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de Lattre de Tassigny, 75775 Paris Cédex 16, France
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ABSTRACT

The time-dependent Hartree-Fock system is considered in the presence of ex-

ternal magnetic and electric fields, and with a self-consistent potential includ-

ing anisotropies. A suitable ansatz reduces a quasiperiodic time-dependent

problem to an eigenvalue problem, which is then solved by minimization of

an energy functional.

1. Introduction. We are concerned with solutions of the Hartree-Fock

system (see, e.g., [3]) in two space dimensions, in the presence of a constant

magnetic field (vector potential) ~A(x) = ω(−x2, x1) with field strength ω > 0

and an external electric potential U0(x1, x2) = 1
2ρ0|x|2 (constraints on ρ0 are

given below).
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This problem models a beam of spinless quantum particles satisfying the

Pauli principle; the beam is confined by the magnetic field and the external

electric field. It will be transparent from our analysis that the choice of the

isotropic electric external potential is only an example of a larger admissible

class of isotropic external potentials; the key point is that the electric potential

cannot overcome the magnetic confinement of the beam.

By the same token, the method will be seen to generalize to three dimen-

sions. All that is needed is a third (confining) component to the electric field,

which will prevent the particle system from escaping in the third coordinate

direction. We will do the rigorous analysis for the two-dimensional situation

and then cover the three-dimensional case by comments.

Variational methods are classical for proving the existence of stationary

solutions of the Hartree-Fock system (without imposing a priori anisotropy:

see [1], [7], [8]). Our research was inspired by similar results obtained for the

classical Vlasov-Poisson system (see [2]).

The type of Hamiltonian which we encounter in our study arises, e.g., in

the study of quantum dots (see, e.g., [10] for a recent survey).

We denote x = (x1, x2), |x|2 = x2
1 + x2

2. The full Hartree-Fock system

is the nonlinearly coupled system for countably many wave functions ϕl, l =

1, 2, . . ., dependent on x and t,

ih̄∂tϕl =
1

2m
(−ih̄∇x − q

c
~A(x))2ϕl + qU [n]ϕl

+ q
∞
∑

j=1

λjVljϕj + q
ρ0

2
|x|2ϕl.

(1.1)

Here, q is the charge of a spinless quantum particle, m is its mass, h̄ is the

Planck constant and c is the velocity of light. The λjs in (1.1) are proba-

bilities that the system finds itself in the state ϕl at time t, where ϕl is the

eigenfunction of the density matrix associated with the eigenvalue λl. The

system (1.1) is one of three common and equivalent descriptions of the time

evolution of ensembles of spinless quantum particles obeying the Pauli prin-

ciple; the other two are the Heisenberg and Wigner descriptions (see [4]).

In (1.1), n(x, t) =
∑

λj |ϕj(x, t)|2, and the self-consistent potential U [n] is
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coupled with n via the Poisson equation

−∆U(·, t) = n(·, t). (1.2)

The relevant solutions of (1.2) in two dimensions are

U(x, t) = − 1

2π

∫

ln |x− y|n(y, t) dy + U1(x, t),

where ∆U1(·, t) = 0. (if n decays fast enough for the integral to e xist). The

Pauli correction Vlj is given by

Vlj(x, t) =
1

2π

∫

ln |x− y| ϕl(y, t)ϕ̄j(y, t) dy. (1.3)

Equation (1.1) can be written as

ih̄∂tϕl =
−h̄2

2m
∆xϕl +

ih̄qω

mc
(−x2∂x1

+ x1∂x2
)ϕl + qU [n]ϕl

+ q

∞
∑

j=1

λjVljϕj + q
ρ0 + ω2 q

mc2

2
|x|2ϕl.

(1.4)

To simplify our analysis, we now set all the physical constants h̄,m, c and

q equal to one (the general case follows in complete analogy). Eqn. (1.4)

simplifies to

i∂tϕl =
−1

2
∆xϕl + iω(−x2∂x1

+ x1∂x2
)ϕl + U [n]ϕl

+

∞
∑

j=1

λjVljϕj +
ρ0 + ω2

2
|x|2ϕl.

(1.5)

Moreover, we consider (1.4) under the assumption that ω2 + ρ0 > 0. We

set δ = ρ0 + ω2 and equation (1.5) r eads

i∂tϕl =
−1

2
∆xϕl + iω(−x2∂x1

+ x1∂x2
)ϕl + U [n]ϕl

−
∞
∑

j=1

λjVljϕj +
δ

2

(

x2
1 + x2

2

)

ϕl,
(1.6)

with ∆U = −n.
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We next reduce the problem further by looking only for a special class of

periodic solutions. To this end, let Rω denote the rotation matrix in counter-

clockwise direction by the angle π/4, and with angular velocity ω :

Rω = ω

(

0 − 1

1 0

)

.

