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1. INTRODUCTION

The aim of this paper is to prove a very general result on the variational
characterization of the eigenvalues of operators with gaps in the essential
spectrum. More precisely, let H be a Hilbert space and A : D(A) ⊂ H → H
a self-adjoint operator. We denote by F(A) the form-domain of A. Let H+,
H− be two orthogonal Hilbert subspaces of H such that H = H+⊕H−. We

denote Λ+, Λ− the projectors on H+, H−. We assume the existence of a
core F (i.e. a subspace of D(A) which is dense for the norm

∥

∥.
∥

∥

D(A)
), such

that :

(i) F+ = Λ+F and F− = Λ−F are two subspaces of F(A).

(ii) a = supx−∈F−\{0}
(x−,Ax−)
‖x−‖2

H

< +∞ .

We consider the sequence of min-max levels

λk = inf
V subspace of F+

dim V =k

sup
x∈(V ⊕F−)\{0}

(x,Ax)

||x||2
H

, k ≥ 1. (1)

Our last assumption is

(iii) λ1 > a .

Now, let b = inf (σess(A) ∩ (a,+∞)) ∈ [a,+∞]. For k ≥ 1, we denote by
µk the kth eigenvalue of A in the interval (a, b), counted with multiplicity,
if this eigenvalue exists. If there is no kth eigenvalue, we take µk = b. The
main result of this note is

Theorem 1.1. With the above notations, and under assumptions (i) −
(ii) − (iii),

λk = µk , ∀k ≥ 1 .

As a consequence, b = lim
k→∞

λk = sup
k
λk > a .

Such a min-max approach was first proposed by Talman [15] and Datta-
Deviah [2] in the particular case of Dirac operators with a potential, to
compute numerically their first positive eigenvalue. In that case, the de-
composition of H was very convenient for practical purposes: each 4-spinor
was decomposed in its upper and lower parts. Note that in the Physics
litterature, other min-max approaches were proposed, for the study of the
eigenvalues of Dirac operators with a potential (see for instance [4], [10]).
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A rigorous min-max procedure was then considered by Esteban and Séré
in [6] for Dirac operators H0 + V , V being a Coulomb-like potential. This
time, H+ and H− were the positive and negative spectral spaces of the free
Dirac operator H0.

To our knowledge, the first abstract theorem on the variational principle (1)
is due to Griesemer and Siedentop [8]. These authors proved an analogue
of Theorem 1.1, under conditions (i), (ii), and two additional hypotheses
instead of (iii): they assumed that (Ax, x) > a‖x‖2 for all x ∈ F+ \ {0},
and they required the operator (|A|+1)1/2P−Λ+ to be bounded. Here, Λ+

is the orthogonal projection of H on H+ and P− is the spectral projection
of A for the interval (−∞, a], i.e. P− = χ(−∞,a](A).

Then, Griesemer and Siedentop applied their abstract result to the Dirac
operator with potential. They proved that the min-max procedure pro-
posed by Talman and Datta-Deviah was mathematically correct for a par-
ticular class of bounded potentials. In this case, the restrictions on the po-
tentials were necessary in order to fulfill the requirement (Ax, x) > a‖x‖2,
∀x ∈ F+ \ {0}. Such a hypothesis excludes the Coulomb potentials which
appear in atomic models. Griesemer and Siedentop also applied their theo-
rem to the min-max of [6], but the boundedness of (|A|+1)1/2P−Λ+ seems
difficult to check in the case of Coulomb potentials. See the recent work
[7], where this problem is partially solved.

In [3], we extended the result of [6] to a larger class of Coulomb-like po-
tentials and introduced a minimization approach to define the first positive
eigenvalue of H0 + V .

The present work is motivated by the abstract result of Griesemer and
Siedentop [8]. Our Theorem 1.1 contains, as particular cases, the results
on the min-max principle for the Dirac operator of [6], [8], [3], [7]. It also
applies to the Talman and Datta-Deviah procedure for atomic Coulomb
potentials, under optimal conditions. However, Griesemer-Siedentop’s ab-
stract result is not a consequence of Theorem 1.1. Indeed, their hypothesis
(Ax+, x+) > a‖x+‖2 (∀x+ ∈ F+ \ {0}) does not imply (iii).

In Section 2 of this paper we prove Theorem 1.1. The arguments are based
on an abstract version of those in [3] (§4: the minimization procedure).

When appling Theorem 1.1 in practical situations, the main difficulty is to
check assumption (iii). For that purpose, an abstract continuation princi-
ple (Theorem 3.1) will be given in Section 3.

In Section 4 we use Theorems 1.1 and 3.1 to justify two variational proce-
dures for the eigenvalues of Dirac operators H0 + V : first, Talman’s and
Datta-Deviah’s procedure; then, the min-max principle of [3]. In both
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cases we cover a large class of potentials V including Coulomb potentials
−Zα/|x|, as long as Zα < 1. This condition is optimal since it is well-
known that when Zα → 1−, the first eigenfunction “disappears”. For
each min-max, we obtain new Hardy-type inhomogeneous inequalities as
by-products of the proof.

