x)|x+

m

m− 1
∇(vm−1(x))|2 dx .

Moreover the inequality is optimal: it becomes an equality if and only if

v(x) = v∞(x) = w2γ
∞ (x) =

(

C(m,M) +
1 −m

2m
|x|2

)− 1
(1−m)

+
∀ x ∈ IRN .
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A very natural question of course is to ask whether the restrictions cor-

responding to Conditions (2.3)-(2.4) could be removed. With our approach,

one has to extend the uniqueness results to the range of parameters which

are not covered by the results of Appendix A and this looks difficult. A result

can however be obtained with a constant Λ 6= 1 as shown by the next result

Theorem 2.2 Assume that N ≥ 2, m ≥ N−1
N

(m 6= 1
2
, 1) and γ = 1

2m−1
.

Then for any M > 0, there exist a constant Λ = Λ(m,M) ≥ 1 such that

for any nonnegative function v in ∈ L1(IRN , (1 + |x|2)dx) with w = vm− 1
2 ∈

Dγ(IRN) and M = ‖v‖L1(IRN ),

1

2

∫

IRN
v(x) |x|2 dx − 1

1 −m

∫

IRN
vm(x) dx−K(m,M) (2.7)

≤ Λ

2

∫

IRN
|x · wγ +

2m

2m− 1
∇w|2 dx .

A proof of this result, based on a spectral analysis, is given in Appendix C.

Note that we may also write Inequality (2.7) as

Λ

2

(

2m

2m− 1

)2 ∫

IRN
|∇w|2 dx+

1

2
(Λ − 1)

∫

IRN
w2γ(x) |x|2 dx

+
(

1

1 −m
−NΛ

)
∫

IRN
|w|1+γ dx+K(m,M) ≥ 0 .(2.8)

It would be difficult to give a complete list of references for the Sobolev

embeddings or the Gross logarithmic inequalitites. For m = 1 one can refer

to [1] and references therein. Concerning the optimal Sobolev constant, the

minimization methods and the role of radial solutions one may for instance

quote [3], [21] and [27]. Further references concerning some special aspects

of the problem will be given in the rest of this section.

2.1 Preliminary computations

Assume that N ≥ 2 and m > N−2
N

, m 6= 1, and consider

v∞(x) =
(

C(m,M) +
1 −m

2m
|x|2

)− 1
1−m

+

10



where C(m,M) and M = ‖v‖L1(IRN ) are related by

M ·
(

C(m,M)
)

1
1−m

−N
2

=
∫
(

1 +
1 −m

2m
|x|2

)− 1
1−m

+
dx

(where the integral is taken over IRN if m < 1 and on the ball B(0,
√

2m
m−1

) if

m > 1),

C(m,M) =
(

M

I(m)

)−
2(1−m)

2−N(1−m)

, I(m) = |SN−1| ·
∫

rN−1

(1 + 1−m
2m

r2)
1

1−m

dr ,

where the integral defining I(m) has to be taken from 0 to +∞ if m < 1 and

from 0 to
√

2m
m−1

if m > 1.

Similarly, we may define

J(m,M) =
∫

IRN
vm
∞ dx = |SN−1| ·

∫
(

C(m,M) +
1 −m

2m
|x|2

)− m
1−m

+
dx (2.9)

(where again the integral is taken over IRN if m < 1 and on the ball

B(0,
√

2m
m−1

) if m > 1), and a straightforward computation gives

J(m,M) = M
N(m−1)+2m

N(m−1)+2 · J(m, 1) . (2.10)

Proposition 2.1 On ]0,+∞[, M 7→ C(m,M) is a decreasing function if

m ∈]N−2
N
, 1[ and an increasing function if m > 1. If m > 1, M 7→ J(m,M)

and M 7→ K(m,M) are nonnegative convex increasing functions.

Proof. The convexity of J when m > 1 is given by

N(m− 1) + 2m

N(m− 1) + 2
= 1 +

2(m− 1)

N(m− 1) + 2
> 1 .

Consider then, with R(m,M) =
√

2m
1−m

C(m,M) if m > 1 and R(m,M) =

+∞ if m < 1,

K(m,M) =
1

2

∫

v∞(x)|x|2 dx+
1

m− 1

∫

vm
∞(x) dx

11



=
∫

v∞(x)
( |x|2

2
− 1

1 −m
(C(m,M) +

1 −m

2m
|x|2)

)

dx

= −MC(m,M)

1 −m
− 1 −m

m

∫

v∞(x)
|x|2
2

dx

=
m

m− 1
MC(m,M) −

∫

vm
∞(x) dx

=
m

m− 1
MC(m,M) − J(m,M) , (2.11)

where the integrals are taken on B(0, R(m,M)) and J(m,M) is given by

Equations (2.9) and (2.10). This is sufficient to prove the existence for m >

1 of a positive constant c(m,N) which does not depend on M such that

K(m,M) = c(m,N) · J(m,M). 2

Note that K(m,M) is well defined only for m > N
N+2

and strictly negative

for any m ∈] N
N+2

, 1[. Moreover

0 =
∫

IRN
v∞|x+

m

m− 1
∇(vm−1

∞ )|2 dx

=
∫

IRN
v∞|x|2 dx+ (

m

m− 1
)2
∫

IRN
v∞|∇(vm−1

∞ )|2 dx

+2
∫

IRN
xv∞ · m

m− 1
∇(vm−1

∞ ) dx (2.12)

=
∫

IRN
v∞|x|2 dx+ (

2m

2m− 1
)2
∫

IRN
|∇(v

m− 1
2

∞ )|2 dx− 2N
∫

IRN
vm
∞ dx .

Remark 2.1 According to Theorem 2.1, K(m,M) = −G[w∞]:

1

2
(

2m

2m− 1
)2
∫

IRN
|∇(v

m− 1
2

∞ )|2 dx+
(

1

1 −m
−N

)

·
∫

IRN
vm
∞(x) dx+K(m,M) = 0

which together with Equations (2.11) and (2.12) means that

J(m,M) =
∫

IRN
vm
∞(x) dx , K(m,M) ,

∫

IRN
v∞(x)|x|2 dx ,

and (
2m

2m− 1
)2
∫

IRN
|∇(v

m− 1
2

∞ )|2 dx

are proportional (with constants depending only on m and N but not on M)

to MC(m,M) = O(M
N(m−1)+2m

N(m−1)+2 ).
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To conclude with these technical preliminaries, one may consider the

Euler-Lagrange equations associated to the optimal results in Inequalities

(2.7) and (2.8). Here we adopt the notation λ = Λ−1.

Proposition 2.2 v∞ and w∞ defined by (1.11) and (2.5) are respectively

solutions of

−m2v2m−3[∆v+(m− 3

2
)
|∇v|2
v

]+
1 − λ

2
|x|2+(

λ

1 −m
−N)mvm−1 = µ (2.13)

and

−(
2m

2m− 1
)2∆w+γ(1−λ)|x|2w2γ−1 +(1+γ)(

λ

1 −m
−N)wγ −2γµw2γ−1 = 0

(2.14)

provided µ = m
1−m

C(m,M) · λ = m
1−m

λ ·
(

M
I(m)

)−
2(1−m)

2−N(1−m)

.

The proof is a simple computation (µ will appear as the Lagrange multi-

plier associated to the constraint M = ‖v‖L1(IRN )). Up to a scaling, Equation

(2.14) takes the form (2.2) and the uniqueness of the solutions of Eqiation

(2.14) will be used to prove that the minimizer of G in Theorem 2.1 is of the

form w∞. Note that µ is a strictly monotone function of M .

