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Abstract

We study the asymptotic behavior as t→+∞ of a system of den-
sities of charged particles satisfying nonlinear drift-diffusion equa-
tions coupled by a damped Poisson equation for the drift-potential.
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In plasma physics applications the damping is caused by a spatio-
temporal rescaling of an “unconfined” problem, which introduces
a harmonic external potential of confinement. We present formal cal-
culations (valid for smooth solutions) which extend the results known
in the linear diffusion case to nonlinear diffusion of e.g. Fermi-Dirac
or fast diffusion/porous media type.

Key words and phrases: nonlinear drift-diffusion systems, asymptotic
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1 Introduction

Consider the system

ut =∇·(∇f(u)+u∇V +β(t)u∇φ)

vt =∇·(∇f(v)+v∇V −β(t)v∇φ) (1.1)

∆φ=v−u

in IR+
t ×IRd

x, d≥3, and assume that β is a nonnegative decreasing function
of time t with limt→+∞β(t) = 0. V is the exterior potential with V (x)→+∞
as |x|→+∞. The initial data u0 =u(t= 0), v0 =v(t= 0) are assumed to be
in L1

+(IRd
x). The function f satisfies

f(0) = 0 , f ′(s)>0 ∀s∈ (0,∞). (1.2)

The system (1.1) can be regarded as a model for a bipolar plasma, where
both types of particles are confined by a potential V (x), and where the
Poisson coupling (mean field) becomes asymptotically weaker as t→+∞. In
the next section, we derive such a model by a spatio-temporal rescaling from
a system without confinement and without damping of the mean field. The
function f defines the density-pressure constitutive relation, which is taken
equal for both particle species (cf [8]).

Note that the minimum principle implies u(t), v(t)≥0 (since we assumed
u0, v0 ≥0). We remark that for the following we always take the Newtonian
potential ψ of g as solution of −∆ψ= g in IRd.
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In this paper the nonlinearities we have in mind are either

f(s) = sm , s≥0 (1.3)

where the cases m<1, m= 1 and m>1 correspond to the fast diffusion equa-
tion, the heat equation (linear diffusion) and the porous media equation
respectively, or the following diffusion equation corresponding to ”physical”
3-dimensional flows in the Fermi-Dirac thermodynamical framework. Define,
with ǫ>0 a parameter, F : IR→ (0,∞) by

F (σ) :=
∫

IR3
v

dv

ǫ+exp(|v|2/2−σ)
. (1.4)

Clearly, F (−∞) = 0, F (∞) =∞. The nonlinearity f in (1.1) then reads

f(s) = sF−1(s)−
∫ s

0
F−1(τ)dτ , 0≤s<∞ (1.5)

(where F−1 denotes the inverse function of F ).
Note that stationary solutions of the equation

zt =∇·(∇f(z)+z∇V ) =∇·(z(∇h(z)+∇V ))

where h′(s) =f ′(s)/s, are of the form

z(x) =
(
C−V (x)

)1/(m−1)

+
if m 6= 1 ,

z(x) =C e−V (x) if m= 1

for (1.3), and

z(x) =
∫

IR3
v

dv

ǫ+C exp(V (x)+ |v|2/2)

for (1.4)-(1.5).

At the end of this introduction, let us mention a (nonexhaustive) list of
references related to this work. Concerning the Gross logarithmic Sobolev
inequalities in a PDE framework, we refer to [2] and references therein. The
extension to the porous media or fast diffusion cases have been studied in
[5, 6, 9]. For systems with a Poisson coupling and a linear diffusion, let us
quote [2, 1, 3]. References [4, 7, 8] are relevant for the modelization and the
analysis in the plasma physics or semiconductor context.

Notation. In the sequel the Lp(IRd) norms shall be denoted by | . |p.
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2 Derivation from a drift-diffusion system

without confinement

Systems of the form (1.1) can be obtained by a spatio-temporal rescaling from
drift-diffusion systems without confinement, and with a nonlinear diffusion
of power-law type.

