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Abstract. This paper is devoted to the numerical computation of energy levels of
Dirac operators with applications in atomic and molecular physics. Our approach
is based at a theoretical level on a rigourous variational method. This provides a
numerical method which is free of the numerical drawbacks which are often present
in discretized relativistic approaches. It is moreover independent of the geometry
and monotone: eigenvalues are approximated from above. We illustrate our nu-
merical approach by the computation of the ground state in atomic and diatomic
configurations using B-splines.
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The numerical computation of one-particle bound states of Dirac equa-
tions is difficult due to the unboundeness of the free Dirac operator. Several
numerical drawbacks are present in most of the computational techniques.
Various approaches based for instance on squared Dirac operators [25, 1],
min-max formulations [23, 4], use of special basis sets [7, 17, 15, 12] or even
more elaborated methods have been proposed [11, 8], as well as perturbative
corrections to non-relativistic models and derivation of effective Hamiltoni-
ans (see for instance [18, 16, 21, 22, 3, 10, 19, 20]). None of these remedies
provides a complete and satisfactory answer. From a numerical viewpoint,
the variational collapse or the dissolution into the continuous spectrum and
the existence of spurious states [14, 9] are serious problems which have been
solved in special cases by taking appropriate projections or imposing addi-
tional conditions, for instance on a boundary [7].

In [5] we proposed an exact and stable numerical method based on a new
variational reduction of the problem to 2-spinorial functions with an appli-
cation to the computation of spherically symmetric ground states. Here we
explain the theoretical basis of our approach and then precisely describe
how to use this method in atomic or molecular computations. Numerical
results for hydrogenoid ions corresponding to atomic or diatomic configu-
rations are given. We do not pretend to give accurate numerical results
and this is actually not the purpose of this paper. For instance, we use
meshes with constant steps, which are clearly not optimal. The main point
is that the method does not rely on any special geometry and has inter-
esting numerical features: none of the above mentioned difficulties occurs
and eigenvalues are approximated monotonically from above. Moreover, it
is numerically tractable and robust, in the sense that no special information
on the solutions needs to be injected in order to provide reliable results.

It is well known that the eigenvalues of an operator H can be obtained
as critical values of the Rayleigh quotient

Q(ψ) :=
(Hψ,ψ)
(ψ,ψ)

.

In the case of operators which are bounded from below, with eigenvalues
below the continuum, the infimum of the quotient Q is the ground state
energy. However the Dirac operator is totally unbounded. Hence, the same
minimization would take us to −∞. One possible way out consists in mini-
mizing the Rayleigh quotient on a subspace of spinors which correspond to
electronic states and for which the quotient is bounded from below. In this
case one is actually solving the eigenvalue equation ΛHΛψ = E ψ, where H
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is now the Dirac operator and Λ the projector onto the orthogonal to the
subspace corresponding to the negative continuous spectrum of H. However,
Λ is in general unknown and replacing it by an approximation introduces
many difficulties. The method is for instance very dependent on the poten-
tial. In the case of nonlinear problems for which the solutions are obtained
by iteration of linearized ones, the potentials change at every step, which
may cause serious numerical unconsistencies.

Here we propose a method which is based on a minimization procedure,
but not a direct minimization of the Rayleigh quotient of course. First
we eliminate the lower spinor to obtain a second order equation for the
upper one. The reduced Hamiltonian is then eigenvalue dependent. After
a further step, we finally reduce the question to that of solving a nonlinear
scalar equation. The method applies not only to the ground state but also
to the wave functions corresponding to excited levels.

In the litterature one finds many works dealing with the construction of
effective operators which share the positive eigenvalues of the Dirac opera-
tors, but are bounded from below. One way of constructing them is to use
projectors. Formally, if Λ+ is the positive spectral projector associated with
H, the equation

Λ+HΛ+ψ = Eψ

will indeed have the good properties of sharing with H all its positive eigen-
values and having no negative spectrum. Of course the projector Λ+ is not
known in closed form. In some sense, our method does it in an implicit
manner.