2.2 A scaling argument

In this paragraph, we shall see that simple considerations based on scaling

arguments are sufficient to determine the possible ranges of λ and m. Con-

sider

Fλ[v] =
1

2

∫

IRN
v(x)|x+

m

m− 1
∇vm−1(x)|2 dx− λL[v]

=
1

2
(

2m

2m− 1
)2
∫

IRN
|∇(vm− 1

2 )|2 dx+
1 − λ

2

∫

IRN
v(x)|x|2 dx

+(
λ

1 −m
−N)

∫

IRN
vm(x) dx+ λK(m,M)

13



If vτ (x) = τNv(τx),

Fλ[v
τ ] =

1

2
(

2m

2m− 1
)2
∫

IRN
|∇(vm− 1

2 )|2 dx · τ 2[1−N(1−m)]

+
1 − λ

2

∫

IRN
v(x)|x|2 dx · τ−2

+(
λ

1 −m
−N)

∫

IRN
vm(x) dx · τ−N(1−m)

+λK(m,M)

∼ 1 − λ

2

∫

IRN
v(x)|x|2 dx · τ−2 as τ → 0

provided m > N−2
N

. As a consequence,

Proposition 2.3 If Fλ[v] is bounded from below uniformly in v ∈ XM =

{v ∈ L1(IRN ) : v ≥ 0, |x|2v(x) ∈ L1(IRN), vm ∈ L1(IRN), ∇v ∈
L2(IRN ) , M = ‖v‖L1(IRN ) > 0}, then λ ∈] −∞, 1].

Considering now the opposite asymptotics τ → +∞ in the case m < N−1
N

,

we have the following

Proposition 2.4 If m < N−1
N

, for any λ > 0,

inf
v∈XM

1

2

∫

IRN
v(x)|x+

m

m− 1
∇vm−1(x)|2 dx− λL[v] < 0 .

Proof. As τ → +∞, Fλ[v
τ ] ∼ λK(m,M) < 0 if m < N−1

N
. 2

2.3 The Gross logarithmic Sobolev inequality

The case m = 1 corresponds to the Gross logarithmic Sobolev inequality. For

the completeness of the paper, but also to illustrate the general strategy and

anticipating on the results of Section 3, we give here a few results without

complete proofs and refer to [15], [28], [29], [30] and [1] for further results

and references.
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Proposition 2.5 Assume that v ∈ L1(IRN) is a nonnegative function, M =

‖v‖L1(IRN ) > 0 and
∫

IRN v(x) |x|2 dx < +∞ . Then

(i) L1[v] =
∫

IRN v(x)
(

|x|2

2
+ log(v(x))

)

dx−K(1,M) ≥ 0 provided

K(1,M) = M log
(

M

(2π)
N
2

)

. Moreover, the minimum is reached by

v∞(x) = M · e−
|x|2

2

(2π)
N
2
, which is the unique minimizer.

(ii) if
√
v ∈ D1,2(IRN), then

1

8
‖v − v∞‖2

L1(IRN ) ≤ L1[v] ≤
1

2

∫

IRN
|x
√
v + 2∇(

√
v)|2 dx . (2.15)

(iii) Consider the solution u ∈ C0(IR+, L1(IRN )) of the Fokker-Planck equa-

tion
∂u

∂t
= −∆u+ ∇ · (x u)

with initial data u(t = 0, .) = v. Then

d

dt
L1[u(t, .)] = −

∫

IRN
|x
√

u(t, .) + 2∇(
√

u(t, .))|2 dx

and as a consequence,

1

8
‖u(t, .) − v∞‖2

L1(IRN ) ≤ L1[u(t, .)] ≤ L1[v] · e−2t .

Proof. We just give the general ideas for some proofs of these results.

(i) is a consequence of Jensen’s inequality applied to
∫

IRN s(f
g
)g dσ(x) with

f = v, g = v∞, s(t) = t log t and dσ(x) = dx
v∞(x)

. The left inequality in (ii)

is the Csiszár-Kullback inequality applied to s(t) while the right inequality

is the classical logarithmic Gross Sobolev inequality. To prove it, a simple

method introduced by Toscani is to consider the Fokker-Planck equation and

to compute first d
dt
L[u(t, .)], and then

d

dt

(

1

2

∫

IRN
|x
√

u(t, .) + 2∇(
√

u(t, .))|2 dx− L[u(t, .)]
)

= 4
∫

IRN

N
∑

i,j=1

|∂ijw − ∂iw∂jw

w
+

1

2
w δi,j|2 dx ≥ 0

15



where w =
√
v is the solution of

wτ = ∆w +
|∇w|2
w

+
N

2
w + x · ∇w .

We may also apply a direct minimisation method like in the cases m 6= 1

or simply take the limit m → 1 in Theorem 1.2. The terms involving
∫

IRN v(x) |x|2 dx in the right side of Inequality (2.15) cancel and Inequal-

ity (2.15) is equivalent to Inequality (1.3). As a final remark, we can men-

tion that the time-dependent rescaling we shall study in Section 3 for m = 1:

R(t) =
√

1 + 2t relates the Fokker-Planck equation to the classical heat equa-

tion and gives an easy proof of Estimate (1.15). 2

2.4 Classical Sobolev embeddings (case m = N−1
N

)

Lemma 2.1 Any function v ∈ L1(IRN ) such that ∇(vm− 1
2 ) ∈ L2(IRN) be-

longs to Lp(m)(IRN) with p(m) = (2m− 1) N
N−2

. p(m) belongs to ]m, 1[ if and

only if N
N+2

< m < N−1
N

. For any m > N−1
N

, p(m) > 1.

Proof. This corresponds to the critical Sobolev embedding of D1,2(IRN) in

L
2N

N−2 (IRN) applied to vm− 1
2 . 2

Note that the best Sobolev constant (see [21] for instance) is given by

Σ = inf
v∈C∞

0 (IRN )

∫

IRN |∇v|2 dx
(

∫

IRN |v| 2N
N−2 dx

)
N−2

N

=
(

Nπ

N − 2

)
1
2 ·
(

Γ(N)

Γ(N
2
)

)
2
N

.

Proposition 2.6 If m = N−1
N

, N ≥ 3, then

1

2

∫

IRN
v(x)|x+

m

m− 1
∇vm−1(x)|2 dx ≥ L[v] . (2.16)

Proof. The Sobolev inequlality is optimal for v = v∞ and Inequality (2.16)

therefore holds (with Λ−1 = λ = 1 as for m = 1). Moreover, the constant is
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optimal: the inequality is strict unless v = v∞ since

1

2

∫

IRN
v(x)|x+

m

m− 1
∇vm−1(x)|2 dx− L[v]

=
1

2
(

m

m− 1
)2
∫

IRN
v(x)|∇vm−1(x)|2 dx+K(m,M)

=
1

2
(

m

m− 1
)2
[
∫

IRN
v(x)|∇vm−1(x)|2 dx−

∫

IRN
v∞(x)|∇vm−1

∞ (x)|2 dx
]

.

Note that for m = N−1
N

, p(m) = (m− 1
2
) 2N

N−2
= 1 and

Σ2 = (N−2)2

4M
N−2

N

∫

IRN v∞|∇(vm−1
∞ |2 dx dx. 2

2.5 Proof of the Generalized Sobolev inequalities

This Section is devoted to a proof of Theorem 2.1. Arguments concerning

the symmetry and the uniqueness of radial solutions have been rejected in

Appendices A and B, but are crucial to prove the optimality of K(m,M).

Note that in the case m < 1 as well as in the case m > 1, there is no linear

term in the Euler-Lagrange equations, and the result of existence cannot be

reduced to the classical framework studied by Berestycki and Lions in [5].