Consider the system for the densities n and p of oppositely charged par-
ticles

nt =∇·(∇f(n)+n∇ψ)

pt =∇·(∇f(p)−p∇ψ) (2.1)

∆ψ=p−n

where, with m>0
f(s) = sm for s≥0, (2.2)

and define u and v by

n(t,x) =
1

Rd(t)
u

(
logR(t),

x

R(t)

)
,

(2.3)

p(t,x) =
1

Rd(t)
v

(
logR(t),

x

R(t)

)
,

with an increasing function R>0.

Lemma 2.1 A solution 〈n,p〉 of (2.1) (with f given by (2.2)) corresponds
by the change of variables (2.3) to a solution 〈u,v〉 of (1.1) if and only if

ṘRd(m−1)+1 = 1 ,

V (x) =
1

2
|x|2 , (2.4)

β(t) =R(t)2−d .

Moreover

ψ(t,x) =
1

Rd−2(t)
φ

(
logR(t),

x

R(t)

)
.
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Note that 〈n,p〉 and 〈u,v〉 have the same initial data if R(0) = 1. Con-
trarily to (1.1), the strength of the Poisson coupling in (2.1) is assumed to
be constant in time: the damping in (1.1) appears as a consequence of the
rescaling.

3 Asymptotic (uncoupled) problem

Consider now the system (1.1) with β= 0. Both u and v then solve an
equation of the form

zt =∇·(∇f(z)+z∇V ) , z(0) = z0 ≥0 . (3.1)

Formally we have
∫
z(x,t)dx=

∫
z0(x)dx for all t>0

(all the integrals are over IRd, unless specified differently). Let

W [z] =
∫

[z(V +h(z))−f(z)]dx (3.2)

with the enthalpy defined by

h(z) =
∫ z

1

f ′(s)

s
ds . (3.3)

For a solution of (3.1), a standard computation (formally) gives

d

dt
W [z](t) =

∫
[V +(h(z)+zh′(z)−f ′(z))]zt dx

=−
∫
z |∇(V +h(z))|2 dx . (3.4)

Consider then a steady state z∞ such that, for a constant Cz ∈ IR with

Cz ≤ inf
IRd

V +h(∞) (3.5)

we have
z∞(x) = h̃−1(Cz−V (x)) . (3.6)

Here h̃−1 is the extension of h−1 given by

h̃−1(σ) =
{

h−1(σ) if σ∈ (h(0+),h(∞)) ,
0 if σ≤h(0+) .
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Remark 3.1 In the fast diffusion / porous media cases (1.3)
h(s) =m(sm−1−1)/(m−1) is such that

h(0+) =−∞ , h(∞) =
m

m−1
if m<1 ,

h(0+) =− m

m−1
, h(∞) = +∞ if m>1 ,

while h(0+) =−∞ and h(∞) = +∞ if m= 1. In the case (1.4)-(1.5) we have
h(s) =F−1(s), h(0+) =−∞ and h(∞) = +∞.

Note that (3.6) implies

V (x)+h(z∞(x)) =Cz if h(0+)≤Cz −V (x)

and z∞(x) = 0 if h(0+)≥Cz −V (x). (3.7)

Assume now that V is such that for all C ∈ infIRdV +(h(0+),h(∞))

∫
h̃−1(C−V (x))dx<∞. (3.8)

Now let M<∞ satisfy

0≤M ≤
∫
h̃−1

(
inf
IRd

V +h(∞)−V (x)
)
dx (3.9)

(the right hand side may very well be +∞!). Then the steady state z∞ is
uniquely determined by the requirement

∫
z∞(x)dx=M . (3.10)

Note that this is the case for all M ≥0 if f(s) = sm with m>d/2−1 and
V (x) = 1

2
|x|2 (cf [6]), or in the Fermi-Dirac case.

Assuming W [z0]<+∞, the entropy W [z](t) decays monotonically with
respect to t, and under additional regularity assumptions, it was shown in
[2, 5, 6, 9] that

lim
t→+∞

W [z](t) =W [z∞] (3.11)

if ∫
z0 dx=

∫
z∞ dx=M . (3.12)
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In the following, we define the relative entropy

W [z|z∞] =W [z]−W [z∞] (3.13)

of the nonnegative states z, z∞ with equal integrals.