Let us now come to the particular case of the Dirac operator H = H0+V ,
where H0 is given by H0 = −i α · ∇ + β and V is a fixed scalar potential.
The units have been chosen so as to have m = c = h̄ = 1 and α1, α2, α3, β
are the Pauli-Dirac matrices. If we write any 4-spinor ψ as ψ = (ϕχ ), with
ϕ, χ taking values in CI 2, the eigenvalue equation

H ψ = λψ

is equivalent to the system
{

Rχ = (λ− c2 − V ) ϕ
Rϕ = (λ + c2 − V ) χ

(1)

with R = −i c ('σ.'∇) = −i c
∑3

k=1 σk ∂/∂xk where σ1, σ2, σ3 are the Pauli
matrices. Then, if ψ is an eigenfunction of H associated with the eigen-
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value λ, and if the function λ+c2−V is never equal to 0, we have:

χ = (λ + c2 − V )−1Rϕ ,(2)

and
R

(

Rϕ

λ + c2 − V

)

= (λ− c2 − V )ϕ .(3)

The above equation, which can be found in several papers as, usually, a first
step of an expansion procedure, is not linear in λ since the Hamiltonian act-
ing on the upper spinor ϕ depends nonlinearly on it. However, multiplying
(3) by ϕ and integrating with respect to x ∈ IR3, we get :

∫

IR3

( |Rϕ|2

λ + c2 − V
+ (V + c2 − λ) |ϕ|2

)

dx = 0 .(4)

It is straightforward to check that for any given admissible 2-spinor ϕ, i.e. a
spinor for which the integral of the above equation is well defined, there is a
unique λ satisfying (4). Let us denote it by λ(ϕ). In [6] we proved that for
a large class of potentials V including the usual potentials arising in atomic
and molecular physics, the ground state energy of the operator H (that we
denote by λ1) is the minimal value of λ(ϕ) over all possible functions ϕ such
that Rϕ and φ are square integrable:

λ1 = inf
ϕ

λ(ϕ) .(5)

In this manner we have managed to minimize the Rayleigh quotient over all
bound states of H and we have found the lowest eigenvalue of H in the gap
(−1, 1), or (−c2, c2) in atomic units.

In order to design an efficient algorithm for the computation of λ1, we
may reformulate the question as follows. Let A(λ) be the operator defined
by the quadratic form acting on 2-spinors:

∫

IR3

( |Rϕ|2

λ + c2 − V
+ (V + c2 − λ) |ϕ|2

)

dx =: (ϕ,A(λ)ϕ)

and consider its lowest eigenvalue, µ1(λ). Because of the monotonicity of
A(λ) with respect to λ, there exists at most one λ for which µ1(λ) = 0. This
λ is the ground state level λ1.

An algorithm to numerically solve the above problem has been proposed
in [5]. Consider the following approximation procedure for λ1. Take any
complete countable basis set B in the space of admissible 2-spinors X and
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let Bn be an n-dimensional subset of B generating the space Xn (we assume
that Bn is monotone increasing in the sense that if n < n′, then Bn is
contained in Bn′). Denote by ϕ1, ϕ2, . . . , ϕn the elements of Bn. For all
1 ≤ i, j ≤ n, we define the n× n matrix An(λ) whose entries are

Ai,j
n (λ) =

∫

IR3

( (Rϕi, Rϕj)
λ + c2 − V

+ (V + c2 − λ) (ϕi, ϕj)
)

dx ,(6)

where by (f, g) we denote the complex inner product of f by g. The matrix
An(λ) is selfadjoint and has therefore n real eigenvalues. We compute λ1,n

as the solution of the equation

µ1,n(λ) = 0 ,(7)

where µ1,n(λ) is the first eigenvalue of An(λ). Note that the uniqueness of
such a λ comes from the monotonicity of the l.h.s. of equation (4). Moreover,
since for a fixed λ

µ1,n(λ) ↘ µ1(λ) as n → +∞ ,(8)

we also have
λ1,n ↘ λ1 as n → +∞ .(9)

Another way to see why (9) holds is the following. The solution λ1,n

of (7) is the minimum value of λ(ϕ) among all the functions ϕ in Xn, which
again proves the result if Xn approximates X as n goes to +∞, or, in other
words, if Bn converges to B.