Because of Schwarz’ symmetrization method, the minimum of G with

the constraint on the L2γ(IRN)-norm is reached by radially symmetric func-

tions. In the following, we shall prove the existence of one radially symmetric

minimizer. Since the solutions of the Euler-Lagrange equations are radially

symmetric (see Appendix B: Proposition 5.1) and since the radial problem

admits at most one radial solution (see Appendix A: Corollaries 4.1 and 4.2)

as soon as Conditions (2.3)-(2.4) are satisfied, the minimizer is nothing else

than w(x) = w∞(x), which is a solution of the Euler-Lagrange equations (see

Remark 2.2 below).

Assume that γ > 1, m > N−1
N

and consider

YM = {w ∈ Dγ(IRN ) : w ≥ 0 ,
∫

IRN
w2γ(x) dx = M} ,

YM(R) = {w ∈ YM : supp(w) ⊂ B(0, R)} ,
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IR = inf
w∈YM (R)

(

1

2
(

2m

2m− 1
)2
∫

IRN
|∇w|2 dx+ (

1

1 −m
−N)

∫

IRN
w1+γ(x) dx

)

.

(2.17)

R 7→ IR is a decreasing function of R and by density: limR→+∞ IR = I∞. If

I∞ = 0, there exists a sequence (wn)n∈IN ⊂ YM such that

‖wn‖L2γ(IRN ) = M , lim
n→+∞

‖∇wn‖L2(IRN ) = 0 and ‖wn‖L1+γ(IRN ) = 0 .

By the Sobolev embedding: limn→+∞ ‖wn‖
L

2N
N−2 (IRN )

= 0 if N ≥ 3 (the ex-

tension to the case N = 2 is evident) a contradiction with Hölder’s inequality

since 1 + γ ≤ 2γ < 2N
N−2

.

IR is reached by a radially symmetric positive function wR ∈ H1
0 (B(0, R))

which solves

(
2m

2m− 1
)2∆wR − (γ + 1)(

1

1 −m
−N)wγ

R + µR w2γ−1
R = 0

where µR is the Lagrange multiplier associated to the constraint on the

L2γ(IRN)-norm. The maximum of wR is attained at x = 0 : ∆wR(0) ≤ 0,

proving that

µR

(

wR(0)
)γ−1

− (γ + 1)(
1

1 −m
−N) ≥ 0 .

On the other side,

µR M = (
2m

2m− 1
)2
∫

IRN
|∇w|2 dx+ (γ + 1)(

1

1 −m
−N)

∫

IRN
w1+γ(x) dx

≤ (γ + 1)IR

and thus wR(0) ≥
(

M
IR

1−N(1−m)
(1−m)

)
1

γ−1 →
(

M
I∞

1−N(1−m)
(1−m)

)
1

γ−1

as R → +∞.

Note also that µR M ≥ 2IR → 2I∞ > 0 and that up to the extraction of

a subsequence Rn (with limn→+∞Rn
= +∞), we may assume that

wRn
→ w∞ in C2

loc(IR
N) ,

where w∞ is a nontrivial (because wR(0) 6= 0) nonnegative solution of

(
2m

2m− 1
)2∆w∞ − (γ + 1)(

1

1 −m
−N)wγ

∞ + µ∞ w2γ−1
∞ = 0 . (2.18)
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By Hopf’s lemma, it is clear that w∞ > 0 in IRN .

On the other side, any minimizer in YM of

Q[w] =
1

2
(

2m

2m− 1
)2
∫

IRN
|∇w|2 dx+ (

1

1 −m
−N)

∫

IRN
w1+γ(x) dx

satisfies
1

2
(

2m

2m− 1
)2
∫

IRN
|∇w|2 dx = a(m,N)I∞

and

(
1

1 −m
−N)

∫

IRN
w1+γ(x) dx = b(m,N)I∞

where a and b are two constants independent of M . This is easily seen by

a scaling argument: if wλ(x) = λ−
N
2γw(x

λ
), then: d

dλ
Q[wλ]|λ=1 = 0, which

means

1

2
(
N

γ
−N + 2) (

2m

2m− 1
)2
∫

IRN
|∇w|2 dx (2.19)

=
N

2γ
(1 + γ)(

1

1 −m
−N)

∫

IRN
w1+γ(x) dx .

This together with

Q[w] = I∞ (2.20)

provides a unique expression for a and b.

If we consider now the minimizing family wR,

1

2
(

2m

2m− 1
)2
∫

IRN
|∇wR|2 dx− a(m,N)Q[wR] → 0

and

(
1

1 −m
−N)

∫

IRN
w1+γ(x) dx− b(m,N)Q[wR] → 0

as R→ +∞ (if not, a scaling would again produce a contradiction).

Thus µ∞ = limR→+∞ µR is therefore uniquely determined:

µ∞ =
1

M
[2a(m,N) + (1 + γ)b(m,N)] ,
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and the convergence of ∇wR to ∇w∞ in L2(IRN) and of wR to w∞ in

L1+γ(IRN) is strong: as a consequence, ‖w∞‖L2γ (IRN ) = M and w∞ belongs

to YM .

But there is a unique choice of the parameters λ1 and λ2 such that u(x) =

λ1w(λ2x) > 0 is a solution of

∆u− uγ + u2γ−1 = 0 ,

which is unique according to Corollary 4.1. w∞ is therefore nothing else than

w∞(x) =
(

C(m,M) +
1 −m

2m
|x|2

)− 2m−1
2(1−m)

.

Note that Equations (2.19) and (2.20) together with the condition

∫

IRN
w2γ(x) dx = M

and the uniqueness result (Corollary 4.1) prove that any radial minimizer is

a solution of Equation (2.18) with µ∞ fixed as above and is therefore unique.

If γ < 1, the proof is very similar. Consider again the sets YM , YM(R)

and the infimum IR. The fact that I∞ < 0 is easily seen by using the function

w∞ as a test function. The first difference comes from the fact that now

2γ ≤ 1 + γ ≤ 2 <
2N

N − 2
,

and nothing a priori prevents from some vanishing of mass: passing to the

limit, we only know that w∞ is radial, nonnegative, non-trivial for the same

reason as in the fast diffusion case and ‖w∞‖L2γ(IRN ) ≤ M . However, the

symmetry result given in Appendix B (Proposition 5.1) and the fact that

M 7→ −K(m,M) is concave and decreasing according to Proposition 2.1

proves that the only possible minmizer corresponds to a radially symmetric

function v∞ supported on a single ball in IRN such that the constraint on

the L2γ(IRN)-norm is satisfied. Then the uniqueness result of Appendix A

(Corollary 4.2) applies and the proof goes exactly as in the case γ > 1. 2
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Remark 2.2 We conclude this section by a few remarks concerning the fact

that the minimizer is a non-trivial solution of the Euler-Lagrange equations

and therefore nothing else than w∞. In the case γ > 1, the limit of the

minimizing sequence is a solution of an equation of type (2.2) and therefore

by the uniqueness result takes the form
(

C + 1−m
2m

|x|2
)− 2m−1

2(1−m)

, but it belongs

to YM which allows us to identify C with C(m,M).

In the case γ < 1, the identification of the Lagrange multiplier in terms

of the value of the infimum, which then fixes the value of the constant C,

is crucial. The concavity argument, which is used to prove that the limit

satisfies the constraint, is actually deeper. Ignoring the result concerning the

uniqueness (up to translations) of the solution (and the fact that the Lagrange

multiplier is a strictly monotone function of M), the monotonicity and the

strict concavity of M 7→ −K(m,M) ≤ 0 also proves that the minimum

cannot be reached by a function supported for instance by a union of n disjoint

balls, correponding of course to a different value of the Lagrange multiplier,

and for which the minimum would be: −n K(m, M
n

) > −K(m,M).