Then

exp(tRω)x =

(

cos(ωt)x1 − sin(ωt)x2

sin(ωt)x1 + cos(ωt)x2

)

and for any sufficiently smooth function f, (x, t) → f(exp(tRω)x) solves

∂tϕ = ω(−x2∂x1
+ x1∂x2

)ϕ (1.7)

(i.e., the differential operator on the right of (1.7) generates a rotation group).

This motivates the ansatz

ϕl(x, t) = e−iEltψl(e
tRωx) (1.8)

to solve (1.6), and by inspection one proves

Theorem 1. The family of functions given by (1.8) solves (1 .6) if and only

if Ψ := (ψl)l=1,2,... satisfy the coupled eigenfunctio n equations

Elψl = −1

2
∆ψl + U [n]ψl +

∑

j

λjVljψj +
δ

2

(

x2
1 + x2

2

)

ψl (1.9)

with −∆U = n =
∑

λl|ψl|2, i.e., U(x) = − 1
2π

∫

ln |x−y|n(y) dy+U1(x) with

∆U1 = 0, and

Vlj(x) =

∫

ln |x− y|ψl(y)ψ̄j(y) dy. (1.10)

In the remainder of this paper, we solve (1.9-10) by minimizing an energy

functional. Notice that U is only determined up to a harmonic contribution

component U1 of the self-consistent potential (with a slight abuse of notation,

we use the notations U and U1 even even after making the ansatz (1.8);
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U and U1 do now not depend on t anymore). The trivial choice U1 = 0

leads to isotropic eigenstates. We will treat the more general situation where

U1 = θ̃
2
(x2

1 − x2
2), which leads to anisotropy if θ̃ > 0. Note that ∆U1 = 0, i.e.,

U1 is an admissible correction to the self-consistent potential. To guarantee

confinement, we have to restrict ourselves to the weak anisotropy situation

where 0 ≤ θ̃ < δ (the case −δ < θ ≤ 0 follows then by exchanging x1 with

x2). Setting θ̃ = θδ, Eqn. (1.9) becomes

Elψl = −1

2
∆ψl +U [n]ψl +

∑

j

λjVljψj +
δ

2

(

(1 + θ)x2
1 + (1 − θ)x2

2

)

ψl (1.11)

with U [n] = − 1
2π

∫

ln |x− y|n(y) dy.

2. Solving the eigenvalue problem. We first recall the representation of

the density matrix ρ in terms of its eigenfunctions:

ρ(x, y, t) =
∑

λlϕ̄l(x, t)ϕl(y, t). (2.1)

Next, we define an energy functional for the system (1.11) by

E(Ψ) :=
1

4

∑

l

λl

∫

|∇ψl(x)|2dx

− 1

4π

∫ ∫

ln |x− y|
(

n(x)n(y)− |ρ(x, y)|2
)

dxdy

+
δ

2

∫

(

(1 + θ)x2
1 + (1 − θ)x2

2

)

n(x) dx.

(2.2)

Let a function space Y be defined by

Y = {Ψ; ψl ∈ L2 ∩H1,
∑

λl‖ψl‖2
H1 <∞,

∑

λl

∫

x2|ψl(x)|2 dx <∞}.
(2.3)

We consider the problem of minimizing E(Ψ) in the space Y subject to the

countably many constraints ‖ψl‖L2 = 1, l = 1, 2, . . . Solutions to this mini-

mization problem satisfy the associated Euler-Lagrange equations, which are

exactly the system (1.9-10). We now formulate our main result.
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Theorem 2. The energy functional E(Ψ) is bounded below on the subset of Y

where ‖ψl‖L2 = 1, l = 1, 2, . . . , and the minimum is assumed. The functions

ψl which minimize E satisfy (1.9-10) in t he distributional sense, and the El

are the Lagrange multipliers which arise from the constrained minimization.

Proof. 1. We first establish energy bounds from below. By the Cauchy-

Schwarz inequality,

|ρ(x, y)|2 ≤ n(x)n(y),

hence

−
∫ ∫

ln |x− y|
(

n(x)n(y)− |ρ(x, y)|2
)

dxdy

≥−
∫ ∫

|x−y|≥1

. . . dxdy

≥−
∫ ∫

1≤|x−y|<r

. . . dxdy − ln r

r2

∫ ∫

r≤|x−y|

|x− y|2n(x)n(y) dxdy

= : I + II,

where in the last step we chose r >
√
e. By the chosen normalization,

M :=
∑

λl‖ψl‖2
L2 = 1,

and we can estimate

I ≥ −(ln r)M2 = − ln r, II ≥ −4 ln r

r2
M
∑

λl

∫

|x|2|ψl(x)|2 dx.

