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1 Introduction

We consider the long time asymptotics of solutions to drift-diffusion systems

ut =∇·(∇u+u∇φ) , (1.1)

vt =∇·(∇v−v∇φ) , (1.2)

∆φ=v−u , (1.3)

where u, v denote densities of negatively, respectively positively, charged par-
ticles. The Poisson equation (1.3) defines the electric potential φ coupling
the equations (1.1)-(1.2) for the temporal evolution of charge distributions.
The system (1.1)-(1.3) was formulated by W. Nernst and M. Planck at the
end of the nineteenth century as a basic model for electrodiffusion of ions in
electrolytes filling the whole space IR3. Note that the case of multicharged
particles is also covered by (1.1)-(1.3) since u and v denote the charge den-
sities.

Supplemented with the no-flux boundary conditions

∂u

∂ν
+u

∂φ

∂ν
= 0 , (1.4)

∂v

∂ν
−v∂φ

∂ν
= 0 (1.5)

on the boundary of a bounded domain Ω⊂ IRd, d≤3, and either

φ= 0 on ∂Ω , (1.6)

or
φ=Ed∗(v−u) , (1.7)

where Ed is the fundamental solution of the Laplacian in IRd, the system
(1.1)-(1.3) was also studied by P. Debye and E. Hückel in the 1920’s. (1.6) sig-
nifies a conducting boundary of the container, while in the case of a bounded
domain the “free” boundary condition (1.7) corresponds to a container im-
mersed in a medium with the same dielectric constant as the solute.

These equations, together with their generalizations including e.g. an
exterior potential, known as drift-diffusion Poisson systems, also appear in
plasma physics and (supplemented with some mixed linear boundary condi-
tions instead of (1.4)-(1.5)) in semiconductor device modelling.
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To determine completely the evolution, the initial conditions

u(x,0) =u0(x) , v(x,0) =v0(x) (1.8)

are added. Obviously, positivity of u0≥0, v0≥0 is conserved: u(x,t)≥0,
v(x,t)≥0, as well as the total charges

Mu =
∫

u0(x)dx=
∫

u(x,t)dx , Mv =
∫

v0(x)dx=
∫

v(x,t)dx . (1.9)

Here Mu, Mv are not necessarily the same, i.e. the electroneutrality condition

Mu =Mv (1.10)

is not, in general, required. Condition (1.10) must be satisfied in the case of
the homogeneous Neumann boundary conditions ∂φ

∂ν
= 0 (i.e. an isolated wall

of the container) leading together with (1.4)-(1.5) to

∂u

∂ν
=
∂v

∂ν
=
∂φ

∂ν
= 0 .

Our results (Theorem 1.2 below) are valid in that case, with even a simpler
proof.

The asymptotic properties of solutions to (1.1)-(1.3), (1.7) have been
studied recently in [1]. The authors proved that (for d≥3, Mu =Mv = 1 and
u0 and v0 regular enough) u, v tend to their self-similar asymptotic states
at an algebraic rate. We improve these results by relaxing assumptions on
the initial data and showing a stronger (still algebraic) decay rate, which we
expect to be optimal (see Theorem 1.1 below).

In the case of a bounded domain, the convergence (with no specific speed)
in the L1-norm of u and v solving (1.1)-(1.5) to their corresponding steady
states has been proved in [5] (as well as the L∞-convergence for more regular
u0, v0). Here we prove the exponential convergence towards the steady states
with a decay rate depending on Ω⊂ IRd, d≥2, and the initial value of the
entropy functional only (see Theorem 1.2 below).

Notation. The Lp-norm in IRd or Ω⊂⊂ IRd is denoted by | · |p, and inessential
constants (which may vary from line to line) are denoted generically by C.
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Define the asymptotic states in IRd by

uas(x,t) =
Mu

(2π(2t+1))d/2
exp

(

− |x|2
2(2t+1)

)

, (1.11)

vas(x,t) =
Mv

(2π(2t+1))d/2
exp

(

− |x|2
2(2t+1)

)

, (1.12)

where the charges of the solution 〈u,v〉 of (1.1)-(1.2) are given by (1.9), and
the entropy functional by

L(t) =
∫

u(x,t)log

(

u(x,t)

uas(x,t)

)

dx+
∫

v(x,t)log

(

v(x,t)

vas(x,t)

)

dx+
1

2
|∇φ(t)|22 .