3 Long time behaviour of fast diffusion or

porous medium equations

Our approach in the proof of these results uses elements which are rather new

in the study of nonlinear diffusions of this type but that are already familiar

in the field of kinetic equations. In particular our methods are close in spirit

to works by Toscani (see [28], [29]) and by Arnold, Markowich, Toscani and

Unterreiter (see [1]).

First of all we transform the equation via a change of variables – a time-

dependent rescaling – natural for the self-similar structure of the equation,

which not only takes care of the dispersion of the profile, but also preserves

the mass at all times, and the initial data. The resulting equation is an

analogue of the so-called linear Fokker-Planck equation. The original problem
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is thus translated into the study of the convergence of the rescaled solution

to the steady state, uniquely determined by the preservation of mass.

The nonnegative function L which has a unique minimizer turns out to

be a convex Lyapunov functional for the rescaled problem. This Lyapunov

functional is an analogue of the relative entropy, familiar in kinetic equations

(see for instance [29]). The observation that this object is indeed decreasing

along trajectories in the case of the rescaled porous medium equation (m > 1)

appears first in Newman and Ralston approach (see [22] and [26]).

An interesting convexity inequality essentially due to Csiszár [8] and Kull-

back [17] allows us to estimate the difference between the solution and its

limit. The essential point in finding the decay rates is given by the results of

Section 2.

In this section we first set up the self-similar time-dependent change of

variables, introduce the Lyapunov functiona and prove its basic convexity

property related to the Cziszar-Kullback inequality. We include a proof of

the version we will utilize in Appendix D. The main result of this section is

the following theorem, which gives the rate of convergence of the solutions

of Equation (1.9).

Theorem 3.1 Consider a nonnegative function u0 ∈ L1(IRN , (1 + |x|2)dx)
and assume that um

0 is bounded in L1(IRN). Let M = ‖u0‖L1(IRN ) > 0 and

consider the solution of Equation (1.9) with initial data u0. If u(t, x) =
(

R(t)
)−N

· v
(

log(R(t)), x
R(t)

)

with R(t) =
(

1 + (2 − N(1 −m))t
)

1
2−N(1−m)

,

then with the same notations as in Section 2, if m ≥ N−1
N

, m 6= 1
2
, 1,

L[v(τ, .)] ≤ L[u0] · e−2λτ ∀ τ > 0

for some λ ∈]0, 1]. Moreover, λ = 1 if Conditions (2.3)-(2.4) are satisfied.

The proof is a straightforward consequence of Corollary 2.1 and Theorem

2.2. Using the relation e−λτ = [R(t)]λ, one proves an algebraic decay in

terms of the original time variable t. Combining then this estimate with the
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Csiszár-Kullback inequality (see Proposition 3.1), one proves the following

result, which contains Theorem 1.2.

Corollary 3.1 Under the same assumptions as in Theorem 1.2, but without

the restriction on the dimension, if N ≥ 2 and if Conditions (2.3)-(2.4)

are satisfied, then the same results as in Theorem 1.2 hold. If Conditions

(2.3)-(2.4) are not satisfied, then the decay rate is of order t
N(1−m)−λ

2−N(1−m) for

‖vm−vm
∞‖L1(IRN ) if N−1

N
< m < 1 and for ‖(u(t, .)−u∞(t, .))um−1

∞ (t, .)‖L1(IRN )

if 1 < m < 2.

3.1 Time-dependent scalings and the Lyapunov func-
tional

Consider τ(t) a new time scale and R(t) a lenght scale such that the solution

u(t, x) of Equation (1.9) reads as

u(t, x) =
(

R(t)
)−N

· v
(

τ(t),
x

R(t)

)

(3.1)

for some nonnegative function v. In this transformation the L1-norm is pre-

served: ‖u(t, .)‖L1(IRN ) = ‖v(τ(t), .)‖L1(IRN ). It is readily checked that v(τ, x)

satisfies the equation

vτ = ∆(vm) + ∇ · (xv) τ > 0, x ∈ IRN , (3.2)

which for m = 1 corresponds to the linear Fokker-Planck equation, provided

that t 7→ R(t) is a solution of the ordinary differential equation

dR

dt
= R(t)N(1−m)−1 . (3.3)

and τ(t) = log(R(t)). If we add the condition R(0) = 1 so that the initial

data is preserved,

v(τ = 0, x) = u0(x) ,
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then

R(t) =
(

1 + (2 −N(1 −m))t
)

1
2−N(1−m)

, (3.4)

provided m 6= 1. Observe that R(t) → +∞ whenever N−2
N

< m, which is our

entire range of interest. The advantage of this change of variables lies on the

fact that it eliminates the dispersion taking place in the original function u

without introducing any singularity at initial time. This approach has been

introduced systematically by J. Dolbeault and G. Rein in [11] for a number

of evolution problems in kinetic theory and related models of fluid mechanics

or quantum physics.

With the same notations as in Section 1, as t → +∞, R(t) ∼ ( t
α
)α,

u∞(t, .) ∼ UC(t, .) and the known fact

lim
t→+∞

(

‖u(t, .) − u∞(t, .)‖L1(IRN ) + tNα‖u(t, .) − u∞(t, .)‖L∞(IRN )

)

= 0 ,

when (N − 2)/N < m < 1 or m > 1 reads in these new scales just as:

v(τ, x) → v∞(x) for τ → +∞ both uniformly and in the L1-sense. Here and

henceforth we use the notation, valid both when m > 1 and when N−2
N

<

m < 1, u∞(t, x) =
(

R(t)
)−N

v∞

(

log(R(t)), x
R(t)

)

,

v∞(x) =
(

C +
1 −m

2m
|x|2

)− 1
1−m

+
(3.5)

with C = C(m,M) given by (1.12) and M =
∫

IRN u0(x)dx.

We consider now L[v] given by Equation (2.1) which turns out to be a

Lyapunov functional for equation (3.1). We shall indeed prove in the next

section (Theorem 3.2) that for any solution v(t, x) of Equation (3.2),

d

dt
L[v(t, .)] = −

∫

IRN
v(t, .)|x+

m

m− 1
∇v(t, .)m−1|2 dx . (3.6)

L[v(t, .)] comes in the evolution problem in natural analogy with similar

objects arising in kinetic theory (free energy functional: see [9]) or for the

heat equation (relative entropy: see [28], [29], [30], [1]).
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Assume that m ∈] N
N+2

, 1[. Let w = vm− 1
2 be a nonnegative function such

that (1 + |x|2) v(x) and vm belong to L1(IRN ). Let us write

L̄[v] =
∫

IRN

(

v(x)

2
(|x|2 +

2m

1 −m
C) − 1

1 −m
vm(x)

)

dx

The choice C = C(m,M) as in relation (1.12) makes the quantity inside the

integral sign to be minimized in v for each fixed x precisely at the value v =

v∞(x) where v∞(x) is given by formula (3.5). Notice that L[v] ≡ L̄[v]−L̄[v∞],

namely

L[v] =
∫

IRN

(

v(x)
|x|2
2

− 1

1 −m
vm(x)

)

dx− 1 +m

2(1 −m)

∫

IRN
vm
∞(x) dx (3.7)

for m 6= 1, m > N
N+2

and L[v∞] = 0. L is strictly convex on its domain of def-

inition and has the function v∞(x) as its unique minimizer. This is easily seen

using Jensen’s inequality in IRn with the measure dσ(x) = vm
∞(x)

∫

B(0,R)
vm
∞ dx

dx,

L[v]
∫

IRN vm
∞(x) dx

=
∫

IRN
sFD

(

vm

vm
∞

)

dσ(x)

with sFD(t) = mt
1
m −t

1−m
+ 1 and R = +∞ if m ∈] N

N+2
, 1[, and

L[v]
∫

B(0,R) v
m
∞ dx

=
∫

B(0,R)
sPM

(

v

v∞

)

dσ +
1

2

∫

|x|>R
(v
|x|2
2

+
vm

m− 1
) dx

with sPM(t) = tm−mt
m−1

+ 1 and R = R(m,M) =
√

2m
m−1

C(m,M) if m > 1.

sFD is a strictly convex function if m > 1
2

(which is obviously the case if

m > N
N+2

, N ≥ 2) as well as sPM .

