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Abstract. Numerical methods avoiding the problem of

variational collapse and the appearance of spurious roots
are proposed for the computation of the eigenvalues and eigen-

states of one-particle Dirac Hamiltonians. They are based on

exact characterizations of the eigenvalues by a direct mini-

mization of the corresponding Rayleigh quotient on a set de-

scribed by a nonlinear constraint.

PACS numbers : 31.30.Jv, 31.15.Pf, 03.65.Pm, 02.60.Cb

The variational characterization and the numerical compu-
tation of the eigenstates of one-particle Dirac operators are
difficult because of the presence of the negative continuum in
the spectrum of the free Dirac operator. To deal with the
related variational instability, various theoretical approaches
based on squared Dirac operators [1,2], min-max formulations
[3,4] or even more elaborated methods have been proposed [5],
[6] as well as perturbative expansions of non-relativistic mod-
els and derivation of effective Hamiltonians. From a numerical
viewpoint, the variational collapse and the existence of spu-

rious states [7,8] are serious problems which have been dealt
with by taking appropriate projections or imposing additional
conditions in a large number of situations. In all those cases,
a large quantity of precautions have been necessary to avoid
the disagreements related to the total unboundedness of the
Dirac operator. Our proposal consists in characterizing the
eigenstates of the one-particle Dirac operator by stable and
exact variational methods. Then, we will show that these
methods can be easily translated into numerically tractable
schemes for computing the eigenstates that ignore variational

collapse. To illustrate the methods in a simple case, the de-
tails of the computations of the ground state are given below
for a radial scalar potential V and numerical computations
for V (x) = −γ/|x|β with β ranging between 0 and 1.

We consider the one-particle Dirac Hamiltonian

H = α · (−i∇) +mc2β + V , (1)

where α and β are the usual Dirac-Pauli matrices. The first
natural idea to characterize the eigenvalues of H is based on
min-max methods on the corresponding Rayleigh quotients

(ϕ,Hϕ)/(ϕ,ϕ) . (2)

Indeed, the spectrum of the Dirac Hamiltonian H being un-
bounded from below, it is hopeless to just minimize the
Rayleigh quotient without any further precaution, since this
would take us to −∞. We refer to [9–13] for a mathemat-
ical study of min-max formulations. In [13] it was proved

for a large class of potentials that if F+⊕F− is an orthog-
onal decomposition of a well-chosen space of smooth square
integrable functions, the sequence of min-max levels

λk = inf
G subspace of F+

dim G=k

sup
ϕ∈(G⊕F−)

ϕ6=0

(ϕ,Hϕ)

||ϕ||2 (3)

is equal to the sequence of the eigenvalues of H (counted with
multiplicity) in the interval (−mc2,+mc2).

An alternative and equivalent approach to min-max char-
acterizations was introduced in [11]. Composing H with its
associated positive energy projector Λ+ would allow to mini-
mize Rayleigh quotients but this idea is formal since the above
projector is a priori unknown. Our main idea is to find a
(nonlinear) constraint which implicitely defines the projector.
To do that, the Dirac equation Hψ = λψ, originally written
for 4-spinors, is first reduced to an equivalent equation for
2-spinors. This is usually done to recover Schrödinger-type
equations in the non-relativistic limit: the lower 2-spinor, or
small component is written in terms of the large component

by assuming that E = λ − mc2 and V are neglegible with
respect to mc2 (see [14] for more details on kinetic balance).
Keeping track of E and V can also be done: see [15,14]. More
precisely, for any ψ with values in CI 4, let us write ψ = (ϕ

χ
),

with ϕ, χ taking values in CI 2. Then the equation Hψ = λψ
is equivalent to the system

{

Lχ = (λ−mc2 − V ) ϕ
Lϕ = (λ+mc2 − V ) χ

(4)

with L= ic(~σ.~∇)=
∑3

k=1
icσk∂/∂xk, σk being the Pauli ma-

trices (k = 1, 2, 3). As long as λ+mc2−V 6=0, the system (4)
can be written as

L
(

Lϕ

gE

)

+ V ϕ = Eϕ , χ =
Lϕ

gE

(5)

where gE = E + 2mc2 − V , E = λ − mc2 (note that in the
nonrelativistic limit (c → +∞), gE ∼ 2mc2 and also that
L2 = −c2∆).