Note that all that has been said about the lowest eigenvalue and the
ground state energy can be also said for the higher eigenvalues corresponding
to excited states. Indeed, the (unique) root of the function which to λ
associates An(λ)’s i-th eigenvalue is an (upper) approximation to the i-th
exact eigenvalue of H. For a given i we can either look for the λ such that
µi(λ) = 0 or use another algorithm yielding all the λi’s at the same time.
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Figure 1: Each eigenvalue µi(λ) of A(λ), considered as a function of λ, is monotone
decreasing. By looking for the zeros of the non continuous function λ )→ µ̄(λ) =
infi |µi(λ)|, we obtain an efficient algorithm to compute all eigenvalues of the Dirac
operator in the gap (−1, 1) and the corresponding eigenfunctions. The ground state
of course corresponds to the smallest zero of µ̄(λ) in (−1, 1). Moreover the method
forbids variational collapse, no spurious states may appear and the only consequence
of the approximation on a finite basis set is that eigenvalues are approximated from
above.

Our previous paper [5] contained some numerical results concerning the
use of our method for finding the ground state energy for some Dirac oper-
ators in case of a spherical symmetry. The elements of the basis set used
in [5] were Hermite functions. In this paper we discuss more efficient nu-
merical results based on the use of B-spline function sets. The interest of
using well localized basis set functions is the sparseness and the nice struc-
ture of the corresponding discretized matrix An(λ). If the degree of the
basis of B-splines increases, the number of filled diagonals will also increase.
So, a good balance has to be found between the smoothness of elements of
the approximating basis set and the speed of the corresponding numerical
computations.

In the particular case of a central potential V (atomic case) (see for
instance [24, 2]) our method can be made more precise and above all, the
computations become much easier since one can reduce the whole problem
to a one-dimensional one. Indeed, the bound states can be expressed in
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terms of the spherical harmonics:

ψ =
1
r

(

uκ(r)χκm(θ, ϕ)
i vκ(r)χ−κm(θ, ϕ)

)

,(10)

The dependence on the angular coordinates is contained in the 2-spinors
χ±κm(θ, ϕ), which are eigenfunctions of the angular momentum operators
J , its third component Jz (with eigenvalues (j(j + 1) and m respectively)
and of parity. On the other hand, the radial dependence is contained in
the functions f and g which are called the upper and lower radial compo-
nents of ψ.

In the ansatz (10), for a given κ = ±(j+ 1
2), with j = -∓ 1

2 , l = 0, 1, . . .,
the operator H reduces to partial wave Dirac operators hκ acting on the
space (L2(0,+∞))2 of pairs of square integrable real functions on (0,+∞) :

hκ =







c2 + V −c d
dr + cκ

r

c d
dr + cκ

r −c2 + V






(κ = ±1, ±2, ...)(11)

In this context, for each κ, equation (4) which defines λ(ϕ) becomes
∫ +∞

0

|(rκu(r))′|2

r2κ(c2 + λ− V (r))
dr +

∫ +∞

0
(c2 − λ + V (r)) |u(r)|2 dr = 0 .(12)

For hydrogenic atoms we find the 1s state, i.e. the lowest energy state, in
the case κ = −1 and for a given finite dimensional basis set {Bi, . . . , Bn},
the entries of the matrix to consider are

