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Abstract

In this paper, we consider functionals based on moments and nonlinear en-
tropies which have a linear growth in time in case of source-type solutions
to the fast diffusion or porous medium equations, that are also known as
Barenblatt solutions. As functions of time, these functionals have convexity
properties for generic solutions, so that their asymptotic slopes are extremal
for Barenblatt profiles. The method relies on scaling properties of the evo-
lution equations and provides a simple and direct proof of sharp Gagliardo-
Nirenberg-Sobolev inequalities in scale invariant form. The method also gives
refined estimates of the growth of the second moment and, as a consequence,
establishes the monotonicity of the delay corresponding to the best match-
ing Barenblatt solution compared to the Barenblatt solution with same initial
second moment. Here the notion of best matching is defined in terms of a
relative entropy.
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1. Introduction

Consider the nonlinear diffusion equation in Rd, d ≥ 1,

∂u

∂t
= ∆up , (1)
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where p 6= 1, and the initial datum u(x, t = 0) = u0(x) ≥ 0 is such that∫
Rd
u0 dx = 1 , Θ(0) =

1

d

∫
Rd
|x|2 u0 dx < +∞ . (2)

It is known since the work of A. Friedman and S. Kamin, [14], that for p > 1
the large-time behavior of the solutions to (1) is governed by the source-type
Barenblatt solutions

U?(t, x) :=
1(

κ t1/µ
)d B?( x

κ t1/µ

)
(3)

where

µ := 2 + d (p− 1) , κ :=
∣∣∣ 2µ p

p− 1

∣∣∣1/µ
and B? is the Barenblatt profile

B?(x) :=


(
C? − |x|2

)1/(p−1)

+
if p > 1 ,(

C? + |x|2
)1/(p−1)

if p < 1 .

Here (s)+ = max{s, 0} and, for p > 1− 2
d
, the constant C? is chosen so that∫

Rd B?(x) dx = 1. Solution (3) was found around 1950 by Ya.B. Zel’dovich
and A.S. Kompaneets. Later G.I. Barenblatt analyzed the solution repre-
senting heat release from a point source for p > 1. See [24, 1], and [22] for
more details.

The result of [14], subsequently improved in a number of papers (cf.
e.g., [13] for a list of references), guarantees that the Barenblatt solution and
its extension to the non-integrable case (corresponding to p ≤ (d− 2)/d) can
fruitfully be used to obtain the large-time behavior of solutions departing
from an initial value like in (2), or solutions with finite extinction-time for
values of p below the threshold (d− 2)/d. Precise estimates of the difference
in time of basic quantities of the real solution with respect to the source-
type one are however difficult to obtain and additional conditions, which
determine the basin of attraction of these self-similar solutions, are needed
for low values of p > 0.

As main example, let us consider the growth of the second moments of the
solution to (1), for an initial value satisfying (2). For a Barenblatt solution,
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we easily obtain the exact growth

1

d

∫
Rd
|x|2 U?(t, x) dx = t2/µ Θ? where Θ? :=

κ2

d

∫
Rd
|x|2 B?(x) dx .

For p > 1 it has been shown in [19] that this time-behavior is captured by
any other solution to (1) satisfying conditions (2) for large times. Further
studies published in [11] then revealed that, at least in the fast diffusion
range, there is a nondecreasing delay between the propagation in time of the
second moments of the source-type solution and the generic solution to (1).
We shall give a simple explanation for this fact in Theorem 3, and also show
that in the porous medium case p > 1 the delay is nonincreasing.

A way to look at this phenomenon is the following. The second moment of
the Barenblatt solution, raised to power µ/2, grows linearly in time. Hence,
its first variation in time of Θ?(t)

µ/2 is constant, while the second variation
is equal to zero. To see how the second moment of any other solution to
equation (1) behaves in time, it comes natural to estimate the time variations
of G := Θµ/2, where the second moment functional is defined by

Θ(t) :=
1

d

∫
Rd
|x|2 u(t, x) dx .