In a second step, we consider φ = ϕ/
√
gE which solves

HEφ :=
√
gE L

(

1

gE

L(
√
gE φ)

)

= (E−V )(E+2mc2−V )φ (6)

(the operator HE is formally self-adjoint). Thus E is a
solution of (φ, φ)E2+2(φ, (mc2−V )φ)E−(φ, (2mc2−V )V φ)−
(φ,HEφ) = 0,

E = J±(E,φ) :=
1

(φ, φ)

(

±
√

∆(E,φ) −
(

φ, (mc2−V )φ
)

(7)
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where ∆(E,φ) := |(φ, V φ)|2 +(φ, φ)[m2c4(φ, φ)+(φ,HEφ)−
(φ, V 2φ)]. Heuristically (7) is one of the analogues in quantum
mechanics of Einstein’s relation: E = ±(p2c2 +m2c4)1/2.

It turns out that the critical points of J±(E,φ) under the
constraint E = J±(E,φ) are exactly the eigenfunctions of the
Dirac operator H corresponding to eigenvalues in the gap, and
the eigenvalues corresponding to J+ converge as c → +∞ to
the nonrelativistic eigenvalues of the Schrödinger operator, at
least at a formal level. Note that if V is nonpositive, the
range of J− is contained in (−∞,−mc2] which corresponds
to the negative part of the spectrum of the Dirac operator.
In any case, we may define the ground-state as the lowest
positive eigenvalue, which turns out to be the minimum of
J+(E,φ) under the constraint E = J+(E,φ) (and converges
as c → +∞ to the ground-state of the Schrödinger opera-
tor) whatever the values of V are, and is compatible with the
nonrelativistic limit (but may not correspond to the lowest
eigenvalue in the gap). From now on we assume that m = 1
and c = 1. We may notice that for the problem to be well
defined, further conditions have to be assumed on the poten-

tial. If for instance V is the Coulomb potential, γ = Ze2

h̄c
has

to be less than 1 (which means Z < 1/α = 137.036...) unless
H is not well defined as a self-adjoint operator any more: see
[16,11,13] for more details. The fact that the whole spectrum
in the gap is actually characterized by J± comes from the
equivalence of the method with the min-max characterization
of the eigenvalues in the gap [13].

Since V is radial (see for instance [16,17]) the eigenfunctions
can be expressed in terms of the spherical harmonics: any
square integrable spinor ψ defined on IR3 with values in CI4

can therefore be written as

ψ(x) =
∑

j,mj,κj
ǫ=±

1

|x|f
ǫ
mj ,κj

(|x|)Φǫ
mj ,κj

(
x

|x| ) (8)

where j = 1
2
, 3

2
, ..., mj = −j,−j + 1, ...+ j, κj = ±(j + 1

2
),

Φ+

mj,∓(j+1/2)
=

(

iΨ
mj

j∓1/2

0

)

, Φ−

mj,∓(j+1/2)
=

(

0

Ψ
mj

j±1/2

)

, (9)

Ψ
mj

j−1/2
=

1√
2j

(

√

j +mj Y
mj−1/2

j−1/2
√

j −mj Y
mj+1/2

j−1/2

)

, (10)

Ψ
mj

j+1/2
=

1√
2j + 2

(

√

j + 1 −mj Y
mj−1/2

j+1/2

−
√

j + 1 +mj Y
mj+1/2

j+1/2

)

, (11)

(Y m
l )m=−l,−l+1,...l

l=0,1,2... being the usual spherical harmonics. The

radial Dirac operator acting on the space L2
(0,+∞) of the

square integrable real functions on (0,+∞) is

h =

(

mc2 + V −c d
dr

+ cκ
r

c d
dr

+ cκ
r

−mc2 + V

)