An estimate of the difference of v with v∞ is given by the Csiszár-Kullback

inequality:

Proposition 3.1 Assume that N ≥ 2. Let v is a nonnegative function such

that (1 + |x|2) v(x) and v(x)m belong to L1(IRN).
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(i) If min{1
2
, N−2

N
} < m < 1, then there exists a constant C > 0 which which

depends only on m, M and L[v] such that

L[v] ≥ C‖vm − vm
∞‖2

L1(IRN ) .

(ii) If 1 < m < 2 and R = R(m,M) =
√

2m
m−1

C(m,M), then

L[v] ≥ m

4MC(m,M)
‖(v− v∞)vm−1

∞ ‖L1(IRN ) +
∫

|x|>R
(v
|x|2
2

+
vm

m− 1
)dx .

Proof. Proposition 3.1 is a direct consequence of Lemma 7.1. For m < 1,

we take s(t) = sFD(t)mt
1
m −t

1−m
+ 1, K1 = K2 = 1

m
, dµ(x) = dx and

L[v] =
∫

IRN
s
(

vm

vm
∞

)

vm
∞dx .

Let us prove that C depends only on m, M and L[v]. ‖vm‖L1(IRN ) can be

bounded as follows: Hölder’s inequality applied to vmv−m(1−m)
∞ ·vm(1−m)

∞ gives
∫

IRN
vm dx ≤

[
∫

IRN
v(C(m,M) +

1 −m

2m
|x|2) dx

]m

·
[
∫

IRN
vm
∞ dx

]1−m

(3.8)

and using the definition of L[v], we get
∫

IRN
v
|x|2
2

dx− 1

1 −m

[
∫

IRN
v(C(m,M)+

1 −m

2m
|x|2)dx

]m

−K(m,M) ≤ L[v],

thus obtaining an estimate on
∫

IRN v |x|2

2
dx and ‖vm‖L1(IRN ) which depends

only on m, M and L[v].

If 1 < m < 2, we may write |x|2

2
= m

m−1

(

C(m,M) − vm−1
∞ (x)

)

≥
m

m−1
C(m,M) for |x| < R(m,M),

∫

IRN vvm−1
∞ dx ≥ m

m−1
C(m,M)M and apply

Lemma 7.1 to

L[v] =
∫

IRN
s
(

v

v∞

)

v∞(x) dµ(x) +
∫

B(0,R)c

(

v(x)
|x|2
2

+
1

m− 1
vm(x)

)

dx ,

s(t) = sPM(t) tm−mt
m−1

+ 1, K1 = K2 = m and dµ(x) = vm−1
∞ (x) dx. 2

In the next section we shall prove Equation (3.6), thus justifying why we

used the denomination ”Lyapunov functional” for L[v] by considering the

evolution problem and proving that L[v] effectively controls the convergence

to v∞.
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3.2 Time evolution and the Lyapunov functional

Theorem 3.2 Assume that m > N
N+2

and that u0 is a nonnegative function

such that (1 + |x|2)u0 ∈ L1(RN). If v and u are respectively the solutions of

Equations (3.2) and (1.9), then limτ→+∞ L[v(τ, .)] = 0 and if m < 1, then

lim
τ→+∞

‖vm(τ, .) − vm
∞‖L1(IRN ) = 0 ,

lim
t→+∞

t−Nα(1−m)‖u(t, .)m − u∞(t, .)m‖L1(IRN ) = 0 .

In the case m > 1, a result similar to the one of Theorem 3.2 for the con-

vergence of v to v∞ and for the improved decay rate of u(t, .)− u∞ of course

holds using Proposition 3.1.

Proof. Let us assume first that the initial data u0(x) is smooth and com-

pactly supported in say the ball B(0, ρ) for some ρ > 0. Let v(τ, x) then be

the solution of Equation (3.2) such that v(0, x) = u0(x). In the case m > 1,

the solution has compact support for any τ > 0 and the computation leading

to Equation (3.6) is straightforward. Assume then that N
N+2

< m < 1. The

solution is smooth. We claim that the quantity L[v(τ, .)] is well defined for

τ > 0 and is decreasing. Consider the function

wρ(x) = (
1 −m

2m
)−

1
1−m · (|x|2 − ρ2)−

1
1−m . (3.9)

It is easily checked that wρ(x) is a steady state of (3.2), defined on the region

|x| > ρ. Since this function takes infinite values on ∂B(0, ρ), the comparison

principle implies then that v(τ, x) ≤ wρ(x) for all τ > 0. Hence v(x, τ) =

O(|x|− 2
1−m ) uniformly in τ > 0. Parabolic estimates then also yield that

∇v(x, τ) = O(|x|− 2
1−m

−1). Fix a number R > 0 and set LR
0 [v] =

∫

B(0,R)(v
|x|2

2
−

1
1−m

vm) dx. Denoting by dσ(x) the measure induced by Lebesgue’s measure

on ∂B(, R), integrations by parts give

d

dτ

∫

B(0,R)
v
|x|2
2

=
∫

B(0,R)

|x|2
2

∇ · (∇vm + xv) dx
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= −
∫

B(0,R)
x · (∇vm + xv) dx+

R

2

∫

∂B(0,R)
(∇vm + xv) · x dσ(x)

= N
∫

B(0,R)
vm dx−

∫

B(0,R)
|x|2v dx+O(RN+2− 2

1−m )

A similar integration by parts yields

− 1

1 −m

d

dτ

∫

B(0,R)
vm dx (3.10)

=
4m2

(2m− 1)2

∫

B(0,R)
|∇(vm−1/2)|2dx−N

∫

B(0,R)
vmdx+O(RN+2− 2

1−m )

and it follows that

d

dτ
LR

0 [v] = −
∫

B(0,R)
v|x− m

1 −m
∇vm−1|2dx+O(RN+2− 2

1−m ) (3.11)

where the O(RN+2− 2
1−m ) term is uniform for τ in bounded intervals, and

it goes to zero as R → +∞ since m > N/(N + 2). Integrating this last

relation between with respect to τ and then letting R → +∞ we obtain that

L0(v(τ, .)) is well defined and decreasing in τ . The requirement that u0 is

smooth and compactly supported can be removed by a density argument.

We have thus proven that L indeed defines a Lyapunov functional for

Equation (3.1). The mass of v is finite and preserved in time, L[v(·, τ)]
is decreasing and therefore uniformly bounded from above in τ , and using

Inequality (3.8) if m < 1,
∫

IRN v(τ, x) |x|2 dx is also uniformly bounded from

above in τ (this is straightforward if m > 1).

The assertion of Theorem 3.2 simply reads

‖vm(τ, .) − vm
∞‖L1(IRN ) → 0 as τ → +∞ .