This analysis will lead to the interesting observation that the second variation
of G has a fixed sign, which implies concavity or convexity in t depending
on the value of p. Also, since the first variation is invariant with respect to
dilations and the solution to (1) is asymptotically self-similar, it follows at
once that the first variation satisfies a sharp inequality which connects the
second moment to its first variation, and optimality is achieved by Barenblatt
profiles.

This idea can also be applied to the study of the behavior of the derivative
of the second moment, as predicted by the nonlinear diffusion. It holds

Θ′ = 2E

where, up to a sign, the generalized entropy functional is defined by

E(t) :=

∫
Rd
|u(t, x)|p dx .
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For the Barenblatt solution (3) one can easily check that E?(t)
σ grows linearly

in time if d (1−p)σ = µ. This leads to estimate the time variation of F := Eσ.
As in the previous case, we will conclude by showing that the second variation
in time of F has a negative sign if p < 1, which implies concavity. In this case
also, the first variation is invariant with respect to dilations, which implies
a sharp inequality of Gagliardo-Nirenberg-Sobolev type, and optimality is
again achieved by Barenblatt profiles.

As the results of this paper clearly indicate, looking at functionals of the
solution to the nonlinear diffusion(1) which grow linearly in time when evalu-
ated along the source-type solution represent a valid and powerful alternative
to the well-known entropy-entropy production method developed in the last
two decades to investigate the large-time behavior of the solution by scaling
the problem in order to obtain a Fokker-Planck equation with a fixed steady
state.

This new way of looking at the problem opens completely new questions,
which at the moment seem to be very difficult to deal with. For instance,
higher order derivatives in time of the second moment of the solution are
easily evaluated in correspondence to Barenblatt solutions, by giving a precise
growth, say t−σn , where n is the order of the derivative. Hence, one can think
to proceed as for the first two cases, by considering the power of order σn of
the n-th derivative and by checking if there is a sign.

Our last remark is that these phenomena are a purely nonlinear effect.
Most of our estimates lose their meaning by pushing the exponent p to 1 in
the nonlinear diffusion equation (1). In the linear case indeed, the growth of
the second moment of any solution depends only of the initial value of the
second moment itself, and it is identical to the growth of the second moment
of the self-similar solution (a Gaussian density).

With Theorem 1, we shall start by a simplified proof of the isoperimetric
inequality for Rényi entropy powers in [18], based on the linear growth of the
functional F, that is also stated in [4, Theorem 4.4] and emphasize the fact
that the method is limited to exponents p ≥ 1 − 1

d
. Using this inequality,

J.A. Carrillo and G. Toscani have been able to establish improved rates
of convergence in the non-asymptotic regime of the solutions to (1) in [4,
Theorem 5.1]. Since Rényi entropy powers are equivalent to relative entropies
relative to best matching Barenblatt solutions under appropriate conditions
on the second moments as shown in [9, 10], improved rates have to be related
with results obtained in rescaled variables in [10], where the scales were
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defined in terms of second moments. Equivalently, the improved entropy-
entropy production inequality of [10, Theorem 1] is similar in nature to the
isoperimetric inequality for Rényi entropy powers. As we shall observe in
this paper, the isoperimetric inequality for Rényi entropy powers is in fact
a Gagliardo-Nirenberg inequality in scale invariant form, which degenerates
into Sobolev’s inequality in the limit case p = 1 − 1

d
and explains why it

cannot hold true for p < 1 − 1
d
. The entropy-entropy production inequality

of [8] is also a Gagliardo-Nirenberg inequality, but not in scale invariant form
and it has recently been established in [12] that the difference between the
scale invariant form and the non scale invariant form is enough to account
for improved rates of convergence in Fokker-Planck type equations, i.e., in
nonlinear diffusions after a convenient rescaling.

Theorem 2 is devoted to a rather simple observation on second moments,
which is however at the core of our paper. It is based on the linear growth
of the functional G. By introducing the relative entropy with respect to the
best matching Barenblatt function, we establish the result of Theorem 3 on
delays. This result has been proved in [11] by a much more complicated
method, when p < 1. Here we simply rely on the convexity or concavity of
t 7→ G(t), depending whether p < 1 or p > 1, and both cases are covered.
This analysis also suggests a method to obtain estimates of the delays, that
is investigated in Section 5.