∫ +∞

0

(rκBi(r))′(rκBj(r))′

r2κ(c2 + λ− V (r))
dr +

∫ +∞

0
(c2 − λ + V (r))Bi(r)Bj(r) dr=0 .(13)

Let us now come to the basic numerical computations that we have per-
formed to illustrate our method. In Table 1 below we show some results that
we have obtained in the case of the hydrogenoid atoms H, He+, Cr23+ and
Th89+. We have considered B-splines of order 2 which produce tridiagonal
matrices. The monotonicity of the approximation procedure is evident. We
do not try to obtain optimal results and only intend to show the feasability
of the numerical implementation of our approach and its good properties.
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Basis
dimension H He+ Cr23+ Th89+

50 0.99997376 0.99989506 0.98478952 0.76513329
100 0.99997348 0.99989391 0.98461144 0.75833759
500 0.99997337 0.99989351 0.98454726 0.75448807
1000 0.99997337 0.99989349 0.98454513 0.75423687
2000 0.99997337 0.99989349 0.98454459 0.75414924

∞ 0.99997337 0.99989349 0.98454439 0.75410233

Table 1: The approximated value of the ground state level converges to the exact
eigenvalue as the size of the basis set tends to ∞. These computations have been
made by regularly distributing the splines in the interval (0, rmax) , with rmax =
10/(Zα) and α = 1/137.037. The size rmax of the interval has been chosen so
that we do not lose much information by performing the computations in a finite
domain. The units are chosen so that m = c = h̄ = 1.

Instead of changing the basis dimension for a fixed rmax, we may take
different values of rmax and of spline widths 2h. The results are given in
Table 2. Again we verify that the approximation of the ground state level
is monotone decreasing as rmax increases and that the value of rmax taken
in Table 2 is a reasonable choice.
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Z=1 h 20 10 5 1
rmax

700 0.9999737 0.9999735 0.9999735 0.9999735
800 0.9999736 0.9999734 0.9999734 0.9999734

Z=90 h 0.4 0.2 0.1 0.05
rmax

10 0.770385 0.760512 0.756478 0.754976
12 0.770310 0.760456 0.756428 0.754928

Table 2: The quality of the approximating basis depends on two parameters: the
basic step, i.e. the length, 2h of the support of the spline functions and the length
of the interval (0, rmax) on which we solve the Dirac equation. The exact eigenvalue
is reached by taking simultaneously the limits h→0 and rmax → +∞. We give here
the computed values corresponding to Z = 1 (Hydrogen) and Z = 90 (Thallium).
Exact values are respectively 0.99997337 and 0.75410233.

When the potential V is not spherically symmetric, for instance in the
case of molecules, the same kind of algorithm can be used, but the radial
reduction is not possible anymore and we are forced to deal with computa-
tions in 2 or 3 dimensions. All the good properties of our algorithm remain
the same in the molecular case, but of course the computational complex-
ity becomes much higher, the basis sets being necessarily much larger. The
matrices An will still be very sparse if a good localized basis and a good num-
bering of the basis set elements are chosen. Let us describe how to make
the computations in the case of diatomic molecules. In this case, cylindrical
symmetry allows us to reduce the space dimension to 2. Another feature is
that one has to deal with 2-spinors: we cannot get rid of the lower part of
the upper spinor. If we choose the cylindrical ansatz

(

f(s, z) ei(m−1/2)φ

i g(s, z) ei(m+1/2)φ

)

for the 2-spinor ϕ, and if we consider the scalar finite basis set {B1, . . . Bn}
and the case m = 1/2 (where the lowest energy corresponds to the en-
ergy 1(1/2)g of the molecules), the matrix An(λ) can be decomposed in four
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blocks:
An =

(

A11
n A12

n
tA12

n A22
n

)