2. PROOF OF THEOREM 1.1.

The inequality λk ≤ µk is an easy consequence of conditions (i) and (ii) (see
[8] for the proof in a similar situation). It remains to prove that λk ≥ µk for
all k. The additional assumption (iii) will be needed, but for the moment,
we only assume (i) and (ii).

We recall the notation a = sup
x−∈F−\{0}

(x−, Ax−)

‖x−‖2
H

< +∞. For E > a and

x+ ∈ F+, let us define

ϕE,x+ : F− → IR

y− 7→ ϕE,x+(y−) =
(

(x+ + y−), A(x+ + y−)
)

− E||x+ + y−||2H .

¿From assumption (ii), N(y−) =
√

(a+ 1)||y−||2H − (y−, Ay−) is a norm

on F−. Let F
N

− be the completion of F− for this norm. Since ||.||
H

≤ N

on F−, we have F
N

− ⊂ H−. For all x+ ∈ F+, there is an x ∈ F such that
Λ+x = x+ . If we consider the new variable z− = y− −Λ−x, we can define

ψE,x(z−) := ϕE,Λ+x(z− +Λ−x) = (A(x+ z−), x+ z−)−E(x+ z−, x+ z−) .

Since F is a subspace of D(A), ψE,x (hence ϕE,x+) is well-defined and
continuous for N , uniformly on bounded sets. So, ϕE,x+ has a unique

continuous extension ϕE,x+
on F

N

−, which is continuous for the extended

norm N . It is well-known (see e.g. [12]) that there is a unique self-adjoint

operator B : D(B) ⊂ H− → H− such that D(B) is a subspace of F
N

−, and

N(x−)2 = (a+ 1)||x−||2H + (x−, Bx−) , ∀x− ∈ D(B) . (2)

Now, ϕE,x+
is of class C2 on F

N

− and

D2ϕE,x+
(x−) · (y−, y−) = −2(y−, By−) − 2E||y−||2H

≤ −2 min (1, (E − a)) N(y−)2 . (3)
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So ϕE,x+
has a unique maximum, at the point y− = LE(x+). The Euler-

Lagrange equations associated to this maximization problem are :

Λ−Ax+ − (B + E)y− = 0 . (4)

In the sequel of this note, we shall use the notation X ′ for the dual of
a Hilbert space X . Note that (B + E)−1 is well-defined and bounded

from (F
N

−)
′

to F
N

−, since E > a and (y−, (B + a)y−) ≥ 0, ∀y− ∈ D(B).
Moreover, x+ ∈ F+ = Λ+F is of the form x+ = Λ+x = x − Λ−x for

some x ∈ F ⊂ D(A). By assumption (i), Λ−x ∈ F(A) ∩ (F
N

−), and finally

Λ−A(x+) = Λ−Ax−Λ−AΛ−x ∈ (F
N

−)
′

. So the expression (B+E)−1Λ−x+

is meaningful, and we have

LE = (B + E)−1 Λ−A . (5)

Remark 2.1. The unique maximizer of ψE,x := ϕE,Λ+x(· + Λ−x) is the
vector z− = MEx := LEΛ+x−Λ−x and one has the following equation for
MEx:

MEx = (B + E)−1Λ−(A− E)x . (6)

This expression is well-defined, since x ∈ D(A).

The above arguments allow us, for any E > a, to define a map

QE : F+ → IR

x+ 7→ QE(x+) = sup
x−∈F−

ϕ
E,x+

(x−) = ϕE,x+
(LEx+) (7)

= (x+, (A− E)x+) +
(

Λ−Ax+, (B + E)−1Λ−Ax+

)

.

Note that for any x ∈ F ,

QE(Λ+x) = (x,Ax) + 2 Re (Ax,MEx)

− (MEx,BMEx) − E‖x+MEx‖2 . (8)

It is easy to see that QE is a quadratic form with domain F+ ⊂ H+.
We may also, for E > a given, define the norm

nE(x+) = ||x+ + LEx+||H . (9)
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The following lemma gives some useful inequalities involving nE and QE,
and a new formulation of (iii) :

Lemma 2.1. Assume that (i) and (ii) are satisfied. If a < E < E′, then

‖ · ‖H ≤ nE′ ≤ nE ≤ E′ − a

E − a
nE′ , (10)

(E′ − E)n2
E′ ≤ QE −QE′ ≤ (E′ − E)n2

E . (11)

Moreover, for any E > a :

λ1 > E if and only if QE(x+) > 0 , ∀x+ ∈ F+ .

λ1 ≥ E if and only if QE(x+) ≥ 0 , ∀x+ ∈ F+ .