Let us conclude this introduction with a brief review of the literature.
For considerations on second moment methods in fast diffusion and porous
medium equations, we refer to [19, 5, 11] and references therein. Sharp Ga-
gliardo-Nirenberg-Sobolev inequalities have been studied in [8, 10, 18, 12]
from the point of view of the rates of convergence of the solutions to (1)
in the intermediate asymptotics regime, and also for obtaining improved
convergence rates in the initial regime. A counterpart of such improved rates
is the notion of delay which was established in [11] in the fast diffusion regime
and will be recovered as a very simple consequence of moment estimates in
Theorem 3 and extended to the porous medium case.

Theorems 1 and 2 follow the same line of thought: compute the time
evolution of a functional which grows linearly when evaluated in the case of
Barenblatt functions and has some concavity or convexity property otherwise.
As a main consequence, we provide a proof of some Gagliardo-Nirenberg-
Sobolev inequalities which goes along the lines of [3, 8, 2] on the one hand,
of [18, 4, 20] on the other hand, and makes a synthetic link between the
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two approaches. The first approach is inspired by the entropy functional
introduced by J. Ralston and W.I. Newman in [16, 17], also known in the
literature as the Tsallis entropy, while the second one is more related with
Rényi entropies and connected with information theory inspired by [7, 23].
The reader interested in further details is invited to refer to [20] and references
therein for a more detailed account.

2. Notations, main results and consequences

The entropy is defined by

E :=

∫
Rd
up dx

and the Fisher information by

I :=

∫
Rd
u |∇v|2 dx with v =

p

p− 1
up−1 .

If u solves (1), then
E′ = (1− p) I .

To compute I′, we will use the fact that

∂v

∂t
= (p− 1) v∆v + |∇v|2 (4)

and get that
F := Eσ

has a linear growth asymptotically as t→ +∞ if

σ =
µ

d (1− p) = 1 +
2

1− p

(
1

d
+ p− 1

)
=

2

d

1

1− p − 1 . (5)

This definition is the same as the one of Section 1. The growth is exactly
linear in case of Barenblatt profiles, so that Eσ−1

? I? is independent of t if we
denote by E?, I?, F? etc. the entropy, the Fisher information, etc. of these
Barenblatt profiles.

Theorem 1. Assume that p 6= 1, p ≥ 1 − 1
d

if d > 1 and p > 0 if d = 1.
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With the above notations, t 7→ F(t) is increasing, (1− p)F′′(t) ≤ 0 and

lim
t→+∞

1

t
F(t) = (1− p)σ lim

t→+∞
Eσ−1 I = (1− p)σ Eσ−1

? I? .

This result has been established in [18]. In this paper we give a slightly
simpler proof. The result of Theorem 1 amounts to state that t 7→ F(t) is
concave if p < 1 and convex if p > 1, with an asymptotic slope given by
(1− p)σ Eσ−1

? I?. Moreover, we observe that the inequality

Eσ−1 I ≥ Eσ−1
? I? (6)

is equivalent to one of the two following Gagliardo-Nirenberg inequalities:

(i) If 1− 1
d
≤ p < 1, then (6) is equivalent to

‖∇w‖θL2(Rd) ‖w‖1−θ
Lq+1(Rd)

≥ CGN ‖w‖L2q(Rd) (7)

where

θ =
d

q

q − 1

d+ 2− q (d− 2)
, 1 < q ≤ d

d− 2

and equality with optimal constant CGN is achieved by Bp−1/2
? .

(ii) If p > 1, then (6) is equivalent to

‖∇w‖θL2(Rd)

(∫
Rd
w2q dx

) 1−θ
2q

≥ CGN ‖w‖Lq+1(Rd) (8)

where

θ =
d

q

q − 1

d+ 2− q (d− 2)

and q takes any value in (0, 1).