Remark 3.2 Set

W̃ [z|z∞] =
∫ (∫ z(x)

z∞(x)
(h(s)−h(z∞(x))ds

)
dx≥0 . (3.14)

Since, by the definition (3.3) of h

∫ z2

z1

(h(s)−h(z1))ds= z2(h(z2)−h(z1))−f(z2)+f(z1) , (3.15)

we conclude

W [z|z∞]−W̃ [z|z∞] =
∫

(V (x)+h(z∞))(z−z∞)dx

=
∫

{h(0+)≥Cz−V (x)}
z(V (x)+h(0+)−Cz)dx≥0 ,

where (3.7) and (3.12) were used for the last equality. Therefore W [z|z∞]≥0
follows and W [z|z∞] = W̃ [z|z∞] if h(0+) =−∞.

Remark 3.3 Let h(0+) =−∞ and take a function Φ = Φ(γ) with Φ(0) = 0
and Φ′(γ)>0 for γ∈ IR. We define the functional

W̃Φ[z|z∞] =
∫ (∫ z(x)

z∞(x)
Φ(h(s)−h(z∞(x))ds

)
dx≥0 . (3.16)

and compute its time-derivative along the solution z(t) of (3.1):

d

dt
WΦ[z|z∞](t) =−

∫
z |∇(V +h(z))|2 Φ′(h(z)−h(z∞))dx . (3.17)

Thus, WΦ is another relative entropy for (3.1).
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4 A Lyapunov functional

Consider now a solution 〈u,v〉 of (1.1) such that
∫
u0 dx=Mu ≥0 , (4.1)

∫
v0 dx=Mv ≥0 , (4.2)

(with Mu, Mv satisfying (3.9) and Mu +Mv>0), and define the relative en-
tropy

W[〈u,v〉|〈u∞,v∞〉] =W [u|u∞]+W [v|v∞]+
β

2
|∇φ|22 . (4.3)

Similarly to the case studied in [1], [3], we obtain

Lemma 4.1 For d≥3, if u and v are smooth and decay sufficiently fast as
|x|→+∞, and if f satisfies (1.2) we have

d

dt

(
W[〈u,v〉|〈u∞,v∞〉](t)

)
=−2J−β2

∫
(u+v)|∇φ|2 dx

−2β
∫ [

f(u)−f(v)
]
(u−v)dx+2β

∫
∆φ∇φ ·∇V dx+

1

2

dβ

dt
|∇φ|22 , (4.4)

where

J =
1

2

∫
u |∇h(u)+∇V |2 dx+

1

2

∫
v |∇h(v)+∇V |2 dx . (4.5)

Proof: Assuming a sufficient decay of φ in x∈ IRd (with d≥3) as |x|→+∞,
we obtain

d

dt
|∇φ|22(t) = 2

∫
(−∆φ)tφdx= 2

∫
(ut−vt)φdx , (4.6)

and thus

d

dt

(
W[〈u,v〉|〈u∞,v∞〉](t)

)
− 1

2

dβ

dt
|∇φ|22(t)

=
∫

(V +h(u)+βφ)ut dx+
∫

(V +h(v)−βφ)vt dx . (4.7)

Then, replacing ut and vt by their expressions in (1.1) and integrating by
parts, we obtain

d

dt

(
W[〈u,v〉|〈u∞,v∞〉](t)

)
− 1

2

dβ

dt
|∇φ|22(t)
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= −
∫
∇(V +h(u)+βφ) ·

[
∇f(u)+u∇V +βu∇φ

]
dx

−
∫
∇(V +h(v)−βφ) ·

[
∇f(v)+v∇V −βv∇φ

]
dx .