However, we already know that v(τ, .) → v∞ uniformly. To establish the

result it suffices to show that
∫

|x|>R v
m(τ, x)dx → 0 as R → +∞, uniformly

in τ , which is easily achieved by

∫

|x|>R
vm(τ, x)dx ≤

(

∫

|x|>R
v(1 + |x|2)dx

)m (
∫

|x|>R
(1 + |x|2)− m

1−mdx

)1−m

(3.12)
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The latter integral is finite for m > N
N+2

and goes to 0 as R → +∞.

v is dominated uniformly in τ by wρ and |x| 2
1−m

−ǫv(τ, .) → 0 uniformly

in τ as |x| → +∞, for any ǫ > 0. Since v approaches uniformly v∞ and since

we are assuming m > N
N+2

, it follows that
∫ |x|2v(x, τ)dx → ∫ |x|2v∞(x)dx.

Hence, from the definition of the Lyapunov functional, L[v(τ, .)] → L[v∞] =

0. The proof of Theorem 3.2 is thus completed. 2

The proof of Theorem 1.2 and of its extended version Theorem 3.1 now

easily follows. We consider a compactly supported initial data u0, and keep

the notation v(τ, x) for the solution of Equation (3.1) and v∞(x) for the limit.

In these terms, the statement becomes an exponential decay estimate:

L[v(·, τ)] ≤ Ce−2λτ . (3.13)

The case m > 1 follows from the compuatation (3.11) and the fact that the

support of a solution remains compact if it is initially compactly supported.

Passing to the limit R → +∞, we get

d

dτ
L[v(τ, .)] = −

∫

IRN
v|x+

m

m− 1
∇vm−1|2 dx . (3.14)

Using the results of Section 2, we prove (3.13) and can remove by density

the assumption of compact support.

If m < 1, we may also pass to the limit R → +∞ in Equation (3.11) and

get Identity (3.14) as well and the conclusion holds according to Corollary

2.1 or Theorem 2.2 provided m > N−1
N

. 2

4 Appendix A: uniqueness results

As already mentioned in the introduction, the main ingredient of Section 2

comes from two recent papers by L. Erbe and M. Tang [12] for a ball and

its extension to the whole space by P. Pucci and J. Serrin [25], from which

Lemma 1.1 can be inferred. The condition (4.1) given in [12] for a ball
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also applies for the whole space. Lemma 1.1 is deduced from the following

theorem (which can be extended to the case of the m-laplacian).

Theorem 4.1 ([12] and [25]) ∆u + f(u) = 0 admits at most one radial

ground state (i.e. a positive solution u(x) such that lim|x|→+∞ u(x) = 0)

if f ∈ C0([0,+∞[ ∩C1(]0,+∞[ , f(0) = 0, f(u)(u − a) < 0 for any u ∈
]0, a[∪]a,+∞[ for some a > 0 and

dK

du
≥ N − 2

2N
∀ u ∈]0, a[∪]a,+∞[ , (4.1)

where K(u) = F (u)
f(u)

and F (u) =
∫ u
0 f(t) dt. The same result holds for a

positive solution in a ball with zero Dirichlet boundary conditions.

In the canonical case f(u) = −up + uq, −1 < p < q, the computation

given by Erbe and Tang in [12] applies and Condition (4.1) is equivalent to

either

(σ − q)(p+ 1)(1 + q − p) + (σ − p)(q + 1)(1 + p− q) ≤ 0 , (4.2)

or

I(p, q) = (p+ 1)(1 + q − p)2(σ − q) − (q + 1)(1 + p− q)2(σ − p) ≥ 0 , (4.3)

where σ = N+2
N−2

if N > 2 and σ = +∞ if N = 2. Here we take advantage of

the relation between p and q to obtain results which improve the ones stated

in [25].

Convention. In order to simplify the notations, we adopt the following con-

vention: each time the quantity N−2 appears explicitely in the denominator

of a constant depending on the dimension, the constant takes the value +∞.

We first apply Theorem 4.1 to the fast diffusion case:

N − 1

N
≤ m < 1 ⇐⇒ 1 < γ =

1

2m− 1
≤ N

N − 2
,

1 < p = γ < q = 2γ − 1 ≤ σ .
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Corollary 4.1 Assume that N ≥ 2 and m ∈] N
N−1

, 1[. The positive radi-

ally symmetric solution (ground state) of ∆u − uγ + u2γ−1 = 0 such that

lim|x|→+∞ u(x) = 0 is unique provided one of the two following conditions is

satisfied

(i) N = 2, 3, or 4,

(ii) 5 ≤ N < 16 and γ ≥ 4(N+2)
5(N−8)

.

Proof. Condition (4.2) is equivalent to 1
2m−1

= γ ≥ 3N+4
3N−4

and is nonempty

if and only if 3N+4
3N−4

≤ N
N−2

= γ|(m= N−1
N

) or N ≤ 4. It is therefore satisfied

provided N = 2, 3, or 4 and

N − 1

N
≤ m ≤ 3N

3N + 4
< 1 ⇐⇒ 1 <

3N + 4

3N − 4
≤ γ ≤ N

N − 2
.

Condition (4.3) is equivalent to I(γ, 2γ− 1) = γ(γ− 1)[(8− γ)σ− 9γ] ≥ 0 or

γ ≤ 4(N+2)
5(N−8)

and is nonempty provided 4(N+2)
5(N−8)

> 1 which means N < 16. For

2 ≤ N < 16, 1 < γ ≤ 4(N+2)
5(N−8)

which means 9N
8(N+2)

≤ m < 1 (this condition

does not imply any restriction for m ∈ [N−1
N
, 1[ only if : N−1

N
≥ 9N

8(N+2)
⇐⇒

(N − 4)2 ≤ 0 ⇐⇒ N = 4). 2

We may now apply Theorem 4.1 to the porous medium case m > 1

(0 < γ < 1) :

−1 < p = 2γ − 1 < q = γ < 1 .

Corollary 4.2 Assume that N ≥ 2 and γ < 1. The positive radially sym-

metric solution of ∆u−u2γ−1+uγ = 0 such that lim|x|→+∞ u(x) = 0 is unique

provided one of the two following conditions is satisfied

(i) N ≤ 16,

(ii) N > 16 and γ ≥ 4(N+2)
5(N−8)

.
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Proof. Condition (4.2) is equivalent to 2N+2
N−2

≤ γ(γ + 1), which is never

satisfied for γ < 1. Condition (4.3) is equivalent to I(2γ − 1, γ) = γ(γ −
1)[(γ − 8)σ + 9γ] ≥ 0 which means γ ≤ 4(N+2)

5(N−8)
or m ≥ 9N

8(N+2)
. Note that

it does not give any restriction as long as 4(N+2)
5(N−8)

≥ 1 which corresponds to

N ≤ 16. 2

5 Appendix B: ground states and symmetry

For the completeness of the paper, we give a sketch of the proof that any

nonnegative solution is radially symmetric, which is a classical result. Our

arguments are directly inspired from [7]. Only the range of the parameters

differs (but the proof given by Cortázar, Elgueta and Felmer still applies).

The notion of ”ground state” usually has two meanings in the mathe-

matical literature. One can understand it as the global minimizer of some

energy functional, or as a positive (and by extension nonnegative: see [23])

solution of the corresponding Euler-Lagrange equation. Here we prove that

such a solution is radially symmetric under some integral condition which is

satisfied for minimizers.

Proposition 5.1 Assume that N ≥ 2 and consider a nonnegative solution

(generalized ground state) of

∆u− up + uq = 0 (5.1)

in IRN such that
∫

IRN (up+1(x)+uq+1(x)) dx is finite. If −1 < p < q < 1, then

u is supported by a union of disjoint balls on which it is radially symmetric

and stricly decreasing along any radius. If 1 < p < q < N+2
N−2

, then u is

positive, lim|x|→+∞ u(x) = 0, u is radially symmetric and stricly decreasing

along any radius (up to a translation of the origin).