In both cases, we relate Gagliardo-Nirenberg inequalities and (6) by

up−1/2 =
w

‖w‖L2q(Rd)

with q =
1

2 p− 1
.

These considerations show that p = 1− 1
d

correspond to Sobolev’s inequality:
2q = 2 d/(d− 2) and θ = 1 if d ≥ 3. This case is therefore the threshold case
for the validity of the method. Details will be given in Section 3.
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Using the moment

Θ :=
1

d

∫
Rd
|x|2 u dx ,

we can introduce the functional

G := Θ1−η/2 with η = d (1− p) .

As a function of t, G also has a linear growth in case of Barenblatt profiles.
Again this definition is compatible with the one of Section 1 since

µ

2
= 1− η

2
.

In the general case, we get that

G′ = µH ,

where we define the Rényi entropy power functional H by

H := Θ−η/2 E = Θ
d
2

(p−1) E

and observe that the corresponding functional H? for Barenblatt profiles is
independent of t.

Theorem 2. Assume that p 6= 1, p ≥ 1 − 1
d

if d > 1 and p > 0 if d = 1.
With the above notations, t 7→ G(t) is increasing, (1− p)H′(t) ≥ 0 and

lim
t→+∞

1

t
G(t) =

(
1− η

2

)
lim
t→+∞

H =
(

1− η

2

)
H? .

The function t 7→ G(t) is convex if p < 1 and concave if p > 1, with an
asymptotic slope given by (1− η/2)H?. Details will be given in Section 4.

We can also consider the relative entropy with respect to the best matching
Barenblatt function defined as

F [u] := inf
s>0
F [u | U s? ]

where U s? (x) = U?(s, x) = s−d/µ U1
? (s−1/µ x) is defined by (3). Here the

variable s plays the role of a scaling parameter, and the relative entropy with
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respect to a given function U is defined by

F [u | U ] :=
1

p− 1

∫
Rd

[
up − Up − pUp−1

(
u− U

)]
dx .

A key observation in [9] is the fact that F [u] = F [u | U s? ] is achieved by a
unique Barenblatt solution which satisfies∫

Rd
|x|2 u dx =

∫
Rd
|x|2 U s? dx .

The proof of this fact is a straightforward computation: as a functional of U ,
F [u | U ] is concave and has at most one maximum point. Hence if we write
that |U s? (x)|p/(p−1) = a(s) + b(s) |x|2, then

d

ds
F [u | U s? ] =

p

p− 1

∫
Rd

(
a′(s) + b′(s) |x|2

)
(u− U s? ) dx .

Since
∫
Rd u dx =

∫
Rd U s? dx = 1, the term proportional to a′ does not con-

tribute and the other one vanishes if and only if the moments are equal.
After undoing the change of variables, we get that

s =

(
Θ

Θ?

)µ
2

. (9)

With this choice of s, U s? is the best matching Barenblatt function in the sense
that this Barenblatt function minimizes the relative entropy F [u | U s? ] among
all Barenblatt functions (U s? )s>0.

If u is a solution to (1), for any t ≥ 0, we can define s as a function of t
and consider the delay which is defined as

τ(t) :=

(
Θ(t)

Θ?

)µ
2

− t .

The main result of this paper is that t 7→ τ(t) is monotone.

Theorem 3. Assume that p 6= 1, p ≥ 1 − 1
d

if d > 1 and p > 0 if d = 1.
With the above notations, the best matching Barenblatt function of a solution
u to (1) satisfying (2) is (t, x) 7→ U?(t+ τ(t), x) and the function t 7→ τ(t) is
nondecreasing if p > 1 and nonincreasing if 1− 1

d
≤ p < 1.
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With s given by (9), we notice that the relative entropy with respect to the
best matching Barenblatt function is given by

F [u | U s? ] =
1

p− 1

∫
Rd

[
up − (U s? )p

]
dx

and it is related with the the Rényi entropy power functional by

H− H? = Θ
d
2

(p−1) E−Θ
d
2

(p−1)
? E? = (p− 1) Θ

d
2

(p−1)F [u | U s? ] .

