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Abstract

We study the asymptotic behavior as t — 400 of a system of den-
sities of charged particles satisfying nonlinear drift-diffusion equa-
tions coupled by a damped Poisson equation for the drift-potential.
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In plasma physics applications the damping is caused by a spatio-
temporal rescaling of an “unconfined” problem, which introduces
a harmonic external potential of confinement. We present formal cal-
culations (valid for smooth solutions) which extend the results known
in the linear diffusion case to nonlinear diffusion of e.g. Fermi-Dirac
or fast diffusion/porous media type.
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1 Introduction

Consider the system

w=V-(Vf(u)+uVV+5(t)uVe)
v =V-(Vf(v)+oVV —=5(t)vVe) (1.1)
Ap=v—u

in IR xIRY, d>3, and assume that 3 is a nonnegative decreasing function
of time ¢ with lim;_,, 3(t) =0. V is the exterior potential with V(x) — +o0
as |z| — +o00. The initial data ug=u(t=0), vo=v(t=0) are assumed to be
in L1 (IRY). The function f satisfies

f(0)=0, f'(s)>0 Vse(0,00). (1.2)

The system (1.1) can be regarded as a model for a bipolar plasma, where
both types of particles are confined by a potential V' (z), and where the
Poisson coupling (mean field) becomes asymptotically weaker as t — +oc. In
the next section, we derive such a model by a spatio-temporal rescaling from
a system without confinement and without damping of the mean field. The
function f defines the density-pressure constitutive relation, which is taken
equal for both particle species (cf [8]).

Note that the minimum principle implies u(t), v(t) >0 (since we assumed
U, Vg >0). We remark that for the following we always take the Newtonian
potential 1 of ¢ as solution of —A¢ =g in IR%



In this paper the nonlinearities we have in mind are either
f(s)=s", s>0 (1.3)

where the cases m <1, m=1 and m > 1 correspond to the fast diffusion equa-
tion, the heat equation (linear diffusion) and the porous media equation
respectively, or the following diffusion equation corresponding to ”physical”
3-dimensional flows in the Fermi-Dirac thermodynamical framework. Define,
with € >0 a parameter, F': IR — (0,00) by

dv
F ::/ .
()= ey T exp (o2 —0)
Clearly, F/(—o0)=0, F(00) =00. The nonlinearity f in (1.1) then reads

(1.4)

ﬂ@:dﬁ%gi[F*ﬁﬁh,O§s<m (1.5)

(where F~! denotes the inverse function of F).
Note that stationary solutions of the equation

2=V (Vf(2)+2zVV)=V-(2(Vh(z)+VV))
where h/(s)=f'(s)/s, are of the form
1/(m-1)
d@:(C—V@D it omAl,

+
2(z)=Ce V@ if m=1

for (1.3), and
dv

0= | F OV @)

for (1.4)-(1.5).

At the end of this introduction, let us mention a (nonexhaustive) list of
references related to this work. Concerning the Gross logarithmic Sobolev
inequalities in a PDE framework, we refer to [2] and references therein. The
extension to the porous media or fast diffusion cases have been studied in
[5, 6, 9]. For systems with a Poisson coupling and a linear diffusion, let us
quote [2, 1, 3]. References [4, 7, 8] are relevant for the modelization and the
analysis in the plasma physics or semiconductor context.

Notation. In the sequel the L?(IR%) norms shall be denoted by |. |,.
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2 Derivation from a drift-diffusion system
without confinement

Systems of the form (1.1) can be obtained by a spatio-temporal rescaling from
drift-diffusion systems without confinement, and with a nonlinear diffusion
of power-law type.

Consider the system for the densities n and p of oppositely charged par-
ticles

ne=V-(Vf(n)+nVy)

pe=V-(Vf(p)—pV¥) (2.1)
AYp=p—n

where, with m >0
f(s)=s" for s>0, (2.2)

and define u and v by

(2.3)

with an increasing function R > 0.