The evaluation of the cross-terms between u or v and φ goes as follows

−
∫
β∇φ ·

[
∇f(u)+u∇V

]
dx−

∫
∇(V +h(u)) ·βu∇φdx

+
∫
β∇φ ·

[
∇f(v)+v∇V

]
dx+

∫
∇(V +h(v)) ·βv∇φdx

= −2β
∫
∇φ ·

[
∇f(u)+u∇V

]
dx

+2β
∫
∇φ ·

[
∇f(v)+v∇V

]
dx

using z∇h(z) =∇f(z) since sh′(s) =f ′(s). Collecting the terms and using
the Poisson equation, we first obtain

−2β
∫
∇φ ·

[
∇f(u)−∇f(v)

]
dx

= 2β
∫

∆φ
[
f(u)−f(v)

]
dx

=−2β
∫

(u−v)
[
f(u)−f(v)

]
dx ,

and then

−2β
∫
∇φ ·(u∇V −v∇V )dx= 2β

∫
(∇V ·∇φ)∆φdx , (4.8)

so (4.4) follows. 2

Later on we shall use the identity
∫

∆φ∇φ ·∇V dx=
1

2

∫
|∇φ|2∆V dx−

∫
∇φ⊤(D2V )∇φdx , (4.9)

where D2V denotes the Hessian of V and “⊤ ” stands for transposition.

5 Another relative entropy

In this section (only) we shall assume h(0+) =−∞, h(∞) =∞, which hold
in the Maxwell and Fermi-Dirac cases.

9



We define the “t-local Maxwellian” functions ū= ū(t) and v̄= v̄(t) respec-
tively by

ū(x,t) =h−1(Cu(t)−V (x)−β(t)φ̄(x,t)) ,

v̄(x,t) =h−1(Cv(t)−V (x)+β(t)φ̄(x,t)) ,

−∆φ̄= ū− v̄ , (5.1)∫
ū(x,t)dx=Mu ,

∫
v̄(x,t)dx=Mv .

Note that, due to the dependence of β on t, the normalization constants Cu

and Cv depend on t.
The potential φ̄ then solves the nonlinear elliptic problem

−∆φ̄=h−1(Cu−V −βφ̄)−h−1(Cv−V +βφ̄),∫
h−1(Cu−V −βφ̄)dx=Mu , (5.2)

∫
h−1(Cv−V +βφ̄)dx=Mv .

Remark 5.1 The problem (5.2) has the following variational formulation:
φ̄ minimizes the functional E [φ] on D1,2(IRd) ={φ∈L2d/(d−2)(IRd) :∇φ∈
L2(IRd)}, where

E [φ] =
1

2

∫
|∇φ|2 dx +

1

β

∫
G
(
D1[φ]−V −βφ

)
dx−Mu

β
D1[φ]

+
1

β

∫
G
(
D2[φ]−V +βφ

)
dx−Mv

β
D2[φ] .

Here G is a primitive of h−1, i.e. G′ =h−1, and D1[φ], D2[φ]∈ IR are deter-
mined from the normalizations

∫
h−1

(
D1[φ]−V −βφ

)
dx=Mu ,

∫
h−1

(
D2[φ]−V +βφ

)
dx=Mv .

A simple computation gives (5.2) as the Euler–Lagrange equations of E .
In the linear diffusion case (i.e. h(s) = logs, h−1(σ) = eσ), this variational
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problem has been studied in [7], [4]), and has been shown to have “good”
properties (boundedness from below, weak lower semicontinuity and strict
convexity). The problem is under investigation in the nonlinear case.

Consider now the functional

Σ[u,v] =W [u|ū]+W [v|v̄]+
β

2

(
|∇φ|22−|∇φ̄|22

)
. (5.3)

A simple computation shows that

Σ[u,v] =
∫

[u(h(u)−h(ū))−f(u)+f(ū)]dx

+
∫

[v(h(v)−h(v̄))−f(v)+f(v̄)]dx

+
∫

(u− ū)(V +h(ū))dx+
∫

(v− v̄)(V +h(v̄))dx

+
β

2
(|∇φ|22−|∇φ̄|22) .

