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1 Abstract.

The main goal of this paper is to describe some new variational methods for
the characterization and computation of the eigenvalues and the eigenstates of
Dirac operators. Our methods are all based on exact variational principles, both
of min-max and of minimization types. The minimization procedure that we in-
troduce is done in a particular set of functions satisfying a nonlinear constraint.
Finally, we present several numerical methods that we have implemented in par-
ticular cases, in order to construct approximate solutions of that minimization
problem.

2 Introduction.

The free Dirac operator has been successfully used in the description of the
kinematics of the electron. It is a first order operator which, in the appropriate
units, has the form

H0 = i ~α · ~∇ + β (1)

where ~α · ~∇ =

3
∑

k=1

αk∂k and αk are the Pauli-Dirac matrices,

β =

(

I 0
0 −I

)

, αk =

(

0 σk
σk 0

)

(k = 1, 2, 3) ,

σk being the well-known 2 × 2 matrices Pauli matrices :

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.
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The spectrum of the free Dirac operator is only continuous and we have :

σ(H0) = (−∞,−1] ∪ [1,+∞) .

The total unboudedness of σ(H0) creates many difficulties which are not
present in its nonrelativistic limit, the Schrödinger operator, which is semi-
bounded. The difficulties associated with the numerical computation of Dirac
eigenvalues are known under the generic name of variational collapse .

The basic equation describing an electron evolving in an exterior scalar po-
tential V is

i ∂t Ψ = (H0 + V )Ψ in IR × IR3 . (2)

When looking for stationary states of (2) of the form Ψ(t, x) = e−iλt ψ(x) ,
one checks that the wave function ψ has to satisfy the following stationnary
equation:

(H0 + V )ψ = λψ in IR3 . (3)

Equality (3) is an eigenvalue equation which corresponds to bound states of
the electron if ψ is square integrable in IR3. For those states to be stable, the
eigenvalue λ has to be in the gap of the spectrum of H0, i.e. in (−1, 1). In
particular, if it exists, the smallest eigenvalue (or the smallest positive eigen-
value) of H0 + V in the gap (−1, 1), corresponds to the ground-state level of
the electron in the potential V (in the sense that its nonrelativistic limit is the
ground-state level of the limiting Schrödinger equation).

In the case of a semibounded operator H like the Schrödinger operator,
finding the ground-state corresponds to minimizing the Rayleigh quotient

R(ψ) :=
((H + V )ψ, ψ)

(ψ, ψ)
, (4)

where by (·, ·) we denote either the L2(IR3) - inner product or, when necessary,
a duality product. There are many practical ways of tackling the problem of
minimizing a function like R(ψ) .

In the case of the Dirac potential H0, and for standard potentials V , min-
imizing R(ψ) is useless, because it takes us to −∞. On the other hand, the
solutions of (3) correspond to critical points of R(ψ) . Hence, one has to find
ways of characterizing non-minimization variational problems to find the eigen-
values of H0 + V in the interval (−1, 1). Many works have been devoted to
this question. W. Kutzelnigg has written two excellent reviews on this subject,
where many relevant references can be found : [14, 15]. The main approaches
to this problem can be classified in three groups:

1) Use of approximate Hamiltonians: the first idea is to replace equation
(3) by another one in which the main operator is semibounded. In general this
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is done by reducing equation (3) to a system of two equations for the upper
and lower spinors in ψ. Then, one eliminates the lower spinor and shows that
this system is equivalent to an equation for the upper spinor which involves
a semibounded Hamiltonian. For instance, the above reduction can be done
via the Foldy-Wouthuysen transformation. Finally, approximate Hamiltonians
are constructed by considering different expansions of the exact Hamiltonian in
powers of 1/c2 or other small quantities. This method yields models which are
perturbations of the nonrelativistic one. To this category of works belong for
instance [8, 9, 16, 17, 15].

2) Using appropriate finite “basis”, with the right asymptotic (or other)
behavior and thus avoiding to fall into the negative continuum (−∞,−1). This
is equivalent to projecting the equation onto a well chosen space. For instance,
this has been done in [7, 14].