(1.13)

Theorem 1.1 There exists a constant C=C(d,Mu,Mv,L0) such that for
each solution 〈u,v〉 of (1.1)-(1.3), (1.7)-(1.8) in IRd, d≥3, if L(0) =L0, then
for all t≥0,

L(t)≤CH(t) (1.14)

and
|u(t)−uas(t)|21 + |v(t)−vas(t)|21 + |∇φ(t)|22≤CH(t) , (1.15)

where

H(t) =















(2t+1)−1/2 , d= 3 ,

(2t+1)−1

(

log(2t+1)+1
)

, d= 4 ,

(2t+1)−1 , d>4 .

Moreover if Mu =Mv, then H(t) = (2t+1)−1 for any d≥3.

In the case of a bounded domain, define the entropy functional

W (t) =
∫

u(x,t)logu(x,t)dx−
∫

U(x)logU(x)dx

+
∫

v(x,t)logv(x,t)dx−
∫

V (x)logV (x)dx

+
1

2

∫

(u−v)φdx− 1

2

∫

(U−V )Φdx , (1.16)
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for the solution 〈u,v,φ〉 of (1.1)-(1.5), (1.6) or (1.7), (1.8) and the unique
steady state 〈U,V,Φ〉 of the Debye-Hückel system with

Mu =
∫

U(x)dx , Mv =
∫

V (x)dx . (1.17)

Note that for the condition (1.6) the fifth and the sixth terms in W (t) take
the form 1

2
|∇φ|22− 1

2
|∇Φ|22.

Theorem 1.2 If d≥2, then there exist two constants λ=λ(Ω)>0 and C=
C(Mu,Mv,W0) such that for each solution 〈u,v,φ〉 of (1.1)-(1.6), (1.8) in
a bounded uniformly convex domain Ω, if W (0) =W0, then for all t≥0,

W (t)≤W (0) e−λt , (1.18)

and
|u(t)−U |21 + |v(t)−V |21 + |∇(φ−Φ)|22≤C e−λt . (1.19)

2 Proof of Theorem 1.1

We begin with a rescaling of the system (1.1)-(1.3) which will lead to a sys-
tem with a quadratic confinement potential, and therefore (eliminating the
dispersion) to the expected exponential convergence to the steady states.
This idea was applied in [8] and [7], as well as in [1], to a variety of problems
ranging from kinetic equations to porous media equations.

Let x̄∈ IRd, τ >0, be the new variables defined by

x̄=
x

R(t)
, τ = logR(t) , R(t) = (2t+1)1/2, (2.1)

and consider the rescaled functions ū, v̄, φ̄ such that

u(x,t) =
1

Rd(t)
ū(x̄,τ) ,

v(x,t) =
1

Rd(t)
v̄ (x̄,τ) , (2.2)

φ(x,t) = φ̄(x̄,τ) .

5



This whole section will deal with the rescaled system, so omitting the bars
over x, u, v, φ will not lead to confusions with the original system, which
now takes, after rescaling, the form

uτ =∇·(∇u+ux+u∇φ) , (2.3)

vτ =∇·(∇v+vx−v∇φ) , (2.4)

∆φ= e−τ(d−2)(v−u) . (2.5)

The scaling (2.2) preserves the L1-norms, so the rescaled initial data u0, v0

still satisfy

Mu =
∫

u0(x)dx=
∫

u(x,τ)dx , Mv =
∫

v0(x)dx=
∫

v(x,τ)dx . (2.6)

Denote by 〈u∞,v∞〉 the steady state of (2.3)-(2.4), that is

u∞(x) =
Mu

(2π)d/2
exp

(

−|x|2
2

)