(κ = ±1, ±2, ...) (12)

With c = m = 1, the eigenvalue problem takes the form
{

u′ = (1 + λ)v − (V v + κ
r
u)

v′ = (1 − λ)u+ V u+ κ
r
v)

(13)

The solutions of this system are characterized by two param-
eters, λ and δ = v(1)/u(1) for instance, and we shall denote

by X the set of the solutions of (13) such that u(1) = 1 when
λ and δ vary in IR. However, the condition that u and v are in
L2(0,+∞) determines uniquely λ and δ. One can show that
this condition is equivalent to assuming that

limr→0+ r(|u(r)|2 + |v(r)|2) = 0 ,

limr→+∞(|u(r)|2 + |v(r)|2) = 0 ,
(14)

thus providing us with a first (and simple) numerical (”shoot-
ing”) method to determine λ and δ. We shall refer to this
method by the letter ”s” and use it to compare the numerical
results with the numerical minimization method given below.
The approximated eigenvalues computed with this method
will be denoted by λs in Table I below.

Let us describe now the minimization method based on J+.
Similarly to (5), v can be eliminated in terms of u:

v

rκ
= (r2κ(1 + λ− V ))−1 d

dr
(rκu) . (15)

We are looking for the ground-state so we may choose κ = −1
and the eigenvalue problem (13) is now equivalent to solve

hλφ = (1 + λ− V )(1 − λ+ V )φ (16)

where hλ is a formally self-adjoint operator:

hλφ =
√

1 + λ− V
d

dr

[

r2

1 + λ− V

d

dr
(
√

1 + λ− V φ)

]

(17)

and φ(r) = r−1u(r)/
√

1 + λ− V is now a function defined on
(0,+∞). Equation (6) is then equivalent to

(φ, φ)λ2 − 2(φ, V φ)λ+ (φ, V 2φ) − [‖φ‖2 + (φ, hλφ)] = 0

(18)

where (., .) is the usual scalar product in L2(0,+∞) and ‖.‖ the
corresponding norm. The problem is then reduced to finding
a critical point of J+(λ−1,.) with λ− 1 = J+(λ−1,φ) and

J+(λ−1, φ) + 1 =

√

∆(λ− 1, φ) + (φ, V φ)

‖φ‖2
, (19)

∆(λ−1, φ)=(φ,V φ)2+‖φ‖2[(φ, hλφ)+‖φ‖2−(φ, V 2φ)] .

(20)

To solve this constrained problem numerically, the natural
idea is to introduce a penalization method and to minimize
J+(λ−1,φ) +A|(λ−1)− J+(λ−1,φ)|2 in the limit A→ +∞. Ac-
tually if we assume that φ is given by (17) with (u, v) in X,
the condition that u and v are in L2(0,+∞) is equivalent to
assuming that the integrals involved in the expression (19) are
finite. Of course these integrals are numerically computed on
an interval (ǫ, R) and the approximate value J+

ǫ,R of J+ is fi-
nite even if the constraint is not satisfied, but we observe that
lim(ǫ,R)→(0,+∞) J

+
ǫ,R(λ−1,φ) = +∞ unless λ − 1 = J+(λ−1,φ).

A minimization of J+ (numerically of J+
ǫ,R) on the set X with-

out constraint is therefore equivalent to a constrained mini-
mization of J+ . This method will be referred by the letter
”m” in Table I, which contains the results of our computa-
tions using both the shooting and the minimization methods
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described above. The set of functions over which the approx-
imated eigenvalues are computed consists of all the solutions
of (13), with δ and λ to be determined.

The main advantage of the minimizing setting described
above is that it can be extended to nonsymmetric situations
(non central potentials), but of course for a minimizing set
which is larger than X. Indeed, above we have minimized J+

only among the set of functions which are already solutions of
a radially symmetric system (13). In the rest of this letter, for
convenience, we still assume that the potential is radial, but
consider a general basis of L2(0,+∞) (of course well chosen).
Next, we introduce a third formulation, which is intermediate
between the abstract min-max theory and the minimization of
J+ described above. Its main advantage is that the constraint
E = J+(E,φ) will then be automatically satisfied. We will
therefore call this method the ”direct minimization method”.