3) Finding variational approaches other than simple minimization like min-
imization of Rayleigh quotients for the squared Hamiltonian (H0 + V )2 (see
[20, 1]) or later on, maximization of the Rayleigh quotients for the “inverse
Hamiltonian” ((H0 + V )ψ, ψ)/((H0 + V )2ψ, ψ) (see [13]).

Actually, it is rather easy to see that the eingenstates of (H0 +V ) should be
obtained by defining appropriate min-max procedures for the Rayleigh quotient.
This idea was first put forward by Talman [18]. Then other proposals followed :
[10, 11, 4, 12, 5]. In these papers, various min-max and constrained minimization
procedures were described and justified for some families of potentials.

Our work places itself in the third direction, but still uses the idea of elimi-
nating the lower spinor in terms of the upper one, without any further approx-
imation. In this paper, we present three different alternatives for the charac-
terization and computation of all the eigenvalues of H0 + V in the gap of the
essential spectrum of H0 + V . Of course, in order to define these variational
procedures, one has to choose a class of potentials V for which the operator
H0 + V is well defined. In some sense, V has to be not “too strong” with re-
spect to H0. The class of potentials for which our methods work include sums
of powers −γi |x|−βi , βi being positive, but satisfying βi ≤ 1. Hence, sums
of Coulomb potentials are admissible. Even if it is not always necessary, our
presentation will be simplified if we make the assumption that V is an attractive
potential, i.e. V is nonpositive everywhere in IR3. For more details about the
precise assumptions which are necessary on V see below and [4, 5].

3 Min-max approaches.

As far as the Dirac operator is concerned, the first works in this direction are
those of Talman [18] and Datta-Deviah [3]. In [18] Talman proposed the follow-
ing strategy : if any 4-spinor ψ ∈ CI 4 is seen as a pair ψ = (ϕχ ), with ϕ, χ taking
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values in CI 2, let us compute the following min-max

inf
ϕ 6=0

sup
χ

(ψ, (H0 + V )ψ)

(ψ, ψ)
. (5)

Talman claimed that the above min-max yields in fact the ground-state
energy of the operator H0 + V . This assertion is very interesting, since the
decomposition of any spinor ψ into its upper and lower components, ϕ and χ, is
indeed much easier to implement than projections based on spectral decomposi-
tion of H0. The dificulty here is to give appropriate conditions on the potential
for the approach to be valid.

In [10] another min-max strategy was proposed. This was the first rigorous
approach to the variational solution of the problem under study and we present
an improved version of it below. Then, the first abstract min-max characteri-
zation for the eigenvalues of operators with gaps was given by Griesemer and
Siedentop in [11]. In [11], we also find the first mathematical justification of the
correctness of Talman’s min-max for a class of bounded potentials V . Other
results in this direction have been proved in [4, 12].

The min-max approach which seems to apply to the largest class of poten-
tials is described in [5]. In that paper, we use an abstract variational method
together with an appropriate continuation argument which allows us to treat
all potentials V which are not too singular at the origin and which, being self-
adjoint, have a smallest eigenvalue in the interval (−1, 1) which “comes from the
positive continuum”, that is, which is close to 1 for small values of the coupling
constant γ. In particular, this method is applicable to the Coulomb potentials
−γ |x|−1, in the optimal class γ ∈ (0, 1).

The main result concerning the min-max in [5] is the following. Let us
consider an operator H0 +γV1 , where V1 is a given scalar potential and γ > 0
is a coupling constant. Assume that there is an orthogonal decomposition of
H = L2(IR3,CI4) as H = H+ ⊕ H− and let us denote by Λ± the projectors
associated to this decomposition.

Assume moreover that

(i) there exists a dense subspace F of H1(IR3,CI4) , such that F± := Λ±F
are two subspaces of H1/2(IR3,CI4) .

(ii) a := sup
ψ∈F−\{0}

(ψ,H0 ψ)

‖ψ‖2
H

< +∞ .

