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1 Introduction

This article is devoted to the study of some qualitative properties of positive

solutions to semilinear elliptic partial differential equations induced by the

shape of the domain and the nature of the differential operator. For the

boundary value problem










∆u + f(u) = 0 in Ω ⊂ IRN ,
u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)

one expects that if Ω is a ball then u is radially symmetric and decreasing

along any radius, and if Ω is a convex cone then u is increasing in the direction

of the rays of the cone.

These qualitative properties have been studied by many authors starting

with the fundamental work of Alexandroff [1], who introduced the moving

planes method. This method was further developed by Serrin [18] and Gidas,

Ni and Nirenberg [10] and [11]. Later, several other authors have devoted

attention to these questions, without being exhaustive we mention the papers

by Li [14], Berestycki and Nirenberg [2], Li and Ni [15], Esteban and Lions

[9], and recent works by Berestycki, Caffarelli and Nirenberg, see [3] and

references.

All the above mentioned works require the nonlinearity f to be Lipschitz

continuous, because of the use of the Maximum Principle. However this

property can be relaxed, as suggested by some recent works. The earliest

work we know in this direction is the one by Lions [16] where f was assumed
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merely measurable, but non-negative and N = 2. For nonlinearities changing

sign we have a first work by Kaper, Kwong and Li [13]. Later appeared the

papers by Gui [12] and Cortázar, Elgueta and Felmer [6] and [7]. In these

works the Lipschitz property is lost at the origin, that is, f is assumed to be

locally Lipschitz in (0, +∞) and continuous in [0, +∞). The typical form of

f corresponds to the case f(u) = −uq + up with 0 < q < 1 ≤ p.

In a more recent work [8], we considered more general nonlinearities that

in the simplest form correspond to functions f satisfying the following hy-

pothesis:

(f1) For any s ∈ [0, +∞[, there exists a constant η > 0 such that on ]s −

η, s + η[∩IR+, f is either strictly decreasing or Lipschitz, and

(f2) If f(s) = 0, then f is locally Lipschitz in a neighborhood of s in IR+.

We proved that for f satisfying (f1) and (f2) and for Ω = B(0, 1), the unit

ball, positive solutions of (1.1) are radial. Other related results were also

obtained.

During the research leading to [8] we learned of a work of Brock [4] and

[5], in which he has developed a continuous Steiner symmetrization procedure

that defines a homotopy between the function and its Steiner symmetrization.

Brock proves continuity properties for this operation in several spaces and

also some inequalities for Dirichlet type integrals. When these properties are

applied to (1.1) in case Ω is a ball and f is continuous, a result on local

symmetry properties of u is obtained. It is shown that all solutions of (1.1)

are locally symmetric. See Theorem 13 and Corollary 5 in [5]. This general

structure theorem gives rise to some very interesting symmetry results when

f satisfies further hypotheses. See [5] for precise statements.

In view of the results in [5], and those using moving planes methods,

an interesting question arises: is it possible to give a moving planes argu-

ment to obtain symmetry when the nonlinearity is merely continuous? This

direct approach has several advantages: it applies directly to the study of
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global monotonicity questions in unbounded domains, it can be used to ob-

tain monotonicity properties near the boundary of convex non-symmetric

domains and it can be extended to some equations not having divergence

form.

In this article we answer this question positively in dimension N = 2 and

we conjecture that the answer is positive regardless of the dimension.

Being more precise we assume that the nonlinearity is a function f :

[0, +∞) → IR that satisfies:

(H1) The function f is continuous in [0, +∞).

(H2) f(0) > 0 or there exists a constant c ∈ IR such that

lim inf
u>0,u→0

f(u)

u
≥ c.

(H3) If ū ∈]0, +∞) is such that f(ū) = 0, then there exists a constant

C ∈ IR such that

lim inf
u 6=v u,v→ū

f(u) − f(v)

u − v
≥ C.