As in Equation (5) we may rewrite (4) as

χ = (λ+mc2 − V )−1Lϕ , (21)

L

(

Lϕ

λ+mc2 − V

)

= (λ−mc2 − V )ϕ , (22)

at least for any λ ∈]−mc2,+mc2[ if V takes negative values.
Multiplying Equation (22) by ϕ and integrating with respect
to x ∈ IR3, we get :

fϕ(λ) :=

∫

|Lϕ|2
λ+mc2 − V

dx (23)

= (λ−mc2)‖ϕ‖2
L2 −

∫

V |ϕ|2 dx =: gϕ(λ) .

TABLE I. Comparison of the shooting (s) and the minimization (m) methods for κ = −1, m = c = 1, V (r) = −γr−β,
γ = 0.5 and β ∈ (0, 1). The system (13) is numerically solved with a stepsize adaptative Runge-Kutta method on the interval
(ǫ = 10−4, R = 15). For the shooting method we minimize the quantity ǫ(|u(ǫ)|2 + |v(ǫ)|2)+ θ(|u(R)|2 + |v(R)|2) = ∆s for some
scale parameter θ > 0 (which is chosen to balance both boundary terms), while for the minimization method, the quantity
J+(λ−1,φ) is directly minimized, the quantity |J+(λ− 1, φ) − (λ− 1)|2 being computed a posteriori at λ = λm. For β = 1, the
result is known explicitely: λ1 = [1 − γ2]1/2 = 0.866025..., δ1 = −[(1 − λ)/(1 + λ)]1/2 = −0.267949.... For practical reasons,
the results given here correspond to parameters taken in a neighborhood of (δ1, λ1). The results correspond therefore to the
branch (δβ, λβ) starting from (δ1, λ1) at β = 1 and parametrized by β.

β δs δm λs λm J+ |(λm−1) − J+(λm−1,φ)|2 ∆s

1 -0.267954 -0.267943 0.866034 0.866013 0.866014 1.8 10−12 0.00029
0.9 -0.235187 -0.235174 0.856725 0.856698 0.856698 2.1 10−14 0.00053
0.8 -0.207802 -0.207788 0.843181 0.843146 0.843146 5.2 10−14 0.00063
0.7 -0.183397 -0.183379 0.825877 0.825832 0.825831 4.3 10−13 0.00076
0.6 -0.160651 -0.160627 0.804699 0.804639 0.804639 4.1 10−13 0.00094
0.5 -0.138654 -0.138619 0.779161 0.779071 0.779070 3.4 10−13 0.0012
0.4 -0.116645 -0.116584 0.748381 0.748221 0.748220 3.8 10−13 0.0018
0.3 -0.0938375 -0.0937016 0.710904 0.710537 0.710536 3.5 10−13 0.0049
0.2 -0.069224 -0.068798 0.664252 0.663067 0.663067 2.4 10−13 0.0097
0.1 -0.0412322 -0.0392963 0.60391 0.59833 0.59833 1.4 10−13 0.018

Since for a given ϕ, fϕ(λ) is decreasing and gϕ(λ) is in-
creasing, if there exits a λ = λ[ϕ] such that (23) is satisfied,
then it is unique (the existence of such a λ for all u depends
on the properties of the potential V ). According to [13], for
those V ’s, the ground state is such that

λ1 = min
ϕ
λ[ϕ] . (24)

For a radial potential we may use the radial Dirac equation
and consider (13) instead of (4). For m = 1 and c = 1,
λ = λr[u] is then the unique solution of

f(λ) =

∫ +∞

0

|(rκu)′|2
r2κ(1 + λ− V (r))

dr (25)

= (λ− 1)

∫ +∞

0

|u(r)|2 dr −
∫ +∞

0

V (r)|u(r)|2 dr .