See Figs. 1-2. An estimate of the delay t 7→ τ(t) will be given in Section 5.

0 t
τ (0)

τ (t)
τ∞ = lims→+∞ τ (s)

s Θµ/2(s)

s (s τ (0))Θ

s (s + τ (t))Θ

µ/2

µ/2

ss (s + τ∞)Θ
µ/2

Fast diffusion case

+

Figure 1: In the fast diffusion case, the (bold) curve s 7→ G(s) = Θµ/2(s) is convex,

increasing, and its asymptote is s 7→ (s+ τ∞) Θ
µ/2
? . At any time t ≥ 0, we observe that it

crosses the line s 7→ (s+ τ(t)) Θ
µ/2
? = (s− t+ 1) Θµ/2(t) transversally, so that t 7→ τ(t) is

monotone decreasing, unless the solution is itself a Barenblatt solution up to a time shift.

3. A direct proof of Gagliardo-Nirenberg inequalities

This section is devoted to the proof of Theorem 1 and also to a proof of
Gagliardo-Nirenberg inequalities (7) and (8). We provide a slightly simplified
proof of Lemma 4 below, compared to the existing literature: see [18] and
references therein. Some of the key computations will be reused in Section 5.
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0

s

τ (0)
τ (t)

τ∞ = lims→+∞ τ (s)

t

s (s + τ

(0))

Θµ/2

s Θµ/2(s)

s (s + τ

(t))

Θ
µ/2

s (s + τ∞)Θ
µ/2

Porous medium case

Figure 2: In the porous medium case, the curve s 7→ Θµ/2(s) is still increasing but
concave, so that t 7→ τ(t) is monotone increasing, unless the solution is itself a Barenblatt
solution up to a time shift.

3.1. A preliminary computation

According to [18, Appendix B], we have the following result.

Lemma 4. If u solves (1) with initial datum u(x, t = 0) = u0(x) ≥ 0 such
that

∫
Rd u0 dx = 1 and 1

d

∫
Rd |x|2 u0 dx < +∞, then v = p

p−1
up−1 solves (4)

and

I′ =
d

dt

∫
Rd
u |∇v|2 dx = − 2

∫
Rd
up
(
‖D2v‖2 + (p− 1) (∆v)2

)
dx . (10)
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Proof. Let us give a simplified proof of this result. Using (1) and (4), we can
compute

d

dt

∫
Rd
u |∇v|2 dx

=

∫
Rd

∂u

∂t
|∇v|2 dx+ 2

∫
Rd
u∇v · ∇∂v

∂t
dx

=

∫
Rd

∆(up) |∇v|2 dx+ 2

∫
Rd
u∇v · ∇

(
(p− 1) v∆v + |∇v|2

)
dx

=

∫
Rd
up ∆|∇v|2 dx

+ 2 (p− 1)

∫
Rd
u v∇v · ∇∆v dx+ 2 (p− 1)

∫
Rd
u∇v · ∇v∆v dx

+ 2

∫
Rd
u∇v · ∇|∇v|2 dx

= −
∫
Rd
up ∆|∇v|2 dx

+ 2 (p− 1)

∫
Rd
u v∇v · ∇∆v dx+ 2 (p− 1)

∫
Rd
u∇v · ∇v∆v dx

where the last line is given by an integration by parts:∫
Rd
u∇v · ∇|∇v|2 dx =

∫
Rd
∇(up) · ∇|∇v|2 dx = −

∫
Rd
up ∆|∇v|2 dx .