Lemma 2.1 A solution (n,p) of (2.1) (with f given by (2.2)) corresponds
by the change of variables (2.3) to a solution (u,v) of (1.1) if and only if

BRI+ _1
1
Viw)= el (24)

Moreover



Note that (n,p) and (u,v) have the same initial data if R(0)=1. Con-
trarily to (1.1), the strength of the Poisson coupling in (2.1) is assumed to
be constant in time: the damping in (1.1) appears as a consequence of the
rescaling.

3 Asymptotic (uncoupled) problem

Consider now the system (1.1) with §=0. Both uw and v then solve an
equation of the form

2=V-(Vf(2)+2VV), 2(0)=2>0. (3.1)

Formally we have
/z(:c,t) d:c:/zo(x) dr for all t>0
(all the integrals are over IR?, unless specified differently). Let
Wl = [V + (=)~ ()] do (3.2)
with the enthalpy defined by
h(z) :/1@ ds. (3.3)

For a solution of (3.1), a standard computation (formally) gives

d !/ !/
ZWEIW®) = [IV+ () +2 () = £ ()] da
:—/Z|V(V—|—h(z))|2d:c. (3.4)
Consider then a steady state z,, such that, for a constant C, € IR with
C, <infV 4+ h(oc0) (3.5)
Rd
we have B
Zoo(x)=h"HC, =V (2)). (3.6)

Here i~ is the extension of A~ given by

_ o) if o (h(0V),h(c0)),
h ("):{ 0 if o <h(0F).



Remark 3.1 In the fast diffusion / porous media cases (1.3)
h(s)=m(s™1—1)/(m—1) is such that

m

h(0+)=—o0, h(oo):m if m<1,
m .
h(0+):—m, h(co) =400 if m>1,

while h(0+) = —o0 and h(co) =00 if m=1. In the case (1.4)-(1.5) we have
h(s)=F~(s), h(0+)=—00 and h(oc)=+oc.

Note that (3.6) implies

V(z)+h(ze0(2))=C, if R(0T)<C,-V(2)
and  z,(z)=0 if A(0")>C,—V(z). (3.7)

Assume now that V' is such that for all C'€infpaV + (h(07),h(c0))
/B—l(C—V(x)) dz < 0. (3.8)
Now let M < oo satisfy
o<y< [i <i£dfv+h(oo) —V(a:)) dx (3.9)

(the right hand side may very well be +o00!). Then the steady state z., is
uniquely determined by the requirement

/zoo(x) dr=DM. (3.10)
Note that this is the case for all M >0 if f(s)=s" with m>d/2—1 and

V(z)=1|z|? (cf [6]), or in the Fermi-Dirac case.

Assuming Wzy] <400, the entropy W|z](t) decays monotonically with
respect to ¢, and under additional regularity assumptions, it was shown in
2, 5, 6, 9] that

tngrnwW[z](t) =Wlzs0] (3.11)
if
/zodm:/zoodx:M. (3.12)
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In the following, we define the relative entropy
Wz|2o0] = W z] = W]zeo] (3.13)
of the nonnegative states z, z,, with equal integrals.

Remark 3.2 Set

W2|20] = / ( / ) h(s) = bz (@) ds> dr>0. (3.14)

oo ()

Since, by the definition (3.3) of h

7 h(s) = h(e)) ds = 2p(h(z) = h(a) = flz2) + f ), (3.15)

21

we conclude
Wlalzac] = W] = [ (V@) 4 h(z00) (2 200) da

= V h(0%)—C,)dx >0,
{h(0+)ZCZ—V(w)}Z( () +h(07) o>

where (8.7) and (5.12) were used for the last equality. Therefore W{z|ze] >0
follows and W [z|z00] = W 2|200) if H(0T) = —00.

Remark 3.3 Let h(0")=—oc0 and take a function ®=(vy) with ®(0)=0
and ®'(v) >0 for y€IR. We define the functional

— z(z)
Wal2|20] :/(/ - ®(h(s) ~h(z(@) ds> dr>0. (3.16)
and compute its time-derivative along the solution z(t) of (3.1):

%W¢[Z|zm](t) :—/z|V(V+h(z))|2<I>’(h(z) ~h(z)) da . (3.17)

Thus, We is another relative entropy for (3.1).



