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Summary: Using the notion of time-dependent rescalings introduced in [DR], we prove explicit dispersion
results. The main tool is a Lyapunov functional which is given by the energy after rescaling and the entropy
dissipation. The relation with asymptotically self-similar solutions is investigated. The method applies to the
solutions of the Boltzmann, Landau and BGK equations. In the case of the Vlasov-Fokker-Planck equation,
the difference with the self-similar solutions has a faster decay, which is estimated by a classical method for
parabolic equations and interpolation estimates.

I. Introduction

Consider in IR3 the Boltzmann equation

∂f

∂t
+ v · ∇xf = QB(f, f) (B)

with

QB(f, f) =

∫ ∫

IR3×S2

B(v − v∗, ω)

(

f ′f ′
∗ − ff∗

)

dv∗dω .

Here f ′, f ′
∗, f and f∗ are the standard notations for respectively f(t, x, v′), f(t, x, v′∗), f(t, x, v) and f(t, x, v∗)

where (v′, v′∗) and (v, v∗) are the incoming and outcoming velocities corresponding to a deflection given by
the angle ω ∈ S2:

{

v′ = v − [(v − v∗) · ω]ω ,

v′∗ = v∗ + [(v − v∗) · ω]ω ,

We assume that the cross-section takes the form

B(v − v∗, ω) = |v − v∗|γ b(
v − v∗
|v − v∗|

· ω) . (PL)

γ is determined by the 2-body power law of interaction as follows: if the 2-body force is proportional to 1
rs

with s ≥ 2, then

γ =
s − 5

s − 1
.
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s = 2 is the case of the Coulomb force term, which is a limit case for the Boltzmann equation.
The corresponding Landau equation in IR3 is

∂f

∂t
+ v · ∇xf = QL(f, f) (L)

with

QL(f, f) =
3
∑

i,j=1

∂

∂vi

∫

IR3

|v − v∗|γ+2

(

δij −
zizj

|z|2 |z=v−v∗

)(

f∗
∂f

∂vj
− f

∂f∗
∂v∗j

)

dv∗ .

The BGK equation is a simplified version of the Boltzmann equation:

∂f

∂t
+ v · ∇xf =

1

T0
(Mρ,u,θ − f) (BGK)

where T0 is a positive constant and ρ, u, θ are defined in terms of the moments of f :

(

ρ(t, x), ρ(t, x)u(t, x), 3ρ(t, x)θ(t, x)

)

=

(∫

IR3

f(t, x, v) dv ,

∫

IR3

f(t, x, v)v dv ,

∫

IR3

f(t, x, v)|v − u|2 dv

)

.

As a caricature(*) of the Landau equation, we may also consider the (linear) Vlasov-Fokker-Planck equation:

∂f

∂t
+ v · ∇xf = βdivv(vf) + σ∆vf , (V FP )

where β and σ are two nonnegative constants (friction and diffusion coefficients respectively). The corre-
sponding Green function is explicitely known: using its invariances, we will prove in the last section that the
difference with the solution to the Cauchy problem has a faster decay.

We will not give detailed references on the existence theory of the Boltzmann equation, and will refer to
[L1] for a more extended list of references, and also to [CIP]. Let us simply mention [IS], [G] and [BPT] for
the existence of classical solutions, and [DPL1], [DPL2] and [L1] for the existence of renormalized solutions
(we will work in that framework). Concerning the Landau equation, we may quote the results by P.-L. Lions
(see [L2]) and C. Villani (see [V1]) and for the BGK model, [P1], [P3] and [M].

For the notions of dispersion (see [MP] for an application to the Boltzmann equation), we will refer to
[IR], [P1], [P2], [CDP] and [DR]. The time-dependent rescaling method has been developped in the context
of kinetic equation in the last of these references.

One has to mention here that the notion of dispersion has been used a long time ago by R. Illner and
M. Shindbrot (see [IS]) to obtain an existence result for the Boltzmann equation. Since they were building
solutions in L∞, they were getting the decay one might expect for the free transport equation, actually that
ρ(t, .) =

∫

f(t, ., v) dv decays like 1
t3 . Here we deal with weak solutions (actually even renormalized solutions

for the Boltzmann and the Landau equations) for which only the entropy and some moments are known to
be bounded. This gives rise to a much slower decay. How to fill the gap between these situations is still
open.

Transformations of kinetic equations have been extensively used to build special solutions. The notations
τ , η we shall use thereafter are the classical notations of the celebrated Nikolskii transform, and we will refer

(*) If s = 5, the homogeneous Landau equation can be written (see [V2]) after a rescaling and a convenient
renormalization as

∂f

∂t
+ v · ∇xf =

3
∑

i,j=1

(

(|v|2δij − vivj) ∗v f

)

∂2f

∂vi∂vj
− 3f ,

and the equation is reduced to the Vlasov-Fokker-Planck equation if f is radially symmetric in |v| (isotropic
case). However, this reduction is valid only for a correctly normalized distribution function. This explains
why the scaling properties of the (linear) Vlasov-Fokker-Planck equation differ from the scaling properties
of the Landau equation.
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to [Co] or [BCS] for more references in this direction. However, our purpose is a little bit different, since
we are intereted in building integral quantities (that could even be exhibited without any justifications
concerning the transformations of the equations) to obtain dispersion results and we will therefore not insist
on that point.

II. The Boltzmann equation

As in [DR], we may consider the time-dependent rescaling given by

τ̇ =
1

A2(t)
,

ξ(t, x) =
x

R(t)
,

η(t, x, v) =
A2(t)

R(t)
(v − Ṙ(t)

R(t)
x) .

Here ˙ denotes the derivative with respect to t. A natural requirement is the preservation of the L1-norm:
if F is the rescaled distribution function given by

f(t, x, v) =

(

A(t)

R(t)

)6

F (τ, ξ, η) ,

it has to satisfy the rescaled Boltzmann equation (without cut-off):

∂F

∂τ
+ η · ∇ξF + 2A2(t)

(

Ȧ(t)

A(t)
− Ṙ(t)

R(t)

)

divη(ηF ) − R̈(t)A4(t)

R(t)
ξ · ∇ηF = A2(1−γ)(t)Rγ−3(t)QB(F, F ) .

With the ansatz

A = R , R̈ =
1

R3
,

the rescaled distribution function is a solution of

∂F

∂τ
+ η · ∇ξF − ξ · ∇ηF = ǫ(τ)QB(F, F ) , (RB)

with

ǫ(τ(t)) =
1

R1+γ(t)
.

Assuming further that R(0) = 1, Ṙ(0) = 0 and τ(0) = 0, which means that f and F satisfy the same initial
conditions, the change of variables means

R(t) =
√

1 + t2 , Ṙ(t) =
t√

1 + t2
,

τ(t) = Arctg(t) ,

ξ(t, x) =
x√

1 + t2
,

η(t, x, v) =
√

1 + t2(v − t

1 + t2
x) ,
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f(t, x, v) = F (τ(t), ξ(t, x), η(t, x, v)) .

Exactly as for the usual Boltzmann equation, the following a priori estimates hold, at least at a formal
level:

d

dτ

∫ ∫

IR3×IR3

F (τ, ξ, η) dξdη = 0 , (Mass)

d

dτ

∫ ∫

IR3×IR3

F (τ, ξ, η) (
1

2
|η|2 +

1

2
|ξ|2) dξdη = 0 , (Energy)

and Boltzmann’s H theorem is now

d

dτ

∫ ∫

IR3×IR3

F (τ, ξ, η) log