1) Using the elementary identity

1

2
∆ |∇v|2 = ‖D2v‖2 +∇v · ∇∆v ,

we get that∫
Rd
up ∆|∇v|2 dx = 2

∫
Rd
up ‖D2v‖2 dx+ 2

∫
Rd
up∇v · ∇∆v dx .
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2) Since u∇v = ∇(up), an integration by parts gives∫
Rd
u∇v · ∇v∆v dx =

∫
Rd
∇(up) · ∇v∆v dx

= −
∫
Rd
up (∆v)2 dx−

∫
Rd
up∇v · ∇∆v dx

and with u v = p
p−1

up we find that

2 (p− 1)

∫
Rd
u v∇v · ∇∆v dx+ 2 (p− 1)

∫
Rd
u∇v · ∇v∆v dx

= − 2 (p− 1)

∫
Rd
up (∆v)2 dx+ 2

∫
Rd
up∇v · ∇∆v dx .

Collecting terms establishes (10). �

3.2. The fast diffusion case

Recall that E =
∫
Rd u

p dx satisfies E′ = (1 − p) I with I =
∫
Rd u |∇v|2 dx

and v = p
p−1

up−1. Since

‖D2v‖2 =
1

d
(∆v)2 +

∥∥∥∥D2v − 1

d
∆v Id

∥∥∥∥2

by Lemma 4, we find that F′′ = (Eσ)′′ can be computed as

1

σ (1− p) E
2−σ (Eσ)′′ = (1− p) (σ − 1)

(∫
Rd
u |∇v|2 dx

)2

− 2

(
1

d
+ p− 1

)∫
Rd
up dx

∫
Rd
up (∆v)2 dx

− 2

∫
Rd
up dx

∫
Rd
up
∥∥∥∥D2v − 1

d
∆v Id

∥∥∥∥2

dx .

Using u∇v = ∇(up), we know that∫
Rd
u |∇v|2 dx =

∫
Rd
∇(up) · ∇v dx = −

∫
Rd
up ∆v dx

13



and by the Cauchy-Schwarz inequality,(∫
Rd
u |∇v|2 dx

)2

≤
∫
Rd
up dx

∫
Rd
up (∆v)2 dx .

With the choice

σ = 1 +
2

1− p

(
1

d
+ p− 1

)
=

2

d

1

1− p − 1 ,

we get that
E2−σ (Eσ)′′

σ (1− p)2
=: −R[u]

where the remainder terms have been collected as the sum of two squares:

R[u]∫
Rd u

p dx
= (σ − 1)

∫
Rd
up
∣∣∣∣∆v −

∫
Rd u |∇v|2 dx∫

Rd u
p dx

∣∣∣∣2 dx
+

2

1− p

∫
Rd
up
∥∥∥∥D2v − 1

d
∆v Id

∥∥∥∥2

dx .

Hence we know that F′ = (Eσ)′ is nonincreasing, that is,

1

1− pE
σ−1 E′ =

(∫
Rd
up dx

)σ−1 ∫
Rd
u |∇v|2 dx := J

is nonincreasing. Since J is invariant under scalings as a functional of u, this
means that

lim
t→∞

J = J?

where B? is the Barenblatt function such that
∫
Rd B? dx = 1 and J? the

corresponding value of the functional J. Written for the initial datum u0 = u,
we have shown that

J ≥ J? .

For any smooth and compactly supported function w, if we write up−1/2 =
w/‖w‖L2q(Rd) with q = 1/(2 p−1), then the inequality amounts to the Gagliar-

do-Nirenberg inequality (7) and equality is achieved by Bp−1/2
? . More pre-

cisely we have shown the following result.
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Proposition 5. Assume that 1 < q < d
d−2

if d ≥ 3 and q > 1 if d = 1 or
d = 2. With the above notations we have

4 p2

(p− 1)2 (2 p− 1)2

(
J− J?

)
=
‖∇w‖2

L2(Rd)
‖w‖2 (1−θ)/θ

Lq+1(Rd)

‖w‖2/θ

L2q(Rd)

− C
2/θ
GN

= (1− p)
∫ ∞

0

R[u(t, ·)] dt ≥ 0 ,

where u(t, ·) denotes the solution to (1) with initial datum u(x, t = 0) =
u0(x) = w2q(x) ≥ 0 satisfying (2).

Hence we have shown that, as a function of t, F is concave increasing and we
have identified its asymptotic slope, which is given by the optimal constant
in the Gagliardo-Nirenberg inequality

lim
t→+∞

J(t) = J? = C
2/θ
GN .