4 A Lyapunov functional

Consider now a solution (u,v) of (1.1) such that
/uodx:Muzo, (4.1)
/vodx:MUZO, (4.2)

(with M, M, satisfying (3.9) and M, + M, >0), and define the relative en-
tropy

g
WL, 0) | (too, voo)] = W ufuoe] + Wo[vec] + SV (4.3)
Similarly to the case studied in [1], [3], we obtain

Lemma 4.1 For d>3, if u and v are smooth and decay sufficiently fast as
|z| = 400, and if [ satisfies (1.2) we have
d

dt (WKU’UH(“OO’%J]@)) = _QJ—ﬁz/(U+v)|V¢|2 du

—25/[f(u)—f(v)] u—v)di+25 [ AGVo- VVdI—i— \v¢\2,(44)

where

_1 2.1 2
—2/u|Vh(u)+VV| dx+2/v|Vh(v)+VV| dz. (4.5)

Proof: Assuming a sufficient decay of ¢ in « € R? (with d>3) as |z| — +oo0,
we obtain

\v¢| 2/ “AG)ibdr = 2/ s —vy)pde, (4.6)
and thus
%(W[(u,vﬂ(um,vwﬂ( )) —%§|V¢‘ (t)
:/(V+h(u)+ﬁ¢)utda?+/ V+h(v)—Be)vede. (4.7)

Then, replacing u; and v; by their expressions in (1.1) and integrating by
parts, we obtain

d 1dg

% (Wl a0l (®) = 5 196
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= —/V(V+h(u)+ﬁ¢)' {Vf(u)ﬂLuVVjLﬁqub] dz

—/V(V+h(v)—ﬁ¢)- {Vf(v)MVV—ﬁvw} dz.

The evaluation of the cross-terms between u or v and ¢ goes as follows
- [696: [Vf(u)+uVV] do— [V(V+h(w) - fuV de
+ [890: [Vf(v)+vvv] d:):+/V(V+h(v)) BV de
= 25 [vo. {Vf(u)+uvv] di
+28 [ Vo-

using 2Vh(z)=V f(z) since sh/(s)= f'(s). Collecting the terms and using
the Poisson equation, we first obtain

93 / Vo {v Flu)—V f(v)] dz
=25 [ 8| fw) - f(0)| do
=23 [(u=v)|f(w) = f(0)] dz.

V£ (v) —l—vVV} dz

and then
—25/V¢~(UVV—UVV) dszﬁ/(VV~V¢)A¢dx, (4.8)
o (4.4) follows. 0

Later on we shall use the identity
1
/Aqu-vv dr = 5/|v¢|2Av dx—/V¢T(D2V)V¢dx, (4.9)

where D2V denotes the Hessian of V and “T” stands for transposition.

5 Another relative entropy

In this section (only) we shall assume h(0")=—o00, h(oco) =00, which hold
in the Maxwell and Fermi-Dirac cases.
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We define the “t-local Maxwellian” functions u=1u(t) and v =v(t) respec-

tively by
a(x,t) =h7H(Cu(t) = V(x) = B(t)d(w,1)),
0@, t) =hH(Co(t) =V (2) +B(t)d (1)),
~Ap=1u—1, (5.1)
/ﬂ(:zs,t) dx =M,
/@(x,t) dx =M,

Note that, due to the dependence of # on ¢, the normalization constants C,

and C, depend on ¢.
The potential ¢ then solves the nonlinear elliptic problem

—Ap=h"Y(C, =V = 0) —h™H(C, =V +¢),
/h‘l(Cu—V—ﬂgE)dx:Mu,
/h‘l(Cv—V+ﬂg5)dx:Mv.