, (2.7)

v∞(x) =
Mv

(2π)d/2
exp

(

−|x|2
2

)

. (2.8)

Of course, going back to the original variables x, t, 〈u∞,v∞〉 corresponds to
the asymptotic state 〈uas,vas〉 defined by (1.11)-(1.12). Writing φ=βψ with
β=β(τ) = e−τ(d−2) →0 as τ→+∞, we introduce the relative entropy

W (τ) =
∫

u log
(

u

u∞

)

dx+
∫

v log
(

v

v∞

)

dx+
β

2
|∇ψ|22 (2.9)

corresponding to the original entropy functional L in (1.13). The evolution
of W is given by

dW

dτ
=−

∫

u

∣

∣

∣

∣

∇
(

log
u

U

)∣

∣

∣

∣

2

dx−
∫

v

∣

∣

∣

∣

∇
(

log
v

V

)∣

∣

∣

∣

2

dx−
(

d

2
−1

)

β|∇ψ|22 ,
(2.10)

with U , V denoting the local Maxwellians

U(x,τ) =Mu

exp
(

−1
2
|x|2−φ(x,τ)

)

∫

exp
(

−1
2
|y|2−φ(y,τ)

)

dy
, (2.11)
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V (x,τ) =Mv

exp
(

−1
2
|x|2 +φ(x,τ)

)

∫

exp
(

−1
2
|y|2 +φ(y,τ)

)

dy
, (2.12)

so that ∇U/U =−(x+∇φ), ∇V /V =−(x−∇φ). Using the notation

J =
1

2

∫

u
∣

∣

∣

∣

∇u
u

+x
∣

∣

∣

∣

2

dx+
1

2

∫

v
∣

∣

∣

∣

∇v
v

+x
∣

∣

∣

∣

2

dx , (2.13)

(2.10) can be rewritten as

dW

dτ
=−2J−2

∫

(∇u−∇v) ·∇φdx−2
∫

(u−v)x ·∇φdx

−
∫

(u+v)|∇φ|2 dx−
(

d

2
−1

)

β|∇ψ|22 (2.14)

=−2J−β2
∫

(u+v)|∇ψ|2 dx−2β|u−v|22 +

(

d

2
−1

)

β|∇ψ|22 .

The quantity J in (2.13) can be estimated from below using the Gross loga-
rithmic Sobolev inequality

∫

f log

(

f

|f |1

)

dx+d
(

1+
1

2
log(2πa)

)

|f |1≤
a

2

∫ |∇f |2
f

dx (2.15)

valid for each a>0, see e.g. [11] or a thorough discussion of different versions
of logarithmic Sobolev inequalities in [2]. (2.15) becomes an equality if and
only if f(x) =C exp(−|x|2/(2a)) (up to a translation).

Taking a= 1 in (2.15), the relation (2.14) leads to

−
(

dW

dτ
+2W

)

≥2β|u−v|22−β
d

2
|∇ψ|22≥−Cβ(Mu +Mv)2 (2.16)

with a constant C=C(d) = 2
d

(

d−2
4

)(d−2)/2
Σd/2, because by the Hardy-Little-

wood-Sobolev inequality and an interpolation

|∇ψ|22≤Σ|u−v|22d/(d+2) ≤Σ|u−v|4/d
1 |u−v|2−4/d

2 ≤ 4

d
|u−v|22 +C|u−v|21 .

Clearly, (2.16) implies

d

dτ

(

e2τW (τ)
)

≤C(Mu +Mv)2eτ(4−d)
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and, after one integration, we obtain

W (τ)≤
(

W (0)e−τ +C(Mu +Mv)2
)

e−τ (2.17)

in the case d= 3,

W (τ)≤
(

W (0)+C(Mu +Mv)2τ
)

e−2τ (2.18)

if d= 4, and finally for all d>4

W (τ)≤
(

W (0)+C(Mu +Mv)2
)

e−2τ . (2.19)

Since from the Csiszár-Kullback inequality (cf. (1.9) in [2], App. D in [7], [6]
or [10]) W (τ) controls the L1-norm of u−u∞ and v−v∞, we get the same
decay rates as in (2.17)-(2.19) for

|u(τ)−u∞|21 + |v(τ)−v∞|21 +β|∇ψ(τ)|22≤2
(

max(Mu,Mv)+1
)

W (τ) .