The integrands in the first two terms on the right hand side can be expressed
using (3.15). On the other hand, by the definition of ū and v̄,

∫
(u− ū)(V +h(ū))dx+

∫
(v− v̄)(V +h(v̄))dx

=
∫

(u− ū)(Cu−βφ̄)dx+
∫

(v− v̄)(Cv +βφ̄)dx

=
∫

(−∆(φ− φ̄))(−βφ̄)dx

=−β
∫
∇φ ·∇φ̄ dx+β|∇φ̄|22 .

Thus the representation

Σ[u,v]=
∫ (∫ u

ū
(h(s)−h(ū))ds+

∫ v

v̄
(h(s)−h(v̄))ds

)
dx+

β

2
|∇φ−∇φ̄|22≥0

(5.4)
holds and the inequality is strict unless 〈u,v〉= 〈ū, v̄〉.
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Remark 5.2 Since for solutions of (5.2),

d

dt

( ∫
(ū(V +h(ū))−f(ū))dx+

∫
(v̄(V +h(v̄))−f(v̄))dx+

β

2
|∇φ̄|22

)

=
∫

(h(ū)+V +βφ̄)
∂ū

∂t
dx+

∫
(h(v̄)+V −βφ̄)

∂v̄

∂t
dx+

1

2

dβ

dt
|∇φ̄|22

=
1

2

dβ

dt
|∇φ̄|22 (5.5)

by the definition of ū and v̄, for any solution of (1.1),

d

dt
(W[〈u,v〉|〈u∞,v∞〉]−Σ[u,v]) =

1

2

dβ

dt
|∇φ̄|22 , (5.6)

and we conclude

lim
t→+∞

(W[〈u,v〉|〈u∞,v∞〉](t)−Σ[u,v](t)) = 0 . (5.7)

Thus Σ[u,v] is another relative entropy of (1.1).

6 Exponential decay in the bipolar case

The method used in [3] extends (formally) to the system (1.1) for which we
assume from now on the existence of a smooth solution for t∈ [0,+∞), which
decays sufficiently fast for large |x|. We also assume in the following that V
and f are chosen such that

W [z|z∞]≤K

2

∫
z |∇h(z)+∇V |2 dx (6.1)

for all sufficiently regular nonnegative functions z on IRd with
∫
zdx=

∫
z∞dx,

where K>0 is independent of z. In the following, we shall refer to this
inequality as the Generalized Sobolev inequality (see [6], [5]). Note that
the Gross logarithmic Sobolev inequality is an example of the Generalized
Sobolev inequality for f(s) = s, i.e. for h(s) = logs, and V (x) = 1

2
|x|2.

Theorem 6.1 Let d≥3 and consider f satisfying (1.2). Assume that f and
V , V (x)→+∞ as |x|→+∞, are such that the Generalized Sobolev inequality
(6.1) holds. Consider a sufficiently regular, global solution of (1.1) (which
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decays sufficiently fast for |x| large) corresponding to initial data u0, v0 ≥0
and assume that Mu, Mv (as defined in (4.1), (4.2)) satisfy (3.9). Moreover,
assume that there are constants c1 ∈ IR and ω>0 such that

(i) 2D2V (x)−Tr(D2V (x))I≥ c1I for all x∈ IRd,

(ii) βt(t)≤−2ωβ(t) for all t≥0.

Then there exists a constant λ̃>0, explicitly computable in terms of K, c1, ω
such that

W[〈u,v〉|〈u∞,v∞〉](t) ≤ e−λ̃tW[〈u0,v0〉|〈u∞,v∞〉] (6.2)

for each solution 〈u,v〉 of (1.1) with initial data 〈u0,v0〉 and all t≥0.

Remark 6.2 If we assume charge neutrality Mu =Mv, i.e.
∫

(u0−v0)dx= 0,
and |∇φ(0)|22<∞ (which follows from the finiteness of W[〈u0,v0〉]|〈u∞,v∞〉),
then the results in Theorem 6.1 also hold true in the one- and two-dimensional
cases d= 1, d= 2 (since lim|x|→+∞ |∇φ(x,t)|= 0 under the electroneutrality
condition).