As a consequence, (iii) is equivalent to

(iii′) For some E > a , QE(x+) ≥ 0 , ∀x+ ∈ F+ .

Proof. Inequality (10) is easily proved using the spectral decomposition of
B, the formula

nE(x+)2 = ||x+||2H + ||(B + E)−1Λ−Ax+||2H

and the standard inequality

1 ≤ t+ u

t+ v
≤ u

v
, ∀t ≥ 0 , u ≥ v > 0 .

On the other hand, (11) is a consequence of

QE′(x+) ≥ ϕE′,x+
(LE(x+)) , for all E,E′ > a .

Finally, the definition of λ1 implies that QE(x+) > 0 for all x+ ∈ F+ \ {0}
and a < E < λ1. But (10) and (11) imply that

Qλ1(x+) ≥ QE(x+) + (E − λ1)
(λ1 − a)2

(E − a)2
n2

λ1
(x+) .

Passing to the limit E → λ1, we obtain Qλ1(x+) ≥ 0 .

In the case E > λ1 , it follows from the definition of λ1 that for some
x+ ∈ F+ \ {0} and some ε > 0,

(x+ + x−, A(x+ + x−)) ≤ (E − ε)||x+ + x−||2 , ∀x− ∈ F− .
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Hence

ϕE,x+(x−) ≤ −ε||x+ + x−||2 , ∀x− ∈ F−

and QE(x+) ≤ −ε||x+||2 < 0 . This ends the proof of Lemma 2.1.
⊔⊓

We are now going to give a new definition of the numbers λk, equivalent to
formula (1). First of all, let us recall the standard definitions and results
on Rayleigh-Ritz quotients (see e.g. [13]).
Let T be a self-adjoint operator on a Hilbert space X , with domain D(T )
and form-domain F(T ). If T is bounded from below, we may define a
sequence of min-max levels,

ℓk(T ) = inf
Y subspace of F(T )

dim Y =k

sup
x∈Y \{0}

(x, Tx)

||x||2
X

.

To each k we also associate the (possibly infinite) multiplicity number

mk(T ) = card
{

k′ ≥ 1 , ℓ
k′

(T ) = ℓk(T )
}

≥ 1 .

Then ℓk(T ) ≤ inf σess(T ). In the case ℓk(T ) < inf σess(T ), ℓk is an eigen-
value of T with multiplicity mk(T ).

As a consequence, if C ⊂ F(T ) is a form-core for T (i.e. a dense subspace
of F(T ) for ||.||

F(T )
), then there is a sequence (Zn) of subspaces of C, with

dim (Zn) = mk(T ) and

sup
z∈Zn

||z||
X

=1

||Tz − ℓk(T )z||
(F(T ))′

−→
n→∞

0 .

Coming back to our situation, we consider the completion X of F+ for the
norm nE . By (10), X does not depend on E > 0. We denote by nE the
extended norm, and by < ·, · >E its polar form:

< x+, x+ >E= (nE(x+))2 , ∀x+ ∈ X .

Since nE(x+) ≥ ||x+||H , X is a subspace of H+.

We now assume that (iii) is satisfied, i.e. λ1 > a. We may define another
norm on F+ by

NE(x+) =
√

QE(x+) + (KE + 1)(nE(x+))2

with KE = max
(

0, (E−a)2(E−λ1)
(λ1−a)2

)

.
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¿From (10) and (11), NE is well-defined and satisfies NE ≥ nE . Indeed,
in the case a < E ≤ λ1, Lemma 2.1 implies QE(x+) ≥ 0 for all x+ ∈ F+.
When E ≥ λ1, again from Lemma 2.1, we have

QE ≥ Qλ1 + (λ1 − E)n2
λ1

≥ −KE n
2
E . (12)

Note that for any a < E < E′, Lemma 2.1 implies the existence of two
positive constants, 0 < c(E,E′) < 1 < C(E,E′) , such that

c(E,E′)NE′ ≤ NE ≤ C(E,E′)NE′ . (13)

Let us consider the completion G of F+ for the norm NE . Since NE ≥ nE ,
G is a subspace of X , dense for the extended norm n̄E. ¿From (13), G does
not depend on E. The extension Q̄E of QE to G is a closed quadratic
form with form-domain G. So (see e.g. [12]) there is a unique self-adjoint
operator TE : D(TE) ⊂ X → X with form-domain F(TE) = G, such that
Q̄E(x+) =< x+, TEx+ >E , for any x+ ∈ D(TE). Then F+ is a form-core
of TE . The min-max levels ℓk(TE) are given by

ℓk(TE) = inf
V subspace of G

dim Y =k

sup
x+∈V \{0}

Q̄E(x+)

(n̄E(x+))2
. (14)

The next lemma explains the relashionship between ℓk(TE) and the min-
max principle (1) for A.