Then, we define the min-max levels :

λk,γ(V1) := inf
W subspace of F+

dim W=k

sup
ψ∈(W⊕F−)\{0}

(ψ, (H0 + γV1)ψ)

||ψ||2
H

, k ≥ 1 ,

(6)
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and we assume that

(iii) λ1,0 (V1) > a .

On V1 we make the hypothesis:

(iv) V1(x) −→
|x|→+∞

0 ,

Then, if we define b := inf {σess(H0 + γ V1) ∩ [a,+∞)} , we can state the
following result (see [5]) :

Under the above assumptions (i)-(iv), for all γ > 0 such that H0 + γ V1

can be defined as a self-adjoint operator with domain included in H1/2(IR3,CI4)
and such that λ1,γ (V1) > a+ γ sup IR3 V1 , all the eigenvalues of H0 + γ V1 in
the interval (a, b) are given by the sequence λk,γ (V1) . In particular, the energy
of the ground-state is equal to λ1,γ (V1). Note that if there is no eigenvalue of
H0 + γ V1 in the interval (a, b) then all the min-max values λk,γ are equal to b.

So, in this result it is not necessary to assume that the potentials are attrac-
tive. In this particular case, the assumption λ1,γ (V1) > a+ γ sup IR3 V1 is of
course replaced by λ1,γ (V1) > a.

Let us notice that a simple case in which are satisfied all the assumptions
for the above result to hold is given by γ and V1 satisfying:

− ν

|x| − c1 ≤ V1 ≤ c2 = sup
IR3

V1 < +∞ ,

c1, c2 ≥ 0 , γ (c1 + c2) < 1 +
√

1 − γ2 ν2 ,

and a = −1.

The above result can be particularized to various cases in which different de-
compositions of H are considered. A possible decomposition corresponds to the
projectors associated with the free Dirac operator, that is, Λ+ = χ(0,+∞)(H0)
and Λ− = χ(−∞,0)(H0) . Another decomposition which seems simpler for ac-
tual computations corresponds to considering the upper and the lower spinors
separately, i. e. :

for ψ =

(

ϕ

χ

)

, Λ+ψ =
(ϕ

0

)

, Λ−ψ =

(

0

χ

)

. (7)

Let us also notice that with the above decomposition (7), λ1,γ (V1) is the
min-max proposed by Talman. In particular, the above result proves that Tal-
man’s min-max yields indeed the first eigenvalue of H0 + γ V1 for all potentials
V1 and all constants γ such that the above properties are satisfied. In the partic-
ular case of the Coulomb potentials −γ |x|−1 , this means being able to consider
any γ between 0 and 1, the optimal range of self-adjointness. Note also that
less singular potentials like γ|x|−β can be dealt with as long as β ∈ (0, 1) and
γ is such that λ1,γ (V1) > −1.
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4 Minimization method and corresponding min-

max approaches.

4.1 A constrained minimization method.

In [4] we reduced the computation of the first eigenvalue of a large family of
Dirac operators to the consideration of a minimization problem in a class of
functions described by a nonlinear constraint. Below we describe this method,
since we believe that it can be useful in numerical computations or at least in
understanding the positivity properties of constrained problems.

First, one reduces the eigenvalue for the 4-spinor ψ = (ϕχ ) to a system of
two equations for the 2-spinors ϕ and χ . This is a common procedure when
trying to construct approximate semibounded Hamiltonians, as was described
in the Introduction.

Let us introduce a shift of length −1 in the eigenvalues: E = λ− 1, so that
for λ to be in the spectral gap (−1, 1) , E has to be in the interval (−2, 0).
Next, notice that the equation (H0 + V )ψ = λψ = (E + 1)λ is equivalent to
the system

{

Lχ = (E − V )ϕ
Lϕ = (E + 2 − V )χ

(8)

with L= i(~σ · ~∇) =
∑3

k=1 iσk∂/∂xk. As long as E + 2 −V 6=0 , the system (8)
can be written as

L
(Lϕ

g
E

)

+ V ϕ = Eϕ , χ =
Lϕ

g
E

(9)

with g
E

= E + 2 − V . Note that for attractive potentials V (V ≤ 0 a. e.),
gE 6= 0 for all E in the gap (−2, 0).