For simplicity, we state our first theorem for strictly convex domains of

class C2. We refer to Theorem 3.1 for the general statement,

Theorem 1.1 Assume Ω ⊂ IR2 is a C2 domain, symmetric with respect to

the coordinate axis and with Ω strictly convex. If u ∈ C2(Ω) ∩ C1(Ω̄) is a

solution of (1.1) then u is symmetric with respect to the coordinate axis and
∂u
∂xi

(x) < 0 for all (x1, x2) ∈ Ω with xi > 0, i = 1, 2.

Moreover, ∇u(x) = 0 if and only if x = 0 and ∇u(x) · γ < 0 for any

γ ∈ S1 and x ∈ Ω such that

x · γ > sup{y · γ | y ∈ ∂Ω, ν(y) · γ = 0}, (1.2)

where ν(y) is the outgoing normal at y ∈ ∂Ω.
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Remark 1.1. It is not clear that this theorem can be obtained using the

techniques introduced by Brock in [5], except if Ω is a ball. In such a case u

is radially symmetric and strictly decreasing.

Remark 1.2. As we already mentioned, the moving planes technique can

be used to obtain monotonicity of positive solutions near the boundary for

general domains. In fact, hypothesis (H2) implies this is true in a small

neighborhood of the boundary. Theorem 1.1 and 3.1 say that this property

is maintained up to reaching the geometric obstruction given by (1.2).

The proof of Theorem 1.1 is based on the moving planes (lines) technique.

We propose a new definition of the moving plane condition (2.1), involving

only the derivative of u rather that its values. Under hypothesis (H2) we

can start the argument in each direction. Then we analyze the situation

when the plane reaches a critical position introducing a new way of using the

Maximum Principle and the Hopf Lemma. Actually, taking advantage of a

nonvanishing derivative and using a change of coordinates, u plays the role

of an independent variable, allowing the nonlinearity to be only continuous.

Thus we show that the derivative of u vanishes in the direction orthogonal

to the plane. This idea was used by Peletier and Serrin [17] in the study of

the uniqueness problem for radially symmetric solutions. Then we introduce

a second idea, a rescaling argument to show that also the second derivative

vanishes in that direction. Finally a perturbation analysis leads to show that

f(u) = 0 from where we can conclude using hypothesis (H3).

Remark 1.3 Theorem 1.1 can be extended to more general domains as we

describe in Section 3. See also hypotheses (O1), (O2) in Section 2.

Our second result deals with monotonicity properties of u in case Ω ⊂ IR2

is an unbounded domain. For simplicity let us assume that there is a smooth

function ϕ : IR → IR, satisfying that lim
|x2|→∞

ϕ(x2) = −∞. Let us consider Ω

defined as

Ω = {(x1, x2) ∈ IR2 | x1 < ϕ(x2)}.
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Next we state our second main result. For a more general version see Theorem

3.2 in Section 3.

Theorem 1.2 Assume that Ω is defined as above and that f satisfies (H1),

(H2) and (H3). If u ∈ C2(Ω)∩C1(Ω̄) is a solution of (1.1) then u is strictly

decreasing in the x1-direction, actually ∂u
∂x1

(x) < 0 for any x ∈ Ω.

The proof of this theorem follows the lines of that of Theorem 1.1.

Remark 1.4 With minor modifications our method can be applied to other

equations with the differential operator not in divergence form, actually fully

nonlinear elliptic equations invariant under rotations. Without reaching the

greatest generality we can mention for instance the case of the equation







∆u ± |∇u|α + f(u) = 0 in Ω ⊂ IR2,
u > 0 in Ω,
u = 0 on ∂Ω.

(1.3)

with α ≥ 0. Theorems like 1.1 and 1.2 can be extended to this case assuming

the same hypotheses on Ω and f .

2 Preliminary Results.

In this section we prove some preliminary lemmas that build up the proof of

our results. This part of the analysis can be extended to higher dimensions,

but for simplicity we prefer to keep it within the context of IR2. We first

recall the basic notation and we introduce the hypotheses on the domains.