Lemma 2.2. Under assumptions (i), (ii), (iii) :
(a) for any x+ ∈ F+ \ {0}, the real number

λ(x+) := sup
x∈(Span(x+)⊕F−)\{0}

(x,Ax)

||x||2
H

is the unique solution in (a,+∞) of the nonlinear equation

Qλ(x+) = 0 . (15)

This equation may be written

λ‖x+‖2
H

= (x+, Ax+) + (Λ−Ax+, (B + λ)−1Λ−Ax+) . (16)

(b) The min-max principle (1) is equivalent to

λk = inf
V subspace of F+

dim V =k

sup
x+∈V \{0}

λ(x+) , k ≥ 1. (17)
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(c) For any k ≥ 1, the level λk defined by (1) is the unique solution in
(a,+∞) of the nonlinear equation

ℓk(Tλ) = 0 . (18)

In other words, 0 is the kth min-max level for the Rayleigh-Ritz quotients
of Tλk , and this determines λk in a unique way. Moreover, for a < λ 6= λk,
the signs of λk − λ and ℓk(Tλ) are the same.

Proof.
(a) From Lemma 2.1, Qλ(x+) is a decreasing continuous function of λ, such
that Qλ1(x+) ≥ 0 and lim

λ→+∞
Qλ(x+) = −∞ . So the equation Qλ(x+) = 0

has one and only one solution λ̃(x+), which lies in the interval [λ1,+∞) .
Equation (16) is equivalent to (15) by easy calculations. Now, if λ < λ̃(x+),

then Qλ(x+) > 0, hence λ(x+) := sup
x∈(Span(x+)⊕F−)\{0}

(x,Ax)

||x||2
H

> λ .

Similarly, λ > λ̃(x+) implies λ(x+) < λ . So we get

λ̃(x+) = λ(x+) .

(b) Since λ(x+) = sup
x∈Span(x+)⊕F−

x 6=0

(x,Ax)

||x||2
H

, (1) is obviously equivalent to (17).

(c) We follow the same arguments as in the proof of (a). From Lemma 2.1,
the map λ→ ℓk(Tλ) is continuous, and ℓk(Tλ1) ≥ 0 , lim

λ→+∞
ℓk(Tλ) = −∞ .

As a consequence, the equation ℓk(Tλ) = 0 has at least one solution λ̃k

which lies in the interval [λ1,+∞) . Now, if λ < λ̃k then from Lemma

2.1, ℓk(Tλ) > 0 . Hence sup
x∈(V ⊕F−)\{0}

(x,Ax)

||x||2
H

> λ for any k-dimensional

subspace V of F+. Similarly, λ > λ̃k implies sup
x∈(V ⊕F−)\{0}

(x,Ax)

||x||2
H

< λ

for some k-dimensional subspace V of F+. So, we get λ̃k = λk .
⊔⊓

As already mentioned, F+ is a form-core of TE and G is its form-domain.
¿From Lemma 2.2 (c), λk = λk′ if and only if lk′(Tλk) = 0. So, denoting
mk := card {k′ ≥ 1 ; λk = λk′}, there is a sequence (Zn) of subspaces of
F+, of dimension mk, such that

sup
x+∈Zn

||x+||2
H

+||Lλkx+||2
H

=1

∥

∥Tλkx+

∥

∥

G′
−→
n→∞

0 .
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Using the explicit expressions of QE and LE on F+ (see (5),(7)), we obtain

sup
x̃∈(1I+Lλk

)(Zn)

||x̃||
H

=1

sup
ỹ∈(1I+Lλk

)(F+)

ỹ 6=0

|A(x̃, ỹ) − λk(x̃, ỹ)H|
(

(Kλk + 1) ||ỹ||2
H

+Qλk(Λ+ỹ)
)1/2

−→
n→∞

0 ,

(19)

where A(x̃, ỹ) := (x,Ay) + (Ax,Mλky) + (Mλkx,Ay) − (BMλkx,Mλky),
with x, y ∈ F ⊂ D(A) such that Λ+x = Λ+x̃, Λ+y = Λ+ỹ and
Mλkx = LλkΛ+x− Λ−x . Note that the value of A(x̃, ỹ) does not depend
on the choice of x and y. Indeed, A is the polar form of the quadratic
form ỹ 7→ Qλk(Λ+ỹ) + λk||ỹ||2H.

Denote Z̃n = (1I + Lλk
)(Zn). Take y ∈ F , and let ỹ = (1I + Lλk

)(Λ+y).
There is a constant C(λk) such that

(Kλk + 1) ||ỹ||2
H

+Qλk(Λ+y) ≤ C(λk) ||y||2
D(A)

. (20)

Indeed, by Remark 2.1,

Qλk(Λ+y) = ((A− λk)y, y +Mλky)

≤ (1+|λk|)||y||D(A)
(||y||

H
+||Mλky||H)≤(1 + |λk|)

(

1 + 1+|λk|
λk−a

)

||y||2
D(A)

.