3.3. The porous medium case

The computations are the same. With the same definition (5) as in the
fast diffusion case, σ is negative, t 7→ F is convex increasing and the limit
of its derivative is achieved among Barenblatt functions. The Gagliardo-
Nirenberg inequality now takes the form (8). Again equality is achieved by

Bp−1/2
? . Details are left to the reader.

4. The second moment and the Rényi entropy power functional

This section is devoted to the proof of Theorem 2. Let us consider the
subsequent time derivatives of the functional

G := Θ1− η
2 with η = d (1− p) = 2− µ .

It is straightforward to check that

G′ = µH with H := Θ−
η
2 E

where the Rényi entropy power functional is defined by

H := Θ−
η
2 E .
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We recall that E′ = (1− p) I. It is straightforward to check that

H′

1− p = Θ−1− η
2

(
Θ I− dE2

)
=

dE2

Θ
η
2

+1
(q− 1) with q :=

Θ I

dE2
≥ 1

because

dE2 =
1

d

(
−
∫
Rd
x · ∇(up) dx

)2

=
1

d

(∫
Rd
x · u∇v dx

)2

≤ 1

d

∫
Rd
u |x|2 dx

∫
Rd
u |∇v|2 dx = Θ I

by the Cauchy-Schwarz inequality. This proves that (1 − p)H is monotone
increasing and from the theory in [8], we know that its limit is given by
the source-type Barenblatt solutions Up,t defined by (3). Since H is also scale
invariant, its limit is in fact given by the value of the functional for B?, that is

lim
t→+∞

H(t) = lim
t→+∞

Θ(t)
d
2

(p−1) E(t) = Θ
d
2

(p−1)
? E? =: H?

and we get

Θ(t)
d
2

(p−1) E(t) ≤ H? if p < 1 ,

Θ(t)
d
2

(p−1) E(t) ≥ H? if p > 1 .
(11)

Taking the logarithm on both sides of inequality (11), and considering that
p < 1, we obtain the equivalent inequality

1

1− p log

∫
Rd
up dx− d

2
log

(
1

d

∫
Rd
|x|2 u dx

)
≥ logH?

1− p =
log E?
1− p −

d

2
log Θ?

in which we can recognize the well-known inequality for Rényi entropies ob-
tained in [6, 15]. After multiplying by (1 − p) and taking the exponential,
we realize that this is also equivalent to the inequality

F [u | U1
? ] ≥ 0

which is a well-known consequence of Jensen’s inequality: see for instance [8].

16



5. Delays

This section is devoted to delays. At any time t ≥ 0, we consider the best
matching Barenblatt solution and the corresponding delay τ(t)

U s(t)? (x) = U?(s(t), x) , s(t) = t+ τ(t)

according to the definitions of Section 2. After proving Theorem 3, we give
an estimate of τ(t).

Proof of Theorem 3. With p ≥ 1 − 1
d
, we know that µ > 0. At any time

t ≥ 0, let us consider the solution t 7→ u(t, ·) to (1). The scale s(t) of the
best matching Barenblatt function is determined by (9). By observing that

t 7→ Θµ/2 grows faster (resp. slower) than t 7→ tΘ
µ/2
? if p > 1 (resp. if p < 1),

where t 7→ tΘ
µ/2
? is the rate of growth corresponding to the self-similar

Barenblatt function given by (3), we get that t 7→ τ(t) is nondecreasing
(resp. nonincreasing) in the porous medium case p > 1 (resp. fast diffusion
case p < 1). See Figs. 1-2. �

Next we study a quantitative estimate of delays, which relies on the com-
mutation of the third derivative in t of G. This approach is parallel to the
results in [21] in the linear case.

Let us recall that Θ′ = 2E, E′ = (1− p) I and J = Eσ−1 I is such that

0 ≥ E2−σ J′ = (1− p) (σ − 1) I2 + E I′

so that

I′ ≤ − (1− p) (σ − 1)
I2

E
= − 2

d
(1− η)

I2

E
.