Remark 5.1 The problem (5.2) has the following variational formulation:
¢ minimizes the functional E[¢] on D“?(IRY) ={¢pe L*¥ 2 (RY) :Voe

L*(IRY)}, where
idl=3 [IVoPdr + [G(Dilol v -56) o - 22Dyl
45 6(Dalo) =V +50) da— = Dalo.

(5.2)

=

Here G is a primitive of h™', i.e. G'=h7", and Di[¢], Ds[¢] €IR are deter-

mined from the normalizations

[ (Dile) -V - 86) da=,

/h—l(D2[¢]—v+ﬁ¢> de =M, .

A simple computation gives (5.2) as the Euler—Lagrange equations of &.
In the linear diffusion case (i.e. h(s)=logs, h™'(c)=¢), this variational
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problem has been studied in [7], [4]), and has been shown to have “good”
properties (boundedness from below, weak lower semicontinuity and strict
convexity). The problem is under investigation in the nonlinear case.

Consider now the functional
_ . B -
Sfu,v) = Wlula] + Wo[o] + 3 (|0l - Vél3) (5.3)
A simple computation shows that

Slu,v] = [lu(h(u) k(@) = f(u) + (@) da
+ [To(n —f(0)+ f(®)] da
+/u—a (V+h(u)) da:+/(v—@)(v+h(z7))dx
oV~ |Val).

The integrands in the first two terms on the right hand side can be expressed
using (3.15). On the other hand, by the definition of u and v,

Jw=a)(V+h(@) dz+ [ (w=5)(V +h(2)) dz
:/u—a )(C —ﬁa’ﬁ)da;+/(v—@)(cv+ﬁa3)dx
— [(~A(6=9)(~06)dx
=—ﬁ/V¢-V¢dx+ﬁ|w‘>|§-
Thus the representation
Z[u,v]:/(/ﬁ”(h(s)—h(u))ds+/;(h(s)-h(v) )d:):+ Vo—V2>0

(5-4)
holds and the inequality is strict unless (u,v) = (u,v).
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Remark 5.2 Since for solutions of (5.2),

%(/( (V+h(@)) - f(@) dw+ [ (@(V +h(o f(z‘;))deré\Vq_ﬁ@)
1d -
o +V+ﬁ¢)—dx+/ D)V - 00) 20 drt v
_1dp
=3IV )
by the definition of u and v, for any solution of (1.1),
d 1dp
= OV}t 000)) = Sl ) = 5 VG (56)
and we conclude
lim (W[{u,0) [ (e, Voo)] () — X[u,v](t)) =0. (5.7)

t——+o0

Thus Y[u,v] is another relative entropy of (1.1).

6 Exponential decay in the bipolar case

The method used in [3] extends (formally) to the system (1.1) for which we
assume from now on the existence of a smooth solution for ¢ € [0,4+-00), which
decays sufficiently fast for large |z|. We also assume in the following that V'
and f are chosen such that

W] 2] Sg/z|Vh(z)+VV|2 dz (6.1)

for all sufficiently regular nonnegative functions z on IR¢ with [ zdz = [ z..dz,
where K >0 is independent of z. In the following, we shall refer to this
inequality as the Generalized Sobolev inequality (see [6], [5]). Note that
the Gross logarithmic Sobolev inequality is an example of the Generalized
Sobolev inequality for f(s)=s, ie. for h(s)=logs, and V(z) = 3|z|*.

Theorem 6.1 Let d>3 and consider f satisfying (1.2). Assume that f and
V, V(z)— 400 as |x| — 400, are such that the Generalized Sobolev inequality
(6.1) holds. Consider a sufficiently regular, global solution of (1.1) (which
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decays sufficiently fast for |x| large) corresponding to initial data ug, vg >0
and assume that M, M, (as defined in (4.1), (4.2)) satisfy (3.9). Moreover,
assume that there are constants ¢; €IR and w >0 such that

(i) 2DV (x)—Tr(D?*V (z))I >c I for all 2 € IRY,
(17) Bi(t) < —2wp(t) for all t>0.
Then there exists a constant X >0, explicitly computable in terms of K, ¢1, w

such that

W[(u,0) |(Uoo, Uso) ] (t) e W {110, 10) | {00 Vo) (6.2)

for each solution (u,v) of (1.1) with initial data (ug,vo) and all t>0.