Remark 6.3 The potentials V (x) = (1+ |x|2)α/2 with 0<α≤2 do satisfy as-
sumptions (i) on confinement, while V (x) = (1+ |x|2)α/2 with α>2 does not.

Also note that Generalized Sobolev inequalities were so far proven only
for uniformly convex potentials in the case of nonlinear functions f =f(s).
At least quadratic growth of V (x) as |x|→∞ seems necessary for (6.1) to
hold.

Remark 6.4 If β(t) = e−(d−2)t as it is the case when β is obtained by the
mean of time-dependent rescalings, we recover the results of [3] for f(s) =
s. For the system (2.1)-(2.2), the (algebraic) rate of convergence of course
depends on m because of the dependence of R on t.

Remark 6.5 As it is well known, cf [3, 5, 6], results on exponential decay of
the relative entropy imply (via Csiszár–Kullback inequalities) the exponential
convergence to steady states of (1.1) and convergence to self-similar solutions
of (2.1) with an algebraic decay rate in the L1-norms.
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Proof: For any positive λ

−
(
d

dt
W[〈u,v〉|〈u∞,v∞〉]+λW[〈u,v〉|〈u∞,v∞〉]

)

=λ
(
KJ−W [u|u∞]−W [v|v∞]

)
+(2−λK)J+B+2E+F +C , (6.3)

where

B=β2
∫

(u+v)|∇φ|2 dx ,

E=β
∫ [

f(u)−f(v)
]
(u−v)dx ,

F =−1

2
(βt +λβ)|∇φ|22 ,

C=−2β
∫

∆φ∇φ ·∇V dx .

Observe that if we define

G1 =β
∫
u(∇h(u)+∇V ) ·∇φdx , G2 =β

∫
v (∇h(v)+∇V ) ·∇φdx ,

then

G1−G2 =β
∫ (

u(∇h(u)+∇V )−v(∇h(v)+∇V )
)
·∇φdx=E+

1

2
C.

Now set
f1 =

√
u(∇h(u)+V ) , g1 =β

√
u∇φ ,

f2 =
√
v (∇h(v)+V ) , g2 =β

√
v∇φ ,

a1 = |f1|2 , b1 = |g1|2 , a2 = |f2|2 , b2 = |g2|2 .
By the Cauchy-Schwarz inequality we have

2|G1−G2|= 2

∣∣∣∣
∫

(f1g1−f2g2)dx

∣∣∣∣≤2(a1b1 +a2b2) .

But
0≤ (a1b2−a2b1)2 = (a2

1 +a2
2)(b21 +b22)−(a1b1 +a2b2)2 ,
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2γ(a1b1 +a2b2) ≤2
√
γ2(a2

1 +a2
2)
√
b21 +b22

≤γ2(a2
1 +a2

2)+(b21 +b22)

= 2γ2J+B ,

so that taking γ=
√

1−λK/2 with λK<2 we obtain
√

1−λK/2 |2E+C|≤ (2−λK)J+B.

Using (6.3) we arrive at

−
(
d

dt
W[〈u,v〉|〈u∞,v∞〉]+λW[〈u,v〉|〈u∞,v∞〉]

)

≥
√

1−λK/2 |2E+C|+2E+C+F (6.4)

= (2E+C)
(

1+sgn(2E+C)
√

1−λK/2
)

+F .

By the assumption (i) of Theorem 6.1 and (4.9), C≥ c1β|∇φ|22. By assump-
tions (i) and (ii) of Theorem 6.1, F ≥ (ω−λ/2)β|∇φ|22.

Therefore if 2E+C≥0, then λ̃= min(2/K,2ω) gives −
(

d
dt
W +λW

)
≥0

for 0<λ≤ λ̃. Otherwise, since E≥0, C≤2E+C≤0 (then, in particular,
c1<0) and

−
(
d

dt
W+λW

)
≥
[
c1

(
1−

√
1−λK/2

)
+ω−λ/2

]
β|∇φ|22.

Hence, there exists a λ̃>0 such that the expression in the brackets is positive
for 0<λ<λ̃, which implies (6.2). 2
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