Hence

H′′

1− p =
(

Θ−
η
2 I− dΘ−

η
2
−1 E2

)′
≤ dE3

Θ
η
2

+2

(
η+ 2− 3 η q− 2 (1− η) q2

)
(12)

according to the computations of Section 4. We observe that H′′ ≤ 0 if p < 1
and H′′ ≥ 0 if p > 1.

Theorem 6. Under the assumptions of Theorem 3, if p > 1− 1
d

and p 6= 1,
then the delay satisfies

lim
t→+∞

|τ(t)− τ(0)| ≥ |1− p| Θ(0)1− d
2

(1−p)

2H?

(
H? − H(0)

)2

Θ(0) I(0)− dE(0)2

17



Proof. Assume first that p < 1 and recall that for any t ≥ 0

G′(t) ≤ lim
t→+∞

G′(t) =
(

1− η

2

)
H? =: G′? .

Since G′′ is nonincreasing, we have the estimate

G(t) ≤ G(0) + G′(0) t+ 1
2
G′′(0) t2 ∀ t ≥ 0

so that
G(0) + G′? t− G(t) ≥ (G′? − G′(0)) t− 1

2
G′′(0) t2

is maximal for t = t? := (G′? − G′(0))/G′′(0). As a consequence, since G(0) =
G′? τ(0) and G(t?) = G′?

(
t? + τ(t?)

)
, we get that

G′? τ(0)− G′? τ(t?) = G(0) + G′? t? − G′?
(
t? + τ(t?)

)
≥
(
G′? − G′(0)

)2

2G′′(0)
,

that is

τ(0)− τ(t?) ≥
(
G′? − G′(0)

)2

2G′? G
′′(0)

= (1− p) Θ(0)1+ η
2

2H?

(
H? − H(0)

)2

Θ(0) I(0)− dE(0)2
.

We conclude by observing that t 7→ τ(0)− τ(t) is nondecreasing.
Estimates for p > 1 are very similar, up to signs. �
Further estimates can be obtained easily. Let us illustrate our new ap-

proach by a result on

q :=
Θ I

dE2
= 1 +

Θ
η
2

+1

dE2

H′

1− p (13)

in the fast diffusion case. We denote by q0, Θ0,.. the initial values of q, Θ,
etc.

Proposition 7. Assume that 1− 1
d
≤ p < 1. Then for any t ≥ 0, we have

q(t) ≤ q0 Θ(t)

q0 Θ(t)− (q0 − 1) Θ0

=: q̄(t)
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and

τ(t) ≤ τ0 exp

[∫ t

0

ds

s+ Θ0

µE0
− η

µ

∫ s
0

(q̄− 1) ds

]
− t .

Proof. Using (12) and (13), we obtain

q′ ≤ 2 q (1− q)
E

Θ
= q (1− q)

Θ′

Θ
.

We can integrate and get the first estimate.
To obtain the integral estimate for τ , we compute

G′

G
= µ

E

Θ

and
1

1− p
G′′

G′
=

1

1− p
H′

H
= d

E

Θ
(q− 1) ≤ d

µ

G′

G
(q̄− 1) ,

so that

1−
(
G

G′

)′
=

GG′′

(G′)2
≤ η

µ
(q̄− 1)

and finally
G

G′
≥ Θ0

µE0

+ t− η

µ

∫ t

0

(q̄(s)− 1) ds .

Using the fact that G(t) = G′?
(
t+ τ(t)

)
, we conclude after one more integra-

tion with respect to t and get the second estimate. �
Let us conclude this paper by a few remarks.

(i) The quantity q−1 is a measure of the distance to the set of the Baren-
blatt profiles when p > 1− 1

d
: see [12] for more details.

(ii) Improved rates of decay for E and, as a consequence, improved asymp-
totics for F and G can be achieved by considering the estimates found
in [4].

(iii) Alternatively, improved functional inequalities as in [12] can be used
directly to get improved asymptotics for F and G.
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