Collecting these estimates, we find

E(Ψ) ≥ 1

4

∑

λl

∫

|∇ψl|2 dx−
ln r

4π
+

[

δ

2
(1 − θ) − ln r

r2π

]

∑

l

λl

∫

|x|2|ψl(x)|2dx.

The term δ
2 (1−θ)− ln r

r2π becomes positive for sufficiently large r (as a function

of δ and θ) This proves that E(Ψ) is bounded below.

2. Let Yc = {Ψ ∈ Y; ‖ψl‖L2 = 1 ∀l = 1, 2, . . .}. Choose a minimizing

sequence {Ψn}n∈N ⊂ Yc such that ∀n, l ‖ψn
l ‖L2 = 1 and E(Ψn) → infYc

E(Ψ)

as n→ ∞. It follows from the

6



bounds on E that there is a constant C > 0 such that

∑

l

λl

∫

|∇xψ
n
l |2dx < C,

∑

l

λl

∫

|x|2|ψn
l (x)|2 dx < C. (2.3)

Without restricting the generality, we may assume that the (fixed) constants

λl are all strictly positive. Therefore, (2.3) implies
∫

|∇xψ
n
l |2 dx < C/λl and

∫

|x|2|ψn
l (x)|2dx < C/λl

for all n, l. By compact embedding and a standard diagonal argument, we can

extract a subsequence such that for all l ∈ N ψn
l → ψl as n→ ∞ in L2(R2). As

the space Y := {ψ ∈ H1(R2);
∫

|x|2|ψ(x)|2dx <∞} is continuously embedded

in Lp(R2) for all p ∈ [2,∞), we also can use Höl der’s inequality to get strong

convergence in all such Lp−spaces.

3. The minimizer Ψ = {ψl} will satisfy the Euler-Lagra nge equations associ-

ated with our minimization problem if we can show that the nonlinear terms

converge in the sense of distributions. To this end, let ϕ be a smooth test

function, supported in BR(0) = {x ∈ R
2; |x| ≤ R}, and consider, say, the

component of the self-consistent field
∫

ln |x − y||ψn
j (y)|2dy. We abbreviate

this as U [ψn
j ]. Consider the nonlinear terms arising in the l−th equation. We

write
∫

U [ψn
j ]ψn

l (x)ϕ(x)dx−
∫

U [ψj]ψl(x)ϕ(x)dx

=

∫

|x|≤R

U [ψn
j ] {ψn

l (x) − ψl(x)}ϕ(x) dx

+

∫

|x|≤R

{

U [ψn
j ] − U [ψj ]

}

ψl(x)ϕ(x) dx

= : In + Jn.

(2.4)

Further, abbreviating

Kn
j (x) :=

∫

R2

| ln |x− y||q
(

|ψn
j (y)| + |ψj(y)|

)q
dy

we estimate, using Hölder’s inequality with p ≥ 2 and q = p
p−1

|Jn| ≤
∫

|x|≤R

Kn
j (x)1/q‖ψn

j − ψj‖Lp |ϕ(x)||ψl(x)| dx. (2.5)
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We now apply Hölder’s inequality a second time, this time to Kn
j (x), where

we choose t = 2
q ≥ 1 and s such that 1

s + 1
t = 1. Then s ∈ [2,∞), and we get

for ǫ > 0

|Kn
j (x)| ≤

∫ | ln |x− y||q(1 + |y|)ǫ

(1 + |y|)ǫ
(|ψn

l (y)|+ |ψl(y)|)q dy

≤
(
∫ | ln |x− y||qs

(1 + |y|)ǫs
dy

)1/s(∫

(1 + |y|)ǫt (|ψn
l (y)|+ |ψl(y)|)2 dy

)1/t

.

Choose ǫt = 2, i.e., ǫ = 2/t = q. Then ǫs = 2q
2−q , and the last line becomes

(

∫ | ln |x− y||q 2

2−q

(1 + |y|)
2q

2−q

dy

)2/(2−q)
(
∫

(1 + |y|)2 (|ψn
l (y)| + |ψl(y)|)2 dy

)q/2

.

The first factor in this last product is bounded as |x| < R and 2q
2−q

> 2. The

second factor is bounded because of the energy bounds . Since |ϕ(x)|·|ψj(x)| is
in L1, It follows using the dominated convergence theorem that Jn converges

to zero. Similarly, one has that In converges to zero, and from this one easily

concludes convergence of the nonlinear terms in the equation. This completes

the proof of Theorem 2.