(2.20)
Returning to the original variables x, t, this implies, of course, the estimates
(1.14)-(1.15) of Theorem 1.1 in the general case.

In the electroneutrality case (1.10): Mu =Mv, since u∞ =v∞, so for d= 3,
|u−v|21 = |u−u∞+v∞−v|21≤Ce−τ . Next, a modification of (2.16) reads

d

dτ

(

e2τW (τ)
)

≤Ce2τβ|u−v|21≤C ,

and this leads to W (τ)≤C(1+τ)e−2τ . Inserting this into (2.20) and (2.16)
once again implies

d

dτ

(

e2τW (τ)
)

≤C(1+τ)e−τ ,

so that W (τ)≤Ce−2τ . If d= 4, the same reasoning once again applies pro-
viding also the same improved decay rate. 2

Remark 2.1 Note that the constant C in (1.15) depends on d, Mu, Mv and
L(0) only, and is independent of e.g. |u0|r, |v0|r with some r>d/2 — as it
was in fact in [1]. Conditions like |u0|r + |v0|r<∞ are sufficient for (local in
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time) existence of solutions to the considered systems (cf. Theorem 2 in [5]),
but they can be relaxed — as it was done for a related parabolic-elliptic system
describing the gravitational interaction of particles in [4]. Thus, compared to
[1], Theorem 1.1 gives not only an improvement of the exponents but also
gets rid of the unnecessary dependence on quantities other than L(0), Mu,
Mv. We do not know if the exponents in Theorem 1.1 are optimal, but such
a conjecture is supported by the calculations in the proof of the following

Proposition 2.2 There exists a constant λ>0 depending only on d with

λ≥λ(d) = (d−2)
(√

(d−1)2 +3−(d−1)
)

, such that

W (τ) ≤ W (0) e−λτ (2.21)

and hence
L(t) ≤ L(0) (2t+1)−λ/2

for each solution 〈u,v〉 to the Nernst-Planck system.

Remark 2.3 The interest of this proposition is that the constants control-
ling the convergence of W (t), L(t), and hence |u−uas|1, |v−vas|1 in (1.15),
depend on the initial values of W (0), L(0) only (and not on |u|1 =Mu, |v|1 =
Mv, which are quantities not comparable with, say,

∫

u logudx,
∫

v logv dx in
the whole IRd space case). However, the exponent λ — which is evaluated
explicitly — is not as good as the one in Theorem 1.1.

Proof of Proposition 2.2. Using (2.9), (2.13), (2.14), we may write for
any positive λ

−
(

dW

dτ
+λW

)

=λ
(

J−
∫

u log
(

u

u∞

)

−
∫

v log
(

v

v∞

))

+(2−λ)J+B+2E−µF , (2.22)

where

B=β2
∫

(u+v)|∇ψ|2 dx ,
E=β|u−v|22 ,

F =

(

d

2
−1

)

β|∇ψ|22 ,

µ= 1+
λ

d−2
.
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Observe that if we define

G1 =
∫

u
(∇u
u

+x
)

·∇φdx , G2 =
∫

v
(∇v
v

+x
)

·∇φdx ,

then

G1−G2 =
∫

∇(u−v) ·∇φdx+
∫

(u−v) (x ·∇φ)dx=E−F.

Define now

f1 =
√

2−λ ·
√
u
(∇u
u

+x
)

, g1 =
√
u∇φ ,

f2 =
√

2−λ ·
√
v
(∇v
v

+x
)

, g2 =
√
v∇φ ,

a1 = |f1|2 , b1 = |g1|2 , a2 = |f2|2 , b2 = |g2|2 .
By the Cauchy-Schwarz inequality we have

(2−λ)1/2|E−F |= (2−λ)1/2|G1−G2|
=
∣

∣

∣

∣

∫

(f1g1−f2g2)dx
∣

∣

∣

∣

≤ a1b1 +a2b2 .