IA

Remark 6.2 If we assume charge neutrality M, = M,, i.e. [(ug—1wvg)dx=0,
and |[V¢(0)|3 < oo (which follows from the finiteness of W[(ug,v0)]|{tee;Vso) ),
then the results in Theorem 6.1 also hold true in the one- and two-dimensional
cases d=1, d=2 (since lim; 4o |V@(2,t)| =0 under the electroneutrality
condition).

Remark 6.3 The potentials V() = (1+ |z|?)*/? with 0 < a <2 do satisfy as-
sumptions (i) on confinement, while V (z) = (1+|x|*)*? with a>2 does not.

Also note that Generalized Sobolev inequalities were so far proven only
for uniformly convez potentials in the case of nonlinear functions f= f(s).

At least quadratic growth of V(z) as || — oo seems necessary for (6.1) to
hold.

Remark 6.4 If 3(t)=e~92t gs it is the case when (3 is obtained by the
mean of time-dependent rescalings, we recover the results of [3] for f(s)=
s. For the system (2.1)-(2.2), the (algebraic) rate of convergence of course
depends on m because of the dependence of R on t.

Remark 6.5 As it is well known, cf [3, 5, 6], results on exponential decay of
the relative entropy imply (via Csiszdr—Kullback inequalities) the exponential
convergence to steady states of (1.1) and convergence to self-similar solutions
of (2.1) with an algebraic decay rate in the L'-norms.
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Proof: For any positive A

dt
_ A(KJ— W ufua] —W[U\vm]) L (2-AK)J+B+2E+F+C, (6.3)

‘( LIt 0) e, 020 +AW[<W>‘<“°°’”°°>])

where
B=4" [(u+v)|Vol*da,
E=5 [| )~ f0)| (0= v)da,
F=— (54 \9) Vo3,
C:—Qﬂ/AQSVqS-Vde.
Observe that if we define
Glzﬂ/u(Vh(u)+VV)~V¢dx, ngﬂ/v(Vh(v)+VV)~V¢dx,
then
Gr=Gy=5 [ (u(Vh(w)+ V) ~u(Th(e)+ TV Vodr =B+ 5C.

Now set
fi=Vu(VRu)+V), g=pvuVe,
fo=vu(Vh()+V), ¢:=8V/vVe,
ar=|fil2, bi=|gl2, ax=|fal2, ba=]|ga|2.
By the Cauchy-Schwarz inequality we have

Q‘Gl_GQ‘ :2’/(f1g1—f2g2)d1' §2(a1b1 —|—a2b2) .

But
0 S (albg —a2b1)2 = (CL% ‘l‘&%)(b% ‘l‘bg) — (albl +&2b2)2 s
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27(&161 —l—a,gbg) < 2\/’72(&% +a§)\/b% +b%
<% (at+a3) + (b7 +b3)
=2v’J+B,
so that taking v=1/1—AK/2 with AK <2 we obtain

J1—=AK/2]2E+C|<(2—AK)J+B.

Using (6.3) we arrive at
~ (L0} s )]+ AWV, 0) )] )
>\/1-AK/2|2E+C|+2E+C+F (6.4)

:(2E+C)<1+sgn(2E+C)\/1—)\K/2> o

By the assumption (i) of Theorem 6.1 and (4.9), C'>c;3|V¢|3. By assump-
tions (i) and (ii) of Theorem 6.1, F'> (w—\/2)3|V¢|3.

Therefore if 2E+C >0, then A=min(2/K,2w) gives — (%W—F)\W) >0
for 0<A<\. Otherwise, since E>0, C<2E+C<0 (then, in particular,
¢1<0) and

_ <%W+>\W> > {cl <1—m) +w—>\/2] BIVels.

Hence, there exists a X > 0 such that the expression in the brackets is positive
for 0 < XA <A, which implies (6.2). O
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