3. Three Dimensions. The method presented above generalizes with minor

modifications to fermion clouds confined in three dimensions. There are only

two changes.

We continue to assume that the exterior magnetic field is

~A(x) = ω(−x2, x1, 0),

i.e., there is no x3−component. The existence of a confined cloud in (quasi-)

periodic motion is then only feasible if there is electric confinement in the

x3−direction, i.e., the external electric potential must have a part like Cx2
3,

with C > 0.

Otherwise, a particle cloud would disperse in this x3−direction and ap-

proach vacuum as an asymptotic state (for the situation depicted here, this
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is physically reasonable, but mathematically just a conjecture; in Fermion

systems without any confinement, decay results of this type were proved in

[4].

With confinement, the energy functional corresponding to the three-

dimensional case is

E(Ψ) =
1

4

∑

λl

∫

|∇ψl(x)|2 dx+
1

8π

∫ ∫

1

|x− y|
[

n(x)n(y)− |ρ(x, y)|2
]

dxdy

+
δ

2

∫

(

(1 + θ)x2
1 + (1 − θ)x2

2 + c1x
2
3

)

n(x) dx,

with some c1 > 0. It is immediate that E(Ψ) is bounded below (by 0 ) on Yc

as long as 0 ≤ θ ≤ 1.

Remark. As a mathematical curiosity with (probably) no physical implica-

tions, we point out that E(Ψ) remains bounded below

even in the fictitious case where the interparticle force is attractive, i.e.,

the case where the second term in the energy functional is

I2 := − 1

8π

∫ ∫

1

|x− y|
[

n(x)n(y)− |ρ(x, y)|2
]

dxdy.

To this end, we estimate as on p. 357 in [5],

|I2| ≥ − 1

8π

∫ ∫

n(x)n(y)

|x− y| dxdy =
1

2

∫

U(x)n(x) dx

=
1

2

∫

U(x)∆U(x) dx = −1

2

∫

|∇U(x)|2dx,

and by Lemma 3.4 in [5] there is a constant C > 0 such that

‖∇U‖2
L2 ≤C

(

∑

λl‖ψl‖2
L2

)3/2 (∑

λl‖∇ψl‖2
L2

)1/2

≤ C
(

∑

λl‖∇ψl‖2
L2

)1/2

≤ C

ǫ
+ ǫ
(

∑

λl‖∇ψl‖2
L2

)

,

where we have used that Ψ ∈ Yc. Choosing ǫ < 1/4, the last term here can

be absorbed in the first term in E(Ψ), and lower bounds on E(Ψ) follow.
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For results on the time-dependent case involving attractive forces, we

refer to [6] and [9].

The second part in our existence proof for the two-dimensional case now

carries over without changes. Note that it is here that the confinement with

respect to the x3−direction becomes important; without it, we could not use

compact embeddings.

There is also a difference in the Sobolev embedding quoted at the end of

step 2. The continuous embedding now only holds for 2 ≤ p ≤ 6 (= 2n
n−2 with

n = 3). The convergence argument for the nonlinear terms therefore requires

more care.

Specifically, the estimates starting with (2.4) have to be modified as fol-

lows:

Let ϕ be a test function supported in {x ∈ R
3; |x| ≤ R}. To estimate

∫

|x|≤R

∫

y

1

|x− y|
(

|ψn
j (y)|2 − |ψj(y)|2

)

ψl(x)ϕ(x)dydx,

we break up the integration domain as

∫

|x|≤R

∫

|x−y|<1

. . .+

∫

|x|≤R

∫

|x−y|≥1

. . . = I(n, l) + II(n, l).

Then, for 2 ≤ p ≤ 6 and 1/q + 1/p = 1, by Hölder’s inequality

|I(n, l)| ≤‖ψn
j − ψj‖Lp

∫

|x|≤R

∫

|y−x|≤1

1

|x− y|q
∣

∣ψn
j + ψj

∣

∣

q
(y)dy|ψl(x)ϕ(x)| dx

≤C‖ψn
j − ψj‖Lp

(

∫

|y−x|≤1

1

|x− y|qs
dy

)1/s
(
∫

∣

∣ψn
j + ψj

∣

∣

qr
(y)dy

)1/r

where we need qs < 3 and 1 < r, s <∞, 1/r + 1/s = 1. Choosing, say,

p = 6, q = 6/5, r = 5 and s = 5/4 shows that limn→∞ |I(n, l)| = 0.

The convergence argument for II(n, l) is even more straightforward. All

we have to note is that

|II(n, l)| ≤ C(ϕ, ψl)‖ψn
j − ψj‖L2‖ψn

j + ψj‖L2 .
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These estimates are sufficient for the convergence in the nonlinear terms in

the minimization problem.
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