Proof. Let us define f(u) = −up +uq. Since u belongs to Lp+1∩L 2N
N−2 (IRN),

∇u is in L2(IRN) and by Sobolev’s embeddings, u is in L
2N

N−2 (IRN). If s1 =
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N
N−2

− q, multiplying Equation (5.1) by us1 and integrating by parts, we

get u ∈ L2(s2+q)(IRN ) with s2 = s1+1
2

· 2N
N−2

− q and then by iteration u ∈
L2(sn+q)(IRN) where sn = N

N−2
sn−1 + N

N−2
− q → +∞ as n→ +∞.

Multiplying now Equation (5.1) by |∇u|βuα for some β ∈]0, 2[ and α > 0

big enough, we prove that ∇u
α−1
β+2 belongs Lβ+2(IRN), and iterating again a

finite number of times, we prove that ∇uδ belongs to Ls(IRN ) for some δ > 0,

s > N : u is in L∞(IRN ) as well as ∆u and ∇u is therefore locally bounded

in C0,α(ω) for some α > 0 and ω in the support of u. By contradiction, it

easily follows that: limρ→+∞ ‖u‖L∞(B(0,ρ)c) = 0.

Let us consider first the sublinear case. Assume that u has a non com-

pactly supported connected component K in its support. Without restric-

tion, we may of course assume that 0 ∈ K. The radially symmetric function

v which is given as the solution of ∆v + f(v) = 0 for r = |x| > ρ, with the

inital conditions v(ρ) = ‖u‖L∞(B(0,ρ)c) and v′(ρ) = 0 is such that there exists

a R > ρ for which v(R) = 0 since p > −3, according to the criterion given

by Peletier and Serrin in [23]. But for ρ big enough – and u uniformly small

enough on B(0, ρ)c – since f is decreasing on (0, (p
q
)

1
q−p ), u is dominated by

v in B(0, R) \B(0, ρ) according to the Maximum Principle, a contradiction.

The support of u is therefore a union of disjoint compact sets, and with

the version of the moving plane method used in [7] or [10] for instance, using

the decay of f near 0+, it is easy to conclude that u is supported by a union

of balls on which u is radially symmetric and stricly decreasing along any

radius.

The superlinear case is simpler. By Hopf’s lemma, any nonnegative so-

lution is positive, of class C1,α and decays to 0 as |x| → +∞. Then one

may apply symmetry results based on the moving plane techniques to get

the radial symmetry around some point in IRN (see for instance [14], [20]).

2
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6 Appendix C: a spectral property

Here we prove Theorem 2.2 (when Conditions (2.3)-(2.4) are not satisfied)

by a direct minimization approach, the study of the first and the second

variations, and spectral arguments.

Assume that XM is the set of the nonnegative functions v such that

(1 + |x|2) v(x) ∈ L1(IRN), vm ∈ L1(IRN)

and M = ‖v‖L1(IRN ) > 0 and consider

Fλ[v] =
1

2

∫

IRN
v(x)|x+

m

m− 1
∇vm−1(x)|2 dx− λL[v]

=
1

2
(

2m

2m− 1
)2
∫

IRN
|∇(vm− 1

2 )|2 dx+
1 − λ

2

∫

IRN
v(x)|x|2 dx

+(
λ

1 −m
−N)

∫

IRN
vm(x) dx+ λK(M)

Lemma 6.1 For any λ < 1, if m > N−1
N

, m 6= 1, there exists a minimizer

vλ ∈ XM of infv∈XM
Fλ[v].

Proof. Assume that N−1
N

< m < 1 and consider a minimizing sequence

(vn)n∈IN ⊂ XM . Using inequality (3.8), we get a bound on the integrals
∫

IRN |∇vm− 1
2

n |2 dx, ∫IRN v|x|2 dx and
∫

IRN vm
n dx. According to Lemma 2.1, vn

converges weakly in Lp(m)(IRN) (with p(m) = (2m − 1) N
N−2

> 1) to some

limit vλ and strongly in L
p(m)
loc (IRN)). By the Dunford-Pettis criterion, since

∫

IRN vp(m)
n dx and

∫

IRN v|x|2 dx are bounded, vn converges weakly in L1(IRN)

to vλ ∈ XM . Similarly, as R goes to +∞,
∫

|x|>R
vm

n dx ≤
(
∫

|x|>R
vn(C(M) +

1 −m

2m
|x|2) dx

)m

·
(
∫

|x|>R
vm
∞ dx

)1−m

→ 0

(6.1)

and by the Dunford-Pettis criterion again, we also get limn→+∞

∫

IRN vm
n dx =

∫

IRN vm
λ dx (since m < p(m)).

Passing to the limit, and by lower semicontinuity of
∫

IRN |∇vm− 1
2

n |2 dx

and
∫

IRN vn|x|2 dx, we obtain: F [vλ] ≤ lim infn→+∞ F [vn], which proves the
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convergence of |∇vm− 1
2

n |2 and vn|x|2 respectively strongly in L2(IRN) and

weakly in L1(IRN).

If m > 1, Inequality (3.8) and (6.1) have to be replaced by
∫

vm dx ≤
(

∫

v dx
)

p(m)−m

p(m)−1 ·
(

∫

vp(m) dx
)

m−1
p(m)−1

and the estimate for |x| > R is given by:
∫

|x|>R v dx ≤ 1
R2

∫

IRN v|x|2 dx. The rest of the proof is the same. 2

Lemma 6.2 With the same notations as in Lemma 6.1, as λ→ 0, vλ → v∞

in L1∩Lp(m)(IRN), ∇vm− 1
2

λ → ∇vm− 1
2

∞ in L2(IRN), vm
λ → vm

∞ in L1(IRN ), and

limλ→0

∫

IRN vλ|x|2 dx =
∫

IRN v∞|x|2 dx.

Proof. The same estimates hold for the family (vλ)λ in the limit λ → 0 as

for the minimizing sequence of Lemma 6.1: the limit is therefore v∞ which

is the unique minimizer in XM of
∫

IRN v|x+ m
m−1

∇vm−1|2 dx. 2

We are now facing two possible situations:

- either there exists a λ0 ∈]0, 1[ such that Fλ0 [vλ0 ] ≥ 0 and then Fλ[vλ] ≥ 0

for any λ ≤ λ0,

- or for any λ ∈]0, 1[, Fλ[vλ] < 0. In this case we will pass to the limit λ→ 0

and get a contradiction by studying for λ ≤ 0 the variations of Fλ[v]

around vλ = v∞.

For any λ ≤ 0,

Fλ[v] =
1

2

∫

IRN
v(x)|x+

m

m− 1
∇vm−1(x)|2 dx

−λ
(
∫

IRN
v(x)

|x|2
2

− 1

1 −m

∫

IRN
vm(x) dx−K(M)

)

=
1

2
(

2m

2m− 1
)2
∫

IRN
|∇(vm− 1

2 )|2 dx+
1 − λ

2

∫

IRN
v(x)|x|2 dx

+(
λ

1 −m
−N)

∫

IRN
vm(x) + λK(M) dx

≥ Fλ[v∞] = 0
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(the minimum is indeed realized by v = v∞), the Euler-Lagrange equations

associated to the minimization problem are

−m2v2m−3[∆v+(m− 3

2
)
|∇v|2
v

]+
1 − λ

2
|x|2 +(

λ

1 −m
−N)mvm−1 = µ (6.2)

where µ is the Lagrange multiplier associated to the constraint ‖v‖L1(IRN ) =

M . Actually, this equation written for v = v∞ is a polynomial of degree 2,

and the identification of the coefficients gives: µ = m
1−m

C(m,M) · λ.