Given λ ∈ IR and γ ∈ S1 we define the cap

Σλ(γ) = {x ∈ Ω | γ · x > λ},

the hyperplane (line)

Tλ(γ) = {x ∈ IR2 | γ · x = λ}
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and the reflection of Σλ(γ) with respect to Tλ(γ) as

Σ̃λ(γ) = {x ∈ IR2 | 2(λ − γ · x)γ + x ∈ Σλ(γ)}.

Next we introduce convexity notions for the case of bounded domains, having

in mind the hypotheses we need for our theorems. The case of unbounded

domains will be treated in Section 3.

Given γ ∈ S1, a set Ω is said to be γ-convex if for any x ∈ Ω the set

{t ∈ IR | x + tγ ∈ Ω} is an interval. We observe that when Ω is γ-convex and

symmetric with respect to Tλs
(γ), λs ∈ IR, then Σ̃λ(γ) ⊂ Ω for all λ ≥ λs.

Our more general version of Theorem 1.1 will be for domains Ω that satisfy

the following assumptions

(O1) Ω satisfies the interior sphere condition and its boundary is of class

C1.

(O2) Ω is γ-convex and symmetric with respect to the line Tλs
(γ), and for

all ε > 0 there exists δ > 0 so that for any d ∈ S1, |d− γ| < δ we have

Σ̃λ(d) ⊂ Ω for all λ > λs + ε.

We may see (O1) as γ-convexity made locally robust.

For the rest of the section we will assume that Ω is bounded and satisfies

hypothesis (O1) and (O2), and for simplicity we consider without loss of

generality that γ = e1 = (1, 0), and the symmetry line of Ω is T0(e1). We

denote Σλ = Σλ(e1), Tλ(e1) = Tλ and we assume that Σλ = ∅ if and only if

λ > 1. We also consider the reflection of x ∈ Ω with respect to Tλ defined

as xλ = (2λ − x1, x2) and define wλ(x) = uλ(x) − u(x) for x ∈ Σλ, where

uλ(x) = u(xλ).

Our first lemma is the starting step of our moving planes procedure.

Lemma 2.1 Consider a solution u ∈ C2(Ω) ∩ C1(Ω̄) of (1.1) and assume

that f satisfies (H1) and (H2). Then for any η > 0 there exists ε > 0 such

that if x = (x1, x2) ∈ Ω̄ is such that x1 ≥ η and dist(x, ∂Ω) ≤ ε, then
∂u(x)
∂x1

< 0.
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Proof: Thanks to hypothesis (H1), near the boundary of Ω and for x1 > 0

we have either

∆u ≤ 0,

in case f(0) > 0, or

∆u + (c − 1)u ≤ ∆u +
f(u)

u
u ≤ 0,

in case f(0) ≤ 0. Let us assume that Lemma 2.1 is false. Then there exists

η > 0 and a sequence {xk} such that xk
1 > η, xk → ∂Ω and ∂u

∂x1
(xk) = 0.

Up to the extraction of a subsequence we have that xk → x̄ = (x̄1, x̄2) ∈ ∂Ω

with x̄1 ≥ η and ∂u
∂x1

(x̄) = 0. But, on the other hand if ν denotes the exterior

normal to ∂Ω at x̄ then we have ∂u
∂ν

(x̄) < 0 because of Hopf’s Lemma and,

since the tangent derivative is zero, we have ∇u(x̄) = ∂u
∂ν

(x̄)ν. Finally we see

that from (O2) the normal vector ν always has a positive component in the

direction of e1, thus ∂u
∂x1

(x̄) < 0. 2

Next we consider the critical moving plane by defining

λ̄ = inf{λ ∈ (0, 1) |
∂u

∂x1
(x̄) < 0 in Σλ}. (2.1)

We observe that because of Lemma 2.1 we have that λ̄ belongs to [0, 1).