Then, we consider φ = ϕ/
√
g

E
which solves the equation

HEφ :=
√
g

E
L
( 1

g
E

L(
√
g

E
φ)
)

= (E − V )(E + 2 − V )φ (10)

where the operator HE defined in (10) is symmetric.

Thus, any E ∈ (−2, 0) , eigenvalue of the operator H0 + V − 1 , with asso-
ciated eigenfunction ϕ =

√
gE φ , is a solution of the equation

(φ, φ)E2 + 2(φ, (1 − V )φ)E − (φ, (2 − V )V φ) − (φ,HEφ) = 0 , (11)

which is quadratic in E if we forget the dependence of HE on E. So, E is
necessarily solution of one of the following equations :

E = J±(E, φ) :=
1

(φ, φ)

(

±
√

∆(E, φ) −
(

φ, (1 − V )φ)
)

(12)
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where ∆(E, φ) := |(φ, V φ)|2 +(φ, φ)[(φ, φ)+(φ,HEφ)−(φ, V 2φ)].

Note that if T (E, φ) := [(φ, φ)[(φ, φ) + (φ,HEφ) − (φ, V 2φ)] is nonnega-
tive, then the range of J− (resp. J+) is contained in the interval (−∞,−1]
(resp. [−1,+∞)). Hence, eigenvalues E corresponding to positive energies λ
necessarily satisfy the equation E = J+(E, φ) .

By a simple continuation argument, one can see that for a large family
of potentials, the inequality T (E, φ) ≥ 0 is equivalent to the existence of a
gap around 0 in the spectrum of H0 + V . Hence, one can try to compute
the smallest positive eigenvalue of H0 + V by just minimizing the functional
J+(E, φ) in the set {(E, φ) ; J+(E, φ) = E}. And indeed, we prove in [4] that
under appropriate assumptions, the solution of this minimization problem is a
ground-state for H0 + V − 1 (at this level, we do not discuss the regularity
conditions required on the functions φ). The class of potentials −γ|x|−β is
again admissible for all β ∈ (0, 1] and γ > 0 not too large. In the case β = 1,
the condition on γ is again optimal : 0 < γ < 1.

4.2 Relationship with Talman’s min-max.

In Section 3, we introduced a general class of min-max problems yielding the
eigenvalues of H0 +V in the interval (−1, 1). Here, the same has been achieved
for the positive ground state of the electron moving in the potential V . Actually,
it is not difficult to see that there is a strong relationship between the two meth-
ods, specially in the case in which the decomposition of the 4-spinors is the one
which corresponds to the consideration of the upper and lower 2-spinors sepa-
rately. As pointed out above, this was actually the proposal made by Talman.
Let us come back to that min-max for potentials γ V1, γ > 0 :

λγ1 = inf
ϕ 6=0

sup
χ

(ψ, (H0 + γ V1)ψ)

(ψ, ψ)
, ψ =

(

ϕ

χ

)

. (13)

If one tries to apply the result of Section 3, one sees that a can be chosen to
be equal to −1. Moreover, one can explicitly solve the maximization problem
in χ as follows : for every ϕ , the supremum

λγ(ϕ) := sup
χ

(ψ, (H0 + γ V1)ψ)

(ψ, ψ)
, ψ =

(

ϕ

χ

)

(14)

is achieved by

χγ(ϕ) :=
Lϕ

1 − γ V1 + λγ(ϕ)
, (15)

and λγ(ϕ) is the unique number in (−1,+∞) such that

λγ(ϕ)

∫

IR3

|ϕ|2dx =

∫

IR3

( |Lϕ|2
1 − γ V1 + λγ(ϕ)

+ (1 + γ V1)|ϕ|2
)

dx , (16)
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So, finally, λγ1 can be defined as the minimum (in ϕ) of all λγ(ϕ). This is
again a minimization problem with a nonlinear constraint.