Moreover, for any x ∈ F+, and any z− ∈ F(B), by (6) we have :
((Ax−BMλkx) − λk(x+Mλkx), z−) = 0. As a consequence, (19) is equiv-
alent to

sup
x̃∈Z̃n

||x̃||
H

=1

sup
y∈F\{0}

|(x̃, Ay − λky)|
||y||

D(A)

−→
n→∞

0 .

So, by the standard spectral theory of self-adjoint operators, we obtain an
alternative: either λk ∈ σess(A) ∩ (a,+∞), or λk is an eigenvalue of A in
the interval (a,+∞), with multiplicity greater than or equal to mk.
We have thus proved the inequality λk ≥ µk, ∀k ≥ 1. This ends the proof
of Theorem 1.1. ⊔⊓

3. AN ABSTRACT CONTINUATION PRINCIPLE.

This section is devoted to a general method for checking condition (iii) of
Theorem 1.1. It applies to 1-parameter families of self-adjoint operators of
the form Aν = A0 +Vν , with Vν bounded. The idea is to prove (iii) for all
Aν knowing that one of them satisfies it, and having spectral information
on every Aν .
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More precisely, we start with a self-adjoint operator A0 : D(A0) ⊂ H → H .
We denote by F(A0) the form-domain of A0.

For I an interval containing 0 , let ν 7→ Vν a map whose values are
bounded self-adjoint operators and which is continuous for the usual norm
of bounded operators

|||V||| = sup
x∈H\{0}

||Vx||H
||x||H

.

In order to have consistent notations, we also assume that V0 = 0.

Since A0 is self-adjoint and Vν symmetric and bounded, the operator Aν

is self-adjoint with D(Aν) = D(A0), F(Aν) = F(A0). Let H = H+ ⊕H−
be an orthogonal splitting of H, and Λ+ , Λ− the associated projectors,
as in Section 1. We assume the existence of a core F (i.e. a subspace of
D(A0) which is dense for the norm

∥

∥.
∥

∥

D(A0)
), such that :

(j) F+ = Λ+F and F− = Λ−F are two subspaces of F(A0).

(jj) There is a− ∈ IR such that for all ν ∈ I,

aν := sup
x−∈F−\{0}

(x−, Aνx−)

‖x−‖2
H

≤ a− .

For ν ∈ I, let bν := inf(σess(Aν)∩ (aν ,+∞)) , and for k ≥ 1, let µk,ν be the
k-th eigenvalue of Aν in the interval (aν , bν), counted with multiplicity, if
it exists. If it does not exist, take µk,ν := bν . Our next assumption is

(jjj) There is a+ > a− such that for all ν ∈ I, µ1,ν ≥ a+ .

Finally, we define the levels

λk,ν := inf
V subspace of F+

dim V =k

sup
x∈(V ⊕F−)\{0}

(x,Aνx)

||x||2
H

, k ≥ 1 , (21)

and our last assumption is

(jv) λ1,0 > a− .

The main result of this section is

Theorem 3.1. Under conditions (j) to (jv), Aν satisfies the assumptions
(i) to (iii) of Theorem 1.1 for all ν ∈ I, and λk,ν = µk,ν ≥ a+, for all
k ≥ 1.

Note that the boundedness assumption on Vν is rather restrictive. How-
ever, as it will be seen in Section 4, unbounded perturbations can also be
dealt with, thanks to a regularization argument.
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Proof of Theorem 3.1. Assumptions (i), (ii) of Theorem 1.1 are of course
satisfied for all ν ∈ I : see (j), (jj). From formula (21), it is clear that for
all ν, ν′ ∈ I ,

|λ1,ν − λ1,ν′ | ≤ |||Vν − Vν′ ||| .
So the map ν ∈ I → λ1,ν is continuous. The set

P := {ν ∈ I : λ1,ν ≥ a+}

is thus closed in I, and the set

P ′ := {ν ∈ I : λ1,ν > a−}

is open. Obviously, P ⊂ P ′ . But if ν ∈ P ′ then Aν satisfies (iii), so it
follows from Theorem 1.1 that

λk,ν = µk,ν ≥ a+ , for all k ≥ 1 ,

hence ν ∈ P . As a consequence, P = P ′, and P is open and closed in I .
But P is nonempty : it contains 0. So, P coincides with I. ⊔⊓

4. APPLICATIONS AND REMARKS : DIRAC OPERATORS.

With the notations of the preceding sections, let us define H = L2(IR3,CI 4),

Let F = C∞
0 (IR3,CI 4) be the space of smooth, compactly supported func-

tions from IR3 to CI 4.
The free Dirac operator is H0 = −iα · ∇ + β , with

α1, α2, α3, β ∈ M4×4(CI ), β =

(

1I 0
0 −1I

)

, αi =

(

0 σi

σi 0

)

,

σi being the Pauli matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.