In order to prove symmetry we have to show that λ̄ = 0. Assume the

contrary, that is λ̄ > 0. Then there exists x̄ ∈ Tλ̄ such that ∂u
∂x1

(x̄) = 0.

Moreover, because of Lemma 2.1, for η = λ̄ there exists ε > 0 so that

x̄ ∈ Tλ̄ and
∂u

∂x1
(x̄) = 0 implies dist(x̄, ∂Ω) > ε.

In the next lemma we further investigate the consequences of the assumption

λ̄ > 0.

Lemma 2.2 Consider a solution u ∈ C2(Ω) ∩ C1(Ω̄) of (1.1) and assume

that f satisfies (H1) and (H2). Then the following properties hold

i) For all λ > λ̄, we have wλ(x) > 0 for all x ∈ Σλ,
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If we further assume that λ̄ > 0 then the following hold:

ii) For all x ∈ Σλ̄ we have wλ̄(x) > 0,

iii) If x ∈ Tλ̄ and ∂u
∂x1

(x) = 0 then ∇u(x) = 0.

Proof: We start proving i). We first see that from Lemma 2.1 we have

that wλ(x) > 0 for all x ∈ Σλ, for λ < 1 but close to 1. Next assume, for

contradiction, that the lemma is false. Then for some λ∗ > λ̄ we have that

wλ > 0 in Σλ for all λ > λ∗ and there exist sequences {λk} and {xk} such

that λk ∈]λ̄, λ∗[ and xk ∈ Σλk
with lim

n→+∞
λk = λ∗ and wλk

(xk) ≤ 0. Up to the

extraction of a subsequence, we may assume that lim
k→+∞

xk = x∗ ∈ Σλ∗ and

wλ∗(x∗) = 0.

We see that x∗ cannot be in ∂Ω because u > 0 in Ω. If x∗ ∈ Tλ∗ then,

on one hand we have ∂wλ∗

∂x1
(x∗) = −2 ∂u

∂x1
(x∗) > 0 since λ∗ > λ̄. On the other

hand, since wλk
(xk) ≤ 0 for any k ∈ IN , there exists θk ∈ (0, 1) such that

∂u
∂x1

(θkxk +(1−θk)(xk)λk
) ≥ 0 and lim

k→+∞
|(xk)λk

−xk| = 0. Thus ∂u
∂x1

(x∗) ≥ 0,

obtaining a contradiction.

So we are left with the case x∗ ∈ Σλ∗ and we will see that this is also

impossible. We observe that since λ∗ > λ̄ then ∂u
∂x1

(x∗) < 0. As wλ∗(x) ≥ 0

for all x ∈ Σλ∗ we have that ∂wλ∗

∂x1
(x∗) = 0 and ∂uλ∗

∂x1
(x∗) > 0. Then, by the

Implicit Function Theorem, there exists a neighborhood V of (u(x∗), x∗
2) ∈ IR2

and two functions v and v of class C2 such that

t = u(v(t, x2), x2) and (2.2)

t = uλ∗(v(t, x2), x2) ∀ (t, x2) ∈ V . (2.3)

After some computations, we find that the function v satisfies the quasilinear

equation

(

1 + (
∂v

∂x2
)2

)

∂2v

∂t2
− 2

∂v

∂t

∂v

∂x2

∂2v

∂x2∂t
+ (

∂v

∂t
)2 ∂2v

∂x2
2

= (
∂v

∂t
)3f(t) in V .

A similar equation is satisfied by the function v. It is easy to see that these

equations are elliptic in V.