This minimization method is actually equivalent to the one described in
Section 4.1 and they are both rigorously justified for the same class of potentials.

5 Some related numerical computations.

In this section we present recent numerical results that have been obtained for
the very particular class of potentials −γ|x|−β , with γ > 0 , 0 < β ≤ 1 and in
some specific cases (see [6]). Our aim has been to show that these new varia-
tional techniques could help to better understand how to perform computations
in relativistic quantum mechanics, without having to care about variational
collapse, boundary conditions, choice of good special basis of functions, etc.

More precisely, we have implemented three methods, one based on shooting
arguments and the other two, on variational ones. The first one is used as a
comparison test for the variational method. Note that for β = 1, the exact
eigenvalues are explicitly known, wich provides us with a good test for the
computations.

Let V be a radial attractive scalar potential and let us try compute the first
positive eigenvalue of H0 + V . Since V is radial (see for instance [19, 2]) the
eigenfunctions of H0 + V can be expressed in terms of the spherical harmonics
according to the decomposition

L2(IR3; CI4)= L2(]0,+∞[, r2dr; CI)

⊗

( +∞
⊕

j= 1
2 ,

3
2 ,...

+j
⊕

mj=−j

⊕

κj=±(j+ 1
2 )

Kmj ,κj

)

.

of the set of the square integrable functions defined on IR3 with values in CI4.
Any spinor ψ ∈ L2(IR3 CI4) can therefore be written as

ψ(x) =
∑

j,mj,κj
ǫ=±

1

|x|f
ǫ
mj ,κj

(|x|)Φǫmj ,κj
(
x

|x| ) (17)

where

Φ+
mj,∓(j+1/2)

=

(

iΨ
mj

j∓1/2

0

)

, Φ−
mj,∓(j+1/2)

=

(

0

Ψ
mj

j±1/2

)

(18)

generate the space Kmj ,κj and can be expressed in terms of the spherical har-
monics as follows :

Ψ
mj

j−1/2
=

1√
2j

(

√

j +mj Y
mj−1/2

j−1/2
√

j −mj Y
mj+1/2

j−1/2

)

, (19)
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Ψ
mj

j+1/2
=

1√
2j + 2

(

√

j + 1 −mj Y
mj−1/2

j+1/2

−
√

j + 1 +mj Y
mj+1/2

j+1/2

)

, (20)

where (Y ml )m=−l,−l+1,...l
l=0,1,2... are the usual spherical harmonics. The radial Dirac

operator acting on the set of the square integrable real functions on (0,+∞),
L2(0,+∞), is

hκ =

(

1 + V − d
dr + κ

r
d
dr + κ

r −1 + V

)

κ = ±1, ±2, ... (21)

and the eigenvalue problem takes the form

{

u′ = (1 + λ)v − (V v + κ
r u)

v′ = (1 − λ)u + (V u+ κ
r v)

(22)

The solutions of this system are characterized by two parameters, λ and δ =
v(1)/u(1) for instance, and we shall denote by X the set of the solutions of (22)
such that u(1) = 1 when λ and δ vary in IR. However, the condition that u
and v are in L2(0,+∞) determines uniquely λ and δ. One can show that this
integrability condition is equivalent to assuming that

limr→0+ r(|u(r)|2 + |v(r)|2) = 0 ,

limr→+∞(|u(r)|2 + |v(r)|2) = 0 ,
(23)

thus providing a simple numerical (”shooting”) method to determine λ and
δ (we shall refer to this method by the letter ”s” and use it to compare the
numerical results with the numerical minimization method given below).