Let V be a scalar potential satisfying

V (x) −→
|x|→+∞

0 , (22)

− ν

|x| − c1 ≤ V ≤ c2 = sup(V ) , (23)

with ν ∈ (0, 1), c1, c2 ∈ IR.
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Under the above assumptions, H0 + V has a distinguished self-adjoint ex-
tension A with domain D(A) such that

H1(IR3,CI4) ⊂ D(A) ⊂ H1/2(IR3,CI4) ,

σess(A) = (−∞,−1] ∪ [1,+∞) ,

and F is a core for A (see [16], [14],[11], [9] ). In the sequel, we shall denote
this extension indifferently by A or H0+V . We shall also denote µk(V ) the
k-th eigenvalue of H0 +V in the interval (c2−1, 1), with the understanding
that µk(V ) = 1 whenever H0 +V has less than k eigenvalues in (c2 − 1, 1).

In this section, we shall prove the validity of two different variational
characterizations of the eigenvalues µk(V ) corresponding to two different
choices of the splitting H = H+ ⊕H−, under conditions which are optimal
for the Coulomb potential. In both cases, this will be done using Theorem
1.1. The main difficulty is to check assumption (iii) of this theorem. It
will be sufficient to do it for the Coulomb potential Vν := −ν/|x| . Then,
by a simple comparison argument, all potentials satisfying (22), (23) with
the additional condition

c1, c2 ≥ 0, c1 + c2 − 1 <
√

1 − ν2 (24)

will be covered by our results. The constant
√

1 − ν2 is the smallest eigen-
value of H0 − ν

|x| in the interval (−1, 1).

The Coulomb potential is not bounded. In order to apply Theorem 3.1,
we shall use a regularization argument. The method will be the following:
first replace Vν = − ν

|x| by Vν,ε := − ν
|x|+ε , ε > 0. Then apply Theorem

3.1 to Aν,ε := H0 + Vν,ε , for ε > 0 fixed and ν varying in I = [0, 1), and
a+ = 0, a− = −1. Combined with Lemma 2.1, this theorem gives

Q0,ν,ε(x+) ≥ 0 , ∀x+ ∈ F+

where, following (6),

QE,ν,ε(x+) := sup
x−∈F−

(

(x+ + y−), Aν,ε(x+ + y−)
)

− E||x+ + y−||2H

= (x+, (Aν,ε − E)x+) +
(

Λ−Aν,εx+, (Bν,ε + E)−1Λ−Aν,εx+

)

,

and Bν,ε : D(Bν,ε) ⊂ H− → H− is a self-adjoint operator such that
(x−, Aν,εx−) = −(x−, Bν,εx−) for all x− ∈ F− : see §2, formula (2).

Passing to the limit ε→ 0 in the above inequality, we get

Q0,ν,0(x+) ≥ 0 , ∀x+ ∈ F+,
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and by Lemma 2.1, this is equivalent to assumption (iii) of Theorem 1.1
for the operator H0 − ν

|x| .

4.1. The min-max of Talman and Datta-Deviah.

In this subsection, we choose the following splitting of H :

HT
+ = L2(IR3,CI 2) ⊗

{(

0

0

)}

, HT
− =

{(

0

0

)}

⊗ L2(IR3,CI 2) ,

so that, for any ψ =
(

ϕ
χ

)

∈ L2(IR3,CI 4),

ΛT
+ψ =

(ϕ

0

)

, ΛT
−ψ =

(

0

χ

)

.

With this choice, let λT
k (V ) be the k-th min-max associated to A = H0+V

by formula (1). In the case k = 1, we have

λT
1 (V ) = inf

ϕ 6=0
sup

χ

(ψ, (H0 + V )ψ)

(ψ, ψ)
. (25)

This is exactly the min-max principle of Talman ([15]) and Datta-Deviah
([2]). It is clear that under conditions (22)- (23), assumptions (i) and (ii)
of Theorem 1.1 are satisfied, with

a = sup
x−∈F−\{0}

(x−, Ax−)

‖x−‖2
H

= c2 − 1 .