But
0≤ (a1b2−a2b1)2 = (a2

1 +a2
2)(b21 +b22)−(a1b1 +a2b2)2 ,

a1b1 +a2b2 ≤
√

2
√

(a2
1 +a2

2)/2
√

b21 +b22

≤ 1√
2

(

1

2
(a2

1 +a2
2)+(b21 +b22)

)

=
1√
2

(

(2−λ)J+B
)

,

and thus

(2−λ)1/2|E−F |≤ 1√
2

(

(2−λ)J+B
)

.

Using (2.22) we get

−
(

dW

dτ
+λW

)

≥
√

2(2−λ)|E−F |+2E−µF

=F ·
(

√

2(2−λ)|X−1|+2X−µ
)

(2.23)
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with X=E/F ≥0. For either d≥4 and λ≤2, or d= 3 and λ≤1, we have
µ≤2. The right hand side of (2.23) (positive for X≥µ/2) equals (for X≤
µ/2≤1)

√

2(2−λ)(1−X)+2X−µ=
(

2−
√

2(2−λ)
)

X+
√

2(2−λ)−µ ,

so that
√

2(2−λ)≥µ (2.24)

guarantees dW
dτ

+λW ≤0, which implies (2.21). The condition (2.24) is
equivalent to λ≤λ(d). In particular, λ(d) is an increasing function of d,
λ(3) =

√
7−2<1, λ(4) = 4

√
3−6 and limd→+∞λ(d) = 3

2
. 2

Remark 2.4 In the case of one species of particles, i.e. v≡0 as was in [3]
and [4], the result of Proposition 2.2 still holds.

Finally, we remark that there is, in general, no hope to have λ>2 in non-
trivial cases. This can be inferred from the formula (2.22), where for each

χ>1, J−χ
(

∫

u log
(

u
u∞

)

dx+
∫

v log
(

v
v∞

)

dx
)

could be negative and domi-

nate the other terms (for instance, in the limit Mu, Mv →0+).

3 Proof of Theorem 1.2

First, we recall that steady states 〈U,V,Φ〉 of (1.1)-(1.3) satisfy the relations

∇·(e−Φ∇(eΦU)) = 0 , ∇·(eΦ∇(e−ΦV )) = 0 ,

hence

U =Mu
e−Φ

∫

e−Φ dx
, V =Mv

eΦ
∫

eΦ dx
. (3.1)

Together with (1.3) this leads to the Poisson-Boltzmann equation

∆Φ =Mv
eΦ

∫

eΦ dx
−Mu

e−Φ

∫

e−Φ dx
. (3.2)

This equation, supplemented with the Dirichlet boundary condition (1.6) or
the free condition (1.7), for every Mu,Mv ≥0, has a unique (weak) solution
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Φ, see [9] or Proposition 2 in [5] (and this solution is classical whenever ∂Ω
is of class C1+ǫ for some ǫ>0).

The evolution of the Lyapunov functional defined by (1.16) in the case of
the Dirichlet boundary condition (1.6) or in the case (1.7) is given by

dW

dt
=−

∫

u|∇(logu+φ)|2 dx−
∫

v|∇(logv−φ)|2 dx , (3.3)

cf. (35) in [5], where the above relation is obtained for weak solutions to the
Debye-Hückel system.

Concerning the global in time existence of solutions to the Debye-Hückel
system with nonlinear boundary conditions (1.4)-(1.5), we note that this
was proved for d= 2 only in Theorem 3 of [5]. Thus, in higher dimensions
d≥3, we assume that 〈u(t),v(t)〉 exists for all t≥0. If equations (1.1)-(1.3)
are supplemented with linear type boundary conditions (as it is the case in
semiconductor modelling), the assumption u0, v0 ∈Lr(Ω) with an exponent
r>d/2 (cf. Theorem 2 (ii) in [5] and [1] for the case of the whole space IRd)
guarantees the existence of 〈u(t),v(t)〉 for all t≥0.