Let us describe now a first numerical minimization method, which uses the
special form (22) of the eigenvalue problem and goes along the main lines of the
method described in Section 4.1. Similarly to (9), in (22) v can be eliminated
in terms of u:

v

rκ
= (r2κ(1 + λ− V ))−1 d

dr
(rκu) . (24)

For many central potentials, the ground-state of H0 + V is a solution of (22),
with κ = −1. For instance, in the case of Coulomb potentials, there is no
square integrable solution of (22) when κ = 1 and the ground-state is achieved
for κ = −1. The eigenvalue problem (22) for κ = −1 is now equivalent to
solving

hλφ = (1 + λ− V )(1 − λ+ V )φ (25)

where hλ is a symmetric operator

hλφ =
√

1 + λ− V
d

dr

[

r2

1 + λ− V

d

dr
(
√

1 + λ− V φ)

]

(26)
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and φ(r) = r−1u(r)/
√

1 + λ− V is now a function defined on (0,+∞). Equa-
tion (10) is then equivalent to

(φ, φ)λ2 − 2(φ, V φ)λ+ (φ, V 2φ) − [(φ, φ) + (φ, hλφ)] = 0 (27)

where (·, ·) is the usual scalar product in L2(0,+∞) (and ‖ ·‖ the corresponding
norm). The eigenvalue problem is then reduced to finding a critical point of
J+(λ− 1, ·) with λ− 1 = J+(λ− 1, φ) and

J+(λ−1, φ) + 1 =

√

∆(λ − 1, φ) + (φ, V φ)

‖φ‖2
, (28)

∆(λ−1, φ)=(φ, V φ)2+‖φ‖2[(φ, hλφ)+‖φ‖2−(φ, V 2φ)] . (29)

To solve this constrained problem numerically, the natural idea is to intro-
duce a penalization method and to minimize

J+(λ− 1, φ) +A|(λ − 1) − J+(λ− 1, φ)|2

in the limit A → +∞. In practical computations, one has to consider positive
constants A large enough to ensure that the constraint is “almost” satisfied.
Actually if we assume that φ is given by (26) with (u, v) in X , the condition
that u and v are in L2(0,+∞) is equivalent to assuming that the integrals in-
volved in the expression (28) are finite. Of course these integrals are numerically
computed on an interval (ǫ, R), because there is a singularity at r = 0 and one
wants to compute the integral in a finite interval. So, the approximate value
J+
ǫ,R of J+ is finite even if the constraint is not satisfied, but we observe that

lim(ǫ,R)→(0,+∞) J
+
ǫ,R(λ− 1, φ) = +∞ unless λ− 1 = J+(λ− 1, φ). Hence, a min-

imization of J+ (numerically of J+
ǫ,R) on the set X takes care of the constraint

λ− 1 = J+(λ− 1, φ) automatically. This method will be referred by the letter
”m” in Tables 1 and 2. Note that from a mathematical point of view, this is
also a shooting method in (λ, δ).

In Table 1 below we present a comparison of the shooting (s) and the min-
imization (m) methods for κ = −1, V (r) = −γr−β, γ = 0.5 and β ∈ (0, 1).
The system (22) is numerically solved with a stepsize adaptative Runge-Kutta
method on the interval (ǫ = 10−4, R = 15). For the shooting method we mini-
mize the quantity ǫ(|u(ǫ)|2 + |v(ǫ)|2) + θ(|u(R)|2 + |v(R)|2) = ∆s for some scale
parameter θ > 0, while for the minimization method, the quantity J+(λ− 1, φ)
is directly minimized, the quantity CEr := |J+(λ − 1, φ) − (λ − 1)|2 being
computed a posteriori. The parameter θ is chosen in order that the terms
ǫ(|u(ǫ)|2 + |v(ǫ)|2) and θ(|u(R)|2 + |v(R)|2) have the same maximum value on
the boundary of the domain of minimization. For β = 1, the result is known ex-
plicitly: λ1 = [1−γ2]1/2 = 0.866025..., δ1 = −[(1−λ)/(1+λ)]1/2 = −0.267949....
For practical reasons, the results given here correspond to parameters taken in a
neighborhood of (δ1, λ1). The results correspond therefore to the branch (δβ , λβ)
starting from (δ1, λ1) at β = 1 and parametrized by β.
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Table 1:

β δs δm λs λm J+ CEr ∆s

1 -0.267954 -0.267943 0.866034 0.866013 0.866014 1.8 10
−12

0.00029

0.9 -0.235187 -0.235174 0.856725 0.856698 0.856698 2.1 10
−14

0.00053

0.8 -0.207802 -0.207788 0.843181 0.843146 0.843146 5.2 10
−14

0.00063

0.7 -0.183397 -0.183379 0.825877 0.825832 0.825831 4.3 10
−13

0.00076

0.6 -0.160651 -0.160627 0.804699 0.804639 0.804639 4.1 10
−13

0.00094

0.5 -0.138654 -0.138619 0.779161 0.779071 0.779070 3.4 10
−13

0.0012

0.4 -0.116645 -0.116584 0.748381 0.748221 0.748220 3.8 10
−13

0.0018

0.3 -0.0938375 -0.0937016 0.710904 0.710537 0.710536 3.5 10
−13

0.0049

0.2 -0.069224 -0.068798 0.664252 0.663067 0.663067 2.4 10
−13

0.0097

0.1 -0.0412322 -0.0392963 0.60391 0.59833 0.59833 1.4 10
−13

0.018

The main advantage of the minimizing approach is that it can be extended to
the case of nonsymmetric (non central) potentials, but of course for a minimizing
set which is larger than X .

We will now assume that the potential is radial, but consider a general basis
of L2(0,+∞) (of course well chosen). For that purpose, we introduce a third
formulation, which is intermediate between the abstract min-max theory and
the minimization of J+, and goes as follows. Its main advantage is that the
constraint E = J+(E, φ) will then be automatically satisfied. We will therefore
call this method the ”direct minimisation method”.

As in Equation (9) we may rewrite system (8) as

L
( Lϕ

λ+ 1 − V

)

+ V ϕ = (λ− 1)ϕ , χ =
Lϕ

λ+ 1 − V
, (30)

at least if λ ∈ (−1, 1) and if V is nonpositive almost everywhere. Multiplying
the equation (30) by ϕ and integrating with respect to x ∈ IR3, we obtain :

fϕ(λ) :=

∫

IR3

|Lϕ|2
λ+mc2 − V

dx (31)

= (λ− 1)

∫

IR3

|ϕ|2 dx−
∫

IR3

V |ϕ|2 dx =: gϕ(λ) .

Since for a given ϕ, fϕ(λ) is decreasing and gϕ(λ) is increasing in λ, if there
exits a λ = λ(ϕ) such that (31) is satisfied, then it is unique (the existence of
such a λ for all ϕ depends on the properties of the potential V ). According to
Section 4.2, for those V ’s, the ground state is such that

λ1 = min
ϕ
λ(ϕ) . (32)

11



One can solve (32) by any numerical minimization method. A possible way
to do it to consider a finite basis {ϕ1, . . . , ϕn} and define λ(x1, . . . , xn) by :

ℓ(x1, . . . , xn) := λ
(

n
∑

i=1

xi ϕi
)

.

Then,
λn1 := inf

(x1,...,xn)∈IRn
ℓ(x1, . . . , xn)

is an approximation of λ1(V ) which can be found by any well suited minimiza-
tion algorithm.

In order ot simplify the presentation, we come back to the radially symmetric
situation in which the potential V is central and we can decompose the whole
problem by using spherical spinors. This is not necessary, but has the advantage
of being easier to describe.

For a radial potential we may use the radial Dirac equation and consider
(22) instead of (8). Define λ = λr(u) as the unique solution of

f(λ) =

∫ +∞

0

|(rκu)′|2
r2κ(1 + λ− V (r))

dr (33)

= (λ− 1)

∫ +∞

0

|u(r)|2 dr −
∫ +∞

0

V (r)|u(r)|2 dr := g(λ) .

(Notice that the existence of λr(u) depends on the assumptions made on the
potential V ). Then, λ1 is given by :

λ1 = inf
u
λr(u) .