The main result of this subsection is

Theorem 4.1. Let V a scalar potential satisfying (22)-(23)-(24). Then,
for all k ≥ 1,

λT
k (V ) = µk(V ) . (26)

Moreover, λT
k (V ) = µk(V ) is given by

λT
k (V ) = inf

Y subspace of C∞
o (IR3,CI 2)

dimY=k

sup
ϕ∈Y \{0}

λT(V, ϕ) , (27)

where

λT(V, ϕ) := sup
ψ=(ϕχ )

χ∈C∞
0

(IR3,CI 2)

((H0 + V )ψ, ψ)

(ψ, ψ)
(28)
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is the unique number in (c2 − 1,+∞) such that

λT (V, ϕ)

∫

IR3

|ϕ|2dx=

∫

IR3

( |(σ · ∇)ϕ|2
1 − V + λT (V, ϕ)

+ (1 + V )|ϕ|2
)

dx (29)

The maximizer of (28) in HT
− is

χ(V, ϕ) :=
−i(σ · ∇)ϕ

1 − V + λT (V, ϕ)
. (30)

Remark 4.1. In the case k = 1, the min-max (27) reduces to

λT
1 (V ) = inf

ϕ∈C∞
o (IR3,CI 2)\{0}

λT(V, ϕ) ,

where λT (V, ϕ) is given by equation (29). This formulation is equivalent to
the minimization principle of [3], §4, formula (4.16).

Proof of Theorem 4.1.
Formulas (27), (29), (30) are simply those of Lemma 2.2 (a)-(b), rewritten
in the context of the present subsection. So the only thing to prove is (26).
For that purpose, we just have to check that condition (iii) of Theorem
1.1 is fulfilled by H0 + V . In view of Remark 4.1, this was already done
in [3]. But the arguments can be made simpler and clearer, thanks to the
formalism of Sections 2 and 3.

First of all, since λ1 is monotonic in V , it is sufficient to check (iii) when
Vν = − ν

|x| , for all ν ∈ [0, 1).

The key inequality that we use below is the following :

µ1(V ) ≥ 0 as soon as − ν

|x| ≤ V ≤ 0 , 0 ≤ ν < 1 . (31)

This inequality can be found in [18]. In the particular case of Coulomb
potentials, it is well-known that

µ1(−
ν

|x| ) =
√

1 − ν2 for 0 ≤ ν < 1 . (32)

We proceed in two steps.

First step : for ν ∈ I := [0, 1) and ε ≥ 0 , let Vν,ε := − ν
|x|+ε . We now

fix ε > 0 . The one-parameter family ν ∈ I → Aν,ε := H0 + Vν,ε and the
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projectors ΛT
± satisfy all the assumptions of Theorem 3.1, with a− = −1

and a+ = 0. In particular, (jjj) follows from (31). So we obtain

λT
1 (Vν,ε) = µ1(Vν,ε) ≥ 0 ,

for all ν ∈ [0, 1). From Lemma 2.1, this can be written as

QT
0,ν,ε(ϕ) ≥ 0 , ∀ϕ ∈ C∞

0 (IR3,CI2) , (33)

with

QT
E,ν,ε(ϕ) =

∫

IR3

( |(σ · ∇)ϕ|2
1 + E − Vν,ε

+ (1 − E + Vν,ε)|ϕ|2
)

dx . (34)

Second step : For ν ∈ [0, 1) and ϕ ∈ C∞
0 (IR3,CI2) fixed, we pass to the

limit ε→ 0 in (33). We get :

QT
0,ν,0(ϕ) ≥ 0 , ∀ϕ ∈ C∞

0 (IR3,CI2) . (35)

So Aν,0 = H0+Vν satisfies criterion (iii′) of Lemma 2.1, which is equivalent
to (iii). By Theorem 1.1, we thus have

λT
1 (Vν) = µ1(Vν) =

√

1 − ν2 ,

for all ν ∈ (0, 1). This ends the proof. ⊔⊓

Note that a by-product of Theorem 4.1 is that for all ϕ ∈ C∞
0 (IR3,CI2), and

all ν ∈ [0, 1], the following Hardy-type inhomogeneous inequality holds

ν

∫

IR3

|ϕ|2
|x| +

√

1 − ν2

∫

IR3

|ϕ|2 ≤
∫

IR3

|(σ · ∇)ϕ|2
ν
|x| + 1 +

√
1 − ν2

+

∫

IR3

|ϕ|2 .

This is just the inequality QT√
1−ν2,ν,0

(ϕ) ≥ 0 in the case 0 ≤ ν < 1, and

the case ν = 1 is obtained by passing to the limit.

Moreover, taking ν = 1 and functions ϕ which concentrate near the origin,
the above inequality yields, in the limit, the following homogeneous one :

∫

IR3

|ϕ|2
|x| dx ≤

∫

IR3

|x||(σ · ∇)ϕ|2 dx for all ϕ ∈ C∞
0 (IR3,CI2) .

Actually, taking φ = ϕ
|x|1/2 , this inequality is a direct consequence of the

standard Hardy inequality

∫

IR3

|φ|2
|x|2 ≤ 4

∫

IR3

|∇φ|2 = 4

∫

IR3

|(σ · ∇)φ|2 .
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4.2. The min-max associated with the free-energy projectors.