9



We may now consider the function z(t, x2) = v(t, x2) − v(t, x2) that sat-

isfies the equation

(

1 + (
∂v

∂x2
)2

)

∂2z

∂t2
− 2

∂v

∂t

∂v

∂x2

∂2z

∂x2∂t
+ (

∂v

∂t
)2 ∂2z

∂x2
2

+

b1
∂z

∂t
+ b2

∂z

∂x2

= 0 in V ,

where the coefficients bi are given by

b1(t, x2) = −2
∂v

∂x2

∂2v

∂x2∂t
+ (

∂v

∂t
+

∂v

∂t
)
∂2v

∂x2
2

+f(t)
{

(
∂v

∂t
)2 +

∂v

∂t
·
∂v

∂t
+ (

∂v

∂t
)2

}

,

and

b2(t, x2) =
∂2v

∂t2
(
∂v

∂t
+

∂v

∂t
) −

∂2v

∂x2∂t
·
∂v

∂t
.

We observe that all the coefficients of the differential operator are bounded.

Since z ≤ 0 in V and z(u(x∗), x∗
2) = 0 we can use the Strong Maximum

Principle to get that z ≡ 0 in V. Thus near x∗
λ∗ we have wλ∗ ≡ 0. But this

argument can be done at any point in Σλ∗ , obtaining then that wλ∗ ≡ 0.

This is impossible since u > 0 in Ω and wλ∗(x) = u(xλ∗) for all x ∈ ∂Ω∩Σλ∗ .

Thus, we have proved i), that is, for all λ > λ̄, wλ > 0 in Σλ, so that

passing to the limit we obtain wλ̄ ≥ 0. Now, if wλ̄(x̄) = 0 for some x̄ ∈ Σλ̄,

we apply the Strong Maximum Principle as above to conclude that wλ̄ ≡ 0,

which is again impossible because u > 0 in Ω as long as λ̄ > 0. This proves

assertion ii).

Now we prove iii). Let x̄ ∈ Tλ̄ be such that ∂u
∂x1

(x̄) = 0 and ∇u(x̄) 6= 0.

Then we have ∂u
∂x2

(x̄) 6= 0. We can then apply the same ideas as before,

but now isolating x2 instead of x1. Since wλ̄ is strictly positive in Σλ̄ we

obtain by using the Hopf Lemma with the resulting differential operator

that −2 ∂u
∂x1

(x̄) = ∂w
∂x1

(x̄) > 0, a contradiction. This proves iii). 2

Our next lemma is crucial in our analysis.
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Lemma 2.3 Under the same hypothesis as in Lemma 2.2, assume λ̄ > 0.

Then for any x̄ ∈ Tλ̄ such that ∂u
∂x1

(x̄) = 0 we have

∂2u

∂x2
1

(x̄) = 0.

Proof: We first see that ∂2u
∂x2

1
(x̄) > 0 implies that ∂u

∂x1
is positive at points to

the right of x̄, and this is not possible because of the definition of λ̄.

Assume then, for contradiction, that −∂2u
∂x2

1
(x̄) = a > 0. We first observe

that if λ ∈ (0, λ̄) is close to λ̄ then the function x1 → wλ(x1, x̄2) has a negative

minimum in the interval (λ, b), where b > λ̄ is such that (b, x̄2) ∈ ∂Ω. In

fact, a Taylor development around x̄ = (λ̄, x̄2) gives

∂wλ

∂x1
(x1, x̄2) = −2a(x1 − λ) + o(|x1 − λ̄| + |(2λ − x1) − λ̄|),

so that if λ̄ − λ > 0 and x1 − λ > 0 are small enough then ∂wλ

∂x1
(x1, x̄2) < 0.

Let x1(λ) ∈ (λ, b) be a point where the global minimum of the function

wλ(x1, x̄2) is achieved, then wλ(x1(λ), x̄2) < 0 and

∂wλ

∂x1

(x1(λ), x̄2) = 0. (2.4)

Next we claim that

lim
λ→λ̄−

λ̄ − λ

x1(λ) − λ
= 0.