To solve equation (33) numerically it is more convenient to rewrite f(λ) as
an alternated series :

f(λ) =

+∞
∑

k=0

[

(−1)k
∫ +∞

0

r−2κ|(rκu)′|2
(1 − V (r))k+1

dr

]

λk . (34)

¿From a numerical point of view, the solution (with κ = −1) is approximated
on a finite basis of L2(0,∞), (ui)i=1,2,...n: u =

∑n
i=1 xiui. If

fijk = (−1)k−1

∫ +∞

0

r2(ui/r)
′(uj/r)

′

(1 − V (r))k
dr (35)

and

Vij =

∫ +∞

0

ui(r)uj(r)V (r) dr , (36)
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the approximating equation for λ corresponding to (33) is then

n
∑

i,j=1

(

(

m
∑

k=1

fijkλ
k−1) + Vij

)

xixj + (1 − λ)

n
∑

i=1

x2
i = 0 , (37)

where the series in λ has been truncated at order m. It is actually more conve-
nient to define

An,m(λ) =

(

(

m
∑

k=1

fijkλ
k−1) + (1 − λ)δij + Vij

)

i,j=1,2,...n

and to approximate λ1 by λn,m1 defined as the first positive root of λ 7→ µ1(λ) :=
µ(An,m(λ)) where µ(A) denotes the first eigenvalue of the matrix A. The
function λ 7→ µ1(λ) is indeed continuous, nonincreasing in λ and such that
µ1(0) > 0 when we make the right assumptions on the potential V , i.e. when V
is not too strong with respect to H0 (this corresponds to the hypothesis made
in Section 3). Moreover, if there exist x1, . . . , xm such that (37) holds, then
µ1(λ) ≤ 0. Hence, indeed λn,m1 = inf{λ > 0 ; µ1(λ) ≤ 0} .

Note that (λn,m1 − lim
m
λn,m1 )m≥1 is an alternating sequence (essentially con-

verging at a geometric rate): consider indeed u =
∑n

i=1 xi ui.

σnm(λ) =
∑

i,j=1,...n
k=1,...m

xixjfijkλ
k−1 =

m
∑

k=1

∫ +∞

0

(−1)k−1 r
2|(u/r)′|2
(1 − V )k

λk−1 dr

=

∫ +∞

0

r2

1 − V
|(u/r)′|2

1 −
(

−λ
1−V

)m

1 + λ
1−V

dr.

If V ≤ 0 a.e., (1 − V ) ≥ 1 , so that the series (σnm(λ))m∈IN is an alternating
sequence (and (λ/(1 − V ))m converges at a geometric rate).

The results in Table 2 have been obtained by taking an orthonormal basis
generated by the ground state of the hydrogen atom and n−1 Hermite functions,
with n = 10. Our purpose in this numerical computation was not to provide very
accurate results but just to prove the feasibility of such a numerical approach.
Clearly, depending on the specific properties of the potential, the choice of a
well suited basis should greatly improve the accuracy of the computation. More
precisely, we have considered V (r) = −γr−β, γ = 0.5 and β close to 1. The
approximating space is of dimension n = 10 and the series are truncated at
m = 14 or m = 15 (the corresponding values λ10,14

1 and λ10,15
1 are respectively

a lower and an upper bound of limm→+∞ λ10,m
1 ). As in Table 1, J+ is obtained

through a minimization procedure on the set X , and ∆m measures the error
(in the L2-norm) when the corresponding solution is approximated on the basis
(with n = 10 elements) used for the direct minimisation method.
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Table 2:

β 0.90 0.93 0.95 0.97 0.99 1.00

λ10,14
1 0.855681 0.858516 0.860228 0.861792 0.863200 0.863843

λ10,15
1 0.858012 0.861112 0.863004 0.864749 0.866338 0.867071
J+ 0.856698 0.859984 0.861954 0.863735 0.865310 0.866014
∆m 0.0082 0.0058 0.0046 0.0033 0.0020 0.0022
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eigenvalues of Dirac operators. Preprint mp-arc 98-177, to appear in Calc.
Var. and P.D.E.

[5] J. Dolbeault, M.J. Esteban, E. Séré. On the eigenvalues of operators with
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