,

where the entries of the three matrices A11
n and A22

n are respectively
∫ +∞

0

∫ +∞

−∞

{

∂sBi ∂sBj + ∂zBi ∂zBj

λ + c2 − V
+ (V + c2 − λ)BiBj

}

s ds dz ,

∫ +∞

0

∫ +∞

−∞

{

(∂sBi + Bi
s ) (∂sBj + Bj

s ) + ∂zBi ∂zBj

λ + c2 − V
+ (V + c2 − λ)BiBj

}

s ds dz .

and those of A12
n ,

∫ +∞

0

∫ +∞

−∞

{

∂zBi (∂sBj + Bj

s ) − ∂sBi ∂zBj

λ + c2 − V

}

s ds dz (i ≤ j) ,

∫ +∞

0

∫ +∞

−∞

{

(∂sBi + Bi
s ) ∂zBj − ∂zBi ∂sBj

λ + c2 − V

}

s ds dz (i > j) ,

One can choose basis sets and numbering of its elements such that any of the
above matrices has nonzero elements only on some diagonals (their number
depending again on the overlapping of the basis elements).

In order to illustrate our method in the molecular case, we have chosen
to make some computations for the molecules H+

2 and Th179+
2 . The first

one corresponds to the case of light nucleii and the second one, to the case
of heavy ones. In order to compare 1- and 2-dimensional computations,
we have also used our algorithm in cylindrical coordinates to compute an
approximation for the ground state energy of the hydrogenic atom Th89+.
Table 3 below contains the results of these numerical computations.
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Z Number
of atoms smax zmax h λ1,max

Th89+ 90 1 10 10 0.4 0.774105
Th89+ 90 1 10 10 0.2 0.762610
Th89+ 90 1 ∞ ∞ 0 0.754102

H+
2 1 2 700 820 20 0.99994179

Th179+
2 90 2 10 12 0.4 0.517343

Table 3: Here are given some estimates of the ground state level in cylindrical coor-
dinates (s = (x2

1+x2
2)1/2, z = x3) restricted to an interval (0, smax)×(−zmax, zmax).

The purpose is simply to illustrate the method. Note that the approximate eigen-
values are upper estimates of λ1 and monotonically decreasing functions of the size
of the basis. The computation has been performed with B-splines of order 2 and
support of size 2h, which corresponds to a grid with constant step h and matrices of
size O(h−2) ×O(h−2) with only O(h−2) nonzero elements. No special information
on the shape of the exact solution has been injected into the code. The choice of
smax and zmax has been made after observing the results contained in Table 2.

Of course, much more precise computations have already been obtained
for the same molecules. See, for instance, Kullie and Kolb [13] who use
high accuracy finite element methods (FEM) and sophisticated elliptical
coordinates for diatomic molecules, in order to better treat the nuclear sin-
gularities. It would be interesting to adapt their ideas to our framework.

Finally, to illustrate our computations, we show at the end of this paper
the plots corresponding to Th89+, H+

2 and Th179+
2 . In each case a transversal

plot of the density |ϕ|2 at s = h and a plot in (s, z) coordinates are given.
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[7] G.W.F. Drake, S.P. Goldman. Phys. Rev. A 23(5), 2093 (1981).

[8] G.W.F. Drake, S.P. Goldman. Adv. Atomic Molecular Phys. 25,
393(1988).

[9] I.P. Grant. A.I.P. Conf. Proc. P.J. Mohr, W.R. Johnson, J. Sucher eds.
189, 235 (1989).

[10] J.-L. Heully, I. Lindgren, E. Lindroth, S. Lundqvist, A.-M. Mårtensson-
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Figure 2: Ground state of Th89+ corresponding to Z = 90, one atom,
computed with smax = 10, zmax = 10, h = 0.4.
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Figure 3: Ground state of H+
2 corresponding to Z = 1, two atoms, computed

with smax = 700, zmax = 820, h = 20.
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Figure 4: Ground state of Th179+
2 corresponding to Z = 90, two atoms,

computed with smax = 10, zmax = 12, h = 0.4.
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