Here and in what follows λ < λ̄, and λ → λ̄− means λ → λ̄ and λ < λ̄. In

order to prove this claim we first recall that from Lemma 2.2 wλ̄(x) > 0 in

Σλ̄. Then, since lim
λ→λ̄−

wλ(x) = wλ̄(x) for any x ∈ Σλ̄, we have

lim
λ→λ̄−

max{x1 − λ | λ < x1 and wλ(x1, x̄2) ≤ 0} = 0

and consequently

lim
λ→λ̄−

(x1(λ) − λ) = 0.
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Taking this into account we next consider a Taylor development of condition

(2.4) which reads

0 =
∂u

∂x1
(2λ − x1(λ), x̄2) +

∂u

∂x1
(x1(λ), x̄2)

=
∂2u

∂x2
1

(x̄)(2λ − x1(λ) − λ̄) +
∂2u

∂x2
1

(x̄)(x1(λ) − λ̄)

+o(|2λ − x1(λ) − λ̄| + |x1(λ) − λ̄|)

= −2
∂2u

∂x2
1

(x̄)(λ̄ − λ) + o(|2λ − x1(λ) − λ̄| + |x1(λ) − λ̄|).

Assume now that the claim is not true, then up to a subsequence we would

have x1(λ) − λ = O(λ̄ − λ) and then

0 = −2
∂2u

∂x2
1

(x̄)(λ̄ − λ) + o(λ̄ − λ),

which means that ∂2u
∂x2

1
(x̄) = 0, a contradiction that proves the claim.

Now we give a rescaling argument. In the following arguments we keep

x2 = x̄2 fixed, so that for notational convenience we will not be write it any

more.

For λ < λ̄ we define ε(λ) = x1(λ) − λ, η(λ) = u(x̄1) − u(x1(λ)) and

ζ(λ) = uλ(x̄1) − uλ(x1(λ)) = u(x̄1) − u(2λ − x1(λ)), and we consider the

rescaled functions vλ and v̄λ defined in the interval [0, 1] as follows

vλ(y) = η−1(λ)[u(ε(λ)y + λ) − u(x̄)] and (2.5)

v̄λ(y) = ζ−1(λ)[uλ(ε(λ)y + λ) − u(x̄)] for y ∈ [0, 1]. (2.6)

Then we have

−1 = vλ(1) = min
s∈(0,1)

vλ(s) ≤ vλ(y) ≤ max
s∈(0,1)

vλ(s) = vλ(
λ̄ − λ

ε(λ)
) = 0,

for all y ∈ [0, 1], and defining v̄λ for argument less than 0 as in (2.6),

−1 = v̄λ(1) = min
s∈[− λ̄−λ

ε(λ)
,1]

v̄λ(s) ≤ v̄λ(y) ≤ max
s∈[− λ̄−λ

ε(λ)
,1]

v̄λ(s) = v̄λ(−
λ̄ − λ

ε(λ)
) = 0,
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for any y ∈ [− λ̄−λ
ε(λ)

, 1]. By the change of variables we find that the functions

vλ and v̄λ satisfy the equations

−
∂2vλ

∂y2
=

ε2

η
(λ) · gλ(y) and (2.7)

−
∂2v̄λ

∂y2
=

ε2

ζ
(λ) · hλ(y), (2.8)

where gλ(y) = −∂2u
∂x2

1
(ε(λ)y+λ) and hλ(y) = −∂2u

∂x2
1
(λ−ε(λ)y). Since gλ and hλ

converge uniformly to −∂2u
∂x2

1
(x̄) = a > 0, and since lim

λ→λ̄−

vλ(0) = lim
λ→λ̄−

v̄λ(0) =

0 and lim
λ→λ̄−

vλ(1) = lim
λ→λ̄−

v̄λ(1) = −1, we find that

lim
λ→λ̄−

ε2(λ)

η(λ)
= lim

λ→λ̄−

ε2(λ)

ζ(λ)
=

2

a
, and lim

λ→λ̄−

∂vλ

∂y
(1) = lim

λ→λ̄−

∂v̄λ

∂y
(1) = −2.