To study the second variation, it is easier to consider w = vm− 1
2 and

introduce Gλ[w] = Fλ[v] − µ
∫

IRN v(x) dx:

Gλ[w] =
1

2
(

2m

2m− 1
)2
∫

IRN
|∇w|2 dx+

1 − λ

2

∫

IRN
w2γ(x)|x|2 dx

+(
λ

1 −m
−N)

∫

IRN
w1+γ(x) dx+ λK(M) − µ

∫

IRN
w2γ(x) dx

where γ = 1
2m−1

, and to minimize it without constraint. The Euler-Lagrange

equations – which are of course identical to Equation (6.2) – are now

−(
2m

2m− 1
)2∆w+γ(1−λ)|x|2w2γ−1 +(1+γ)(

λ

1 −m
−N)wγ −2γµw2γ−1 = 0

(6.3)

and with w∞ = v
m− 1

2
∞ ,

Gλ[w∞ + ǫw] −Gλ[w∞] =
ǫ2

2
(Lλ

w∞
w,w)L2(IRN ) + o(ǫ2) (6.4)

with

Lλ
w∞
φ = −(

2m

2m− 1
)2∆φ+ γ(2γ − 1)(1 − λ)w2(γ−1)

∞ |x|2φ

+γ(1 + γ)(
λ

1 −m
−N)wγ−1

∞ φ− 2γ(2γ − 1)µw2(γ−1)
∞ φ (6.5)

provided the support of w is contained in B(0, R) with R = R(m,M) =
√

2m
m−1

· C(M) whenever m > 1.
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Because of the positivity of Fλ, for any λ ≤ 0, the spectrum of Lλ
w∞

has to

be contained in [0,+∞[. Using Equation (6.3), a direct computation shows

that L0
w∞
φ1 = 0 for φ1 = wγ

∞ =
(

C(m,M) + 1−m
2m

|x|2
)− 2

2(1−m)

+
. Consider now

the Rayleigh quotient

λ2 = inf
<φ,φ1>=0

(Lw∞φ, φ)L2(IRN )

< φ, φ >

where (., .)L2(IRN ) denotes the standard scalar product in L2(IRN) and

< φ, ψ >=
∫

B(0,R(m,M))

φ(x)ψ(x)
(

C(m,M) + 1−m
2m

|x|2
)2

+

dx .

λ2 is the second eigenvalue of Lw∞ for the weighted eigenvalue problem with

weight wγ−1
∞ =

(

C(m,M) + 1−m
2m

|x|2
)−2

+
: λ2 > λ1 > 0. Note that the

constraint < φ, φ1 >= 0 is nothing else than the constraint
∫

IRN w2γ(x) dx =

M .

The end of the proof of Theorem 2.2 goes as follows. Assume by con-

tradiction that for any λ > 0, if wλ is a minimizer of Gλ, then Gλ[wλ] < 0.

According to Lemma 6.2, wλ → w∞ as λ → 0+, which is in contradiction

with the strict positivity of λ2 and (6.4). 2

7 Appendix D: the Csiszár-Kullback inequal-

ity

In this appendix, we present a version of the Csiszár-Kullback inequality,

which is nothing else than a second order Taylor development of Jensen’s

inequality. The proof is given for the completeness of the paper and we may

refer to see [8], [17] and [1] for more details.
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Lemma 7.1 Assume that Ω is a domain in IRN and that s is a convex

nonnegative function on IR+ such that s(1) = 0 and s′(1) = 0. If µ is a non-

negative measure on Ω and if f and g are nonnegative measurable functions

on Ω with respect to µ, then

∫

Ω
s(
f

g
)g dµ ≥ K

max{∫Ω f dµ,
∫

Ω g dµ}
· ‖f − g‖2

L1(Ω,dµ) (7.1)

where K = 1
4
· min{K1, K2},

K1 = min
η∈]0,1[

s′′(η) and K2 = min
θ∈]0,1[

h>0

s′′(1 + θh)(1 + h) , (7.2)

provided that all the above integrals are finite.

Proof : We may assume without loss of generality that f and g are strictly

positive functions. Let us set h = f−g
g

, so that f
g

= 1 + h. If ω is any

subdomain of Ω and k a positive integrable on ω function, then Cauchy-

Schwarz’s inequality yields

∫

ω

|f − g|2
k

dµ ≥

(

∫

ω |f − g| dµ
)2

∫

ω k dµ
. (7.3)

The proof of Inequality (7.1) is based on a Taylor’s expansion of s(t)

around t = 1. Since s(1) = s′(1) = 0, we have s(f
g
) = s(1+h) = 1

2
s′′(1+θh)h2

for some function x 7→ θ(x) with values in ]0, 1[. Thus we need to estimate

from below the function
∫

Ω s
′′(1 + θh)gh2 dµ. First, we estimate

∫

f<g
s′′(1 + θh)gh2 dµ =

∫

f<g
s′′(1 + θh)

|f − g|2
g

dµ ≥ K1

∫

f<g

|f − g|2
g

dµ

according to (7.2). Using (7.3) with ω = {x ∈ Ω : f(x) < g(x)} and k = g,

we obtain

∫

f<g
s′′(1 + θh)gh2 dµ ≥ K1

(

∫

f<g |f − g| dµ
)2

∫

f<g g dµ
. (7.4)
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On the other hand, we have
∫

f>g
s′′(1+θh)gh2 dµ =

∫

f>g
s′′(1+θh)(1+h)

|f − g|2
f

dµ ≥ K2

∫

f>g

|f − g|2
f

dµ

using the definition (7.2) of K2. Now, using again (7.3) with ω = {x ∈ Ω :

f(x) > g(x)} and k = f , we get

∫

f>g
s′′(1 + θh)gh2 dµ ≥ K2

(

∫

f>g |f − g| dµ
)2

∫

f>g f dµ
. (7.5)

Combining (7.4) and (7.5), we obtain

∫

Ω
s(
f

g
)p dµ ≥ 1

2

[

K1

(

∫

f<g |f − g| dµ
)2

∫

f<g g dµ
+K2

(

∫

f>g |f − g| dµ
)2

∫

f>g f dµ

]

. (7.6)

2

Remark 7.1 If M =
∫

Ω f dµ =
∫

Ω g dµ, one can improve Inequality (7.1):

for nonnegative functions f and g, ‖f − g‖L1(Ω,dµ) = 2
∫

f<g(f − g) dµ =

2
∫

f>g(g − f) dµ. Inequality (7.6) can indeed be rewritten as
∫

Ω s(
f
g
)g dµ ≥

K1+K2

8M
·‖f−g‖2

L1(Ω,dµ). This also holds even if s′(1) 6= 0 since
∫

Ω s
′(1)hg dµ =

s′(1) · ∫Ω(f − g) dµ = 0.
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[3] T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differ-

ential Geometry 11 no. 4 (1976) 573-598.

[4] G.I. Barenblatt, Ya.B. Zel’dovich, Asymptotic properties of self-preser-

ving solutions of equations of unsteady motion of gas through porous

media, Dokl. Akad. Nauk SSSR (N.S.) 118 (1958) 671-674.

[5] H. Berestycki, P.-L. Lions, Nonlinear scalar field equations. I. Existence

of a ground state, Arch. Rational Mech. Anal. 82 no. 4 (1983) 313-345.

[6] L. Caffarelli, J. Vazquez, N. Wolanski, Lipshitz continuity of solutions

and interfaces of the n-dimensional porous medium equation, Indiana

University Math. J., 36 no. 2 (1987).
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