First, we represent the entropy production terms in (3.3) as

∫

u
∣

∣

∣∇
(

log(ueφ)
)∣

∣

∣

2
dx=

∫

ueφ
∣

∣

∣∇
(

log(ueφ)
)∣

∣

∣

2 e−φ

∫

e−φdx
dx ·

∫

e−φdx, (3.4)

with an obvious modification for the second term. Then we recall Remark
3.7 of [2], where counterparts of the logarithmic Sobolev inequality (2.15) (or
Poincaré-type inequalities) are discussed in the case of a bounded uniformly
convex domain. We apply this remark to the domain Ω and the probability
measure

ρ0(x) =
e−φ

∫

e−φdx

in the first entropy production term in (3.3) written as in (3.4). This implies
the existence of a constant C(Ω)>0 such that

∫

Ψ

(

f
∫

f dρ0

)

dρ0 ≤C(Ω)
∫

Ψ′′

(

f
∫

f dρ0

)

|∇f |2
(
∫

f dρ0)2
dx,

where Ψ(s) = 1−s+slogs and f =ueφ. Here we have

∫

u
∣

∣

∣∇
(

log(ueφ)
)∣

∣

∣

2
dx=Mu

∫

Ψ′′

(

f
∫

f dρ0

)

|∇f |2
(
∫

f dρ0)2
dx
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since
∫

f dρ0 =
∫

ueφdρ0 = Mu
∫

e−φdx
. Thus we arrive at

∫

u
∣

∣

∣∇
(

log(ueφ)
)∣

∣

∣

2
dx≥ Mu

C(Ω)

∫

(

f
∫

f dρ0
log

(

f
∫

f dρ0

)

+1− f
∫

f dρ0

)

dρ0,

or
∫

u
∣

∣

∣∇
(

log(ueφ)
)∣

∣

∣

2
dx≥ 1

C(Ω)

∫

u log







ueφ

Mu
∫

e−φdx





 dx. (3.5)

Similarly, we have

∫

v
∣

∣

∣∇
(

log(ve−φ)
)∣

∣

∣

2
dx≥ 1

C(Ω)

∫

v log







ve−φ

Mv
∫

eφ dx





 dx. (3.6)

Now we compute the expression

δ=
∫

u log







ueφ

Mu
∫

e−φ dx





 dx+
∫

v log







ve−φ

Mv
∫

eφ dx





 dx.

If 〈U,V,Φ〉 is the solution of the Poisson-Boltzmann equation (3.2) with the
homogeneous Dirichlet boundary conditions, then it can be checked that

δ=W +J [φ]−J [Φ], (3.7)

where

W =
∫

u logudx+
∫

v logv dx+
1

2

∫

|∇φ|2 dx

−
∫

U logU dx−
∫

V logV dx− 1

2

∫

|∇Φ|2 dx

is as in (1.16), and

J [φ] =
1

2

∫

|∇φ|2 dx+Mu log
(∫

e−φ dx
)

+Mv log
(∫

eφ dx
)

is a strictly convex functional reaching its minimum at Φ.
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Now it is clear from (3.3), (3.5)-(3.6) and (3.7) that for some λ=λ(Ω)>0
dW
dt

+λW ≤0, i.e. W (t) decays exponentially in t

W (t)≤W (0) e−λt . (3.8)

By the Csiszár-Kullback inequality (as was in Section 2), W (t) controls the
L1-convergence to the unique steady state, so the conclusion (1.19) of The-
orem 1.2 follows from (3.8). This improves (34) in Theorem 6 of [5] in two
ways. First, there is an exponential decay rate. Second, (34) is proved under
the assumption W (0)<∞, which is much weaker than the assumption on
the L2-boundedness in time of the solution 〈u,v〉 in Theorem 6 of [5]. Evi-
dently, this result is also valid for one species case (Mu or Mv equal to 0), so
Theorem 2 in [3] is also improved. 2
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