Then
∂u

∂x1
(x1(λ)) =

η(λ)

ε(λ)

∂vλ

∂y
(1) = −2

η(λ)

ε(λ)
(1 + o(1))

and
∂uλ

∂x1

(x1(λ)) =
ζ(λ)

ε(λ)

∂v̄λ

∂y
(1) = −2

ζ(λ)

ε(λ)
(1 + o(1)),

where o(1) → 0 as λ → λ̄−. From here and from the definition of x1(λ) we

have

0 =
∂wλ

∂x1
(x1(λ)) =

∂uλ

∂x1
(x1(λ)) −

∂u

∂x1
(x1(λ)) = −2

ζ(λ) − η(λ)

ε(λ)
(1 + o(1)).

But on the other hand we have

wλ(x1(λ)) = uλ(x1(λ)) − u(x1(λ))

= [uλ(x1(λ)) − u(x̄)] − [u(x1(λ)) − u(x̄)]

= ζ(λ) − η(λ) < 0, (2.9)

providing a contradiction.2
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3 Proof of the main theorems.

In this section we give the proof of Theorems 1.1 and 1.2. The idea is to use

the moving planes method to reach a critical position in a given direction

and apply Lemma 2.3. Then to perturb slightly the direction to prove that

∆u = 0 at a critical point and apply hypothesis (H3). Here is where we use

the 2-dimensionality assumption. Instead of proving Theorems 1.1 and 1.2.

we will prove some more general versions where we consider a larger class of

domains.

In the first place we will state our more general version of Theorem 1.1

Theorem 3.1 Let Ω ⊂ IR2 be a bounded open domain and γ ∈ S1. We

assume that Ω is γ-convex, symmetric with respect to a line T orthogonal to

γ, and satisfies (O1)-(O2). We assume that f satisfies (H1), (H2) and (H3).

If u ∈ C2(Ω) ∩ C1(Ω̄) is a solution of (1.1) then u is symmetric with respect

to T and ∇u(x) · γ < 0 for any γ ∈ S1 and x ∈ Ω such that

x · γ > sup{y · γ | y ∈ ∂Ω, ν(y) · γ = 0}, (3.1)

where ν(y) is the outgoing normal at y ∈ ∂Ω.

Clearly Theorem 1.1 is a particular case of Theorem 3.1.

Proof of Theorem 3.1. We will keep the notational conventions given in

Section 2. In particular we recall that λ̄ = inf{λ ∈ (0, 1) | ∂u
∂x1

(x̄) < 0 in Σλ}.

By Lemma 2.1 we have that λ̄ belongs to [0, 1).

Our main goal is to prove that λ̄ = 0. If this was not the case then there

would exist an x̄ ∈ Tλ̄ such that ∇u(x̄) = 0 and ∂2u
∂x2

1
(x̄) = 0 as we obtain

from Lemmas 2.2 and 2.3.

Next we claim that ∂2u
∂x2

2
(x̄) = 0 also. First choose, among those x̄ ∈ Tλ̄

such that ∂u
∂x1

(x̄) = 0, the one with the largest x2-component. This point,

we keep calling x̄ does not belong to ∂Ω by Lemma 2.1. Now we slightly

rotate the direction e1 in a positive angle θ to obtain γ. And we perform the
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moving planes argument already given but now in the direction γ. Here we

have to use a slightly different version of Lemma 2.1:

For any η > 0, there exists ε > 0 such that if x ∈ Ω̄ is such that x · γ ≥

sup{y ·γ | y ∈ ∂Ω and ν(y)·γ = 0}+η and dist(x, ∂Ω) ≤ ε then ∇u(x)·γ < 0.

The moving plane will stop because some point x in Tλ(γ) ∩ Ω satisfies

∇u(x) = 0. We call x(θ) the point with vanishing gradient with largest

vertical component. Here we have used hypothesis (O2) to assure that the

moving plane was stopped because the gradient of u vanishes and not because

of a geometrical obstruction.