To solve it numerically, it is more convenient to rewrite
f(λ) as

f(λ) =

+∞
∑

k=0

[

(−1)k

∫ +∞

0

r−2κ|(rκu)′|2
(1 − V (r))k+1

dr

]

λk . (26)

Numerically, the solution (with κ = −1) is approximated
on a finite basis (ui)i=1,2,...n: u =

∑n

i=1
xiui. If

fijk = (−1)k−1

∫ +∞

0

r2(ui/r)
′(uj/r)

′

(1 − V (r))k
dr (27)

and

Vij =

∫ +∞

0

ui(r)uj(r)V (r) dr , (28)
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the approximating equation for λ corresponding to (23) is
then

n
∑

i,j=1

(

(

m
∑

k=1

fijkλ
k−1) + Vij

)

xixj + (1 − λ)

n
∑

i=1

x2
i = 0 , (29)

where the series in λ has been truncated at order m. It is
actually more convenient to define

An,m(λ) =

(

(

m
∑

k=1

fijkλ
k−1) + (1 − λ)δij + Vij

)

i,j=1,2,...n

and to approximate λ1 by λn,m
1 defined as the first positive

root of λ 7→ µ(An,m(λ)) where µ(A) denotes the first eigen-
value of the matrix A (see [13] for more details). Note that
(λn,m

1 )m≥1 is an alternating sequence (which essentially con-
verges at a geometric rate): two consecutive eigenvalues de-
termine an interval containing limm→+∞ λn,m

1 .
The results in Table II have been obtained by taking an

orthonormal basis generated by the ground state of the hy-
drogen atom and n − 1 Hermite functions, with n = 10 and
then minimizing λr in the space generated by that basis,
without taking any further precaution. Our purpose in this
numerical computation is not to provide very accurate results
but just to prove the feasibility of such a numerical approach.
Clearly, depending on the specific properties of the potential,
the choice of a well suited basis should greatly improve the
accuracy of the computation.

In this letter we have described three different ways of com-
puting the ground state of the one-particle Dirac operator: a
first one is based on a ”shooting” argument (specific to the
case of central external potentials) and serves us as test for the
variational computations. The second method is based on the
minimization (in a set defined by means of a nonlinear con-
straint) of a functional which is bounded from below. Hence,
no particular precaution has to be taken to avoid variational

collapse, the method is automatically free of that ”disease”.
The third method consists in the minimization (in the space of
all upper spinors) of a function which is again bounded from
below, and which is defined by an explicit identity. These ap-
proaches, which can be applied to general external potentials,
give rise to numerical schemes (”minimization” in Table I,
”direct minimization” in Table II), which are based on simple

TABLE II. Direct minimisation method for κ = −1, m = c = 1, V (r) = −γr−β, γ = 0.5 and β close to 1. The approximating
space is of dimension n = 10 and the series are truncated at m = 14 or m = 15 (the corresponding values λ10,14

1 and λ10,15
1 are

respectively a lower and an upper bound of limm→+∞ λ10,m
1 ). As in Table I, J+ is obtained through a minimization on the set

X, and ∆m :=
(

1 −
∑10

i=1
(um, ui)

2
)1/2

measures the error (in the L2-norm) when the corresponding solution is approximated

on the basis (with n = 10 elements) used for the direct minimisation method.

β 0.90 0.93 0.95 0.97 0.99 1.00

λ10,14
1 0.855681 0.858516 0.860228 0.861792 0.863200 0.863843

λ10,15
1 0.858012 0.861112 0.863004 0.864749 0.866338 0.867071

J+ 0.856698 0.859984 0.861954 0.863735 0.865310 0.866014
∆m 0.0082 0.0058 0.0046 0.0033 0.0020 0.0022

minimization arguments yielding the exact eigenvalues and
eigenstates of Dirac operators. So, if implemented with large
enough basis sets, they can yield the eigenvalues and the
eigenfunctions to any desired degree of approximation.
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