Here we define the splitting of H as follows: H = Hf
+ ⊕ Hf

−, with

Hf
± = Λf

±H, where

Λf
+ = χ(0,+∞)(H0) =

1

2

(

1I +
H0√
1 − ∆

)

,

Λf
− = χ(−∞,0)(H0) =

1

2

(

1I − H0√
1 − ∆

)

.

As in Subsection 4.1, assumptions (i) and (ii) of Theorem 1.1 are satisfied,
with the same choice a = c2 − 1.

With the new splitting Hf
±, and the operator A = H0 + V , the min-max

values given by formula (1) will be denoted by λf
k(V ). This min-max

principle based on free-energy projectors was first introduced in [6]. Using

some inequality proved in [1] and [17], we proved in [3] that λf
k(V ) is indeed

equal to the eigenvalue µk(V ) for all potentials V satisfying − ν
|x| ≤ V ≤ 0 ,

and all 0 ≤ ν < 2
(

π
2 + 2

π

)−1∼ 0, 9. Here, we extend this result to cover all
0 ≤ ν < 1, and we obtain new inequalities as a by-product.

The main result of this subsection is the following

Theorem 4.2. Let V a scalar potential satisfying (22)-(23)-(24). Then,
for all k ≥ 1,

λf
k(V ) = µk(V ) . (36)

Proof : As in Subsection 4.1, we just have to consider the Coulomb potential
Vν , for ν ∈ [0, 1).

First Step : Let ε > 0 fixed and Vν,ε as before. Thanks to (31), Theorem
3.1 applies to the one-parameter family ν ∈ [0, 1) → Aν,ε := H0 + Vν,ε

with the projectors Λf
± , and a− = −1 , a+ = 0 . So we get

λf
1 (Vν,ε) = µ1(Vν,ε) ≥ 0 ,

for all ν ∈ [0, 1). By Lemma 2.1, this may be written

Qf
0,ν,ε(ψ+) ≥ 0 , for all ψ+ ∈ F f

+ := Λf
+

(

C∞
0 (IR3,CI 4)

)

,

with
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Qf
E,ν,ε(ψ+) = ||ψ+||2H1/2 − (ψ+, (E − Vν,ε)ψ+) (37)

+

(

Λf
−|Vν,ε|ψ+,

(

Λf
−(

√
1 − ∆ + E + |Vν,ε|)Λf

−

)−1

Λf
−|Vν,ε|ψ+

)

.

Second step : Passing to the limit ε → 0 in (37) with ψ+ and ν fixed, we
get

Qf
0,ν,0(ψ+) ≥ 0 , ψ+ ∈ F f

+ (38)

for all ν ∈ [0, 1). Then, applying Theorem 1.1 to H0 + Vν , we obtain (36),
and the theorem is proved. ⊔⊓

Finally, note that some inequalities can be derived from the free-energy
min-max principle, as in the Talman case: for all ν ∈ [0, 1] and all functions

ψ+ ∈ Λf
+

(

C∞
0 (IR3,CI 4)

)

, we have

ν

∫

IR3

|ψ+|2
|x| dx +

√

1 − ν2

∫

IR3

|ψ+|2 dx

≤
∫

IR3(ψ+,
√

1 − ∆ψ+) dx

+ν2

∫

IR3

(

Λf
−

(

ψ+

|x|

)

,

(

Λf
−

(√
1 − ∆+

ν

|x|+
√

1 − ν2

)

Λf
−

)−1

Λf
−

(

ψ+

|x|

)

)

dx.

Moreover, taking functions with support near the origin, we find, after
rescaling and passing to the limit, a new homogeneous Hardy-type inequal-
ity. This inequality involves the projectors associated with the zero-mass
free Dirac operator:

Λf,0
± :=

1

2

(

1I ± α · p̂
|p̂|

)

, p̂ := −i∇ .

It may be written as follows :

∫

IR3

|ψ+|2
|x| dx ≤

∫

IR3

(ψ+, |p̂|ψ+) dx

+

∫

IR3

(

Λf,0
−

(

ψ+

|x|

)

,

(

Λf,0
−

(

|p̂| + 1

|x|

)

Λf,0
−

)−1

Λf,0
−

(

ψ+

|x|

)

)

dx ,

for all ψ+ ∈ Λf,0
+

(

C∞
0 (IR3,CI 4)

)

.
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These two inequalities look like the ones obtained by Evans-Perry-Siedentop
[5], Tix [17] and Burenkov-Evans [1], but they are not the same. We do
not know whether they can be obtained by direct computations, as was the
case in those works.

REFERENCES

1. V.I. Burenkov, W.D. Evans. On the evaluation of the norm of an integral operator
associated with the stability of one-electron atoms. Proc. Roy. Soc. Edinburgh A,
128(5) (1998). p. 993-1005.

2. S.N. Datta and G. Deviah. The minimax technique in relativistic Hartree-Fock cal-
culations. Pramana, 30(5) (1988), p. 387-405.
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