Now we have two posibilities. First, if x(θ) = x̄ then the application

of Lemma 2.3 will imply that the second derivative of u in the direction γ

vanishes, and thus proving the claim. Second, assume that x(θ) 6= x̄ for all

small θ. In this case we first observe that x(θ) → x̄ because of our choice

of x̄, and then using that ∇u vanishes both at x̄ and x(θ) and the Mean

Value Theorem we find that for all small θ the second derivative of u in the

direction τ(θ) = (x(θ) − x̄)/|x(θ) − x̄| vanishes at some intermediate point.

Then, taking limit as θ → 0+, and noting that τ(θ) converges to e2 we prove

the claim.

As a conclusion we have now that ∆u(x̄) = 0 and then f(u(x̄)) = 0. By

Lemma 2.2 we have that wλ̄(x) = uλ̄(x) − u(x) > 0 for all x ∈ Σλ̄, and of

course wλ̄ satisfies the equation

∆wλ̄ + {
f(uλ̄(x)) − f(u(x))

uλ̄(x) − u(x)
}wλ̄ = 0 x ∈ Σλ̄.

Using hypothesis (H3) we then obtain that

∆wλ̄ + Cwλ̄ ≤ 0 x ∈ Σλ̄,

so that ∂w
λ̄

∂x1
(x̄) > 0. But ∂w

λ̄

∂x1
(x̄) = −2∂u(x̄)

∂x1
(x̄) > 0 which is impossible. This

contradiction proves that λ̄ = 0.

To complete the proof we proceed in standard way. First we conclude

that u(−x1, x2) ≥ u(x1, x2) by Lemma 2.2. Next we repeat the argument

from the other side, and obtain then that u(−x1, x2) = u(x1, x2).
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The conclusion on the derivative is implicit in the moving planes scheme.2

In what follows we consider the extension of Theorem 3.1 to the case of

positive solutions of semilinear elliptic equations in unbounded domains.

Let us start describing the adequate assumptions we need to consider on

the unbounded domain Ω for our results to be true. Given γ ∈ S1, we say

that Ω is γ-conic if for any x ∈ Ω the set {t ∈ IR | x − tγ ∈ Ω} is a semi-

infinite interval bounded from below. We note that in this case Σ̃λ(γ) ⊂ Ω

for all λ ∈ IR. Our hypothesis is the following

(O3) Ω is γ-conic and for all λ ∈ IR the cap Σλ(γ) is bounded. Moreover

for every λs ∈ IR and for every ε > 0 there exists δ > 0 so that for any

d ∈ S1, |d − γ| < δ we have Σλ(d) ⊂ Ω for all λ > λs + ε.

We observe that the set of directions satisfying (O3) is open in S1.

Then our general theorem is the following

Theorem 3.2 Assume that Ω ⊂ IR2 is an open domain and γ ∈ S1. Assume

that Ω is γ-conic and assume that Ω satisfies (O1), (O3) and that f satisfies

(H1), (H2) and (H3). If u ∈ C2(Ω) ∩ C1(Ω̄) is a solution of (1.1) then u is

strictly decreasing in the direction γ, actually ∇u(x) · γ < 0 for any x ∈ Ω.

We see that Theorem 1.2 is a direct consequence of Theorem 3.2.

Proof of Theorem 3.2. The proof of Theorem 3.2 follows the steps of

the proof above. Working with the direction γ = e1 for simplicity, we let

λ∗ = sup{λ |Σλ 6= ∅} and we define λ̄ = inf{λ ∈ (−∞, λ∗) |
∂u
∂x1

(x̄) < 0 in

Σλ}.

Making the obvious changes, we easily see that Lemma 2.1 with arbitrary

η ∈ (−∞, λ∗), and Lemma 2.2 and 2.3 remain valid in this new context. In

particular we can start the moving planes argument. Then we show that λ̄

cannot be finite because the contrary leads to a contradiction as in the proof

of Theorem 3.1. Here we use the hypothesis (O3).

Thus λ̄ = −∞, and then the conclusion of the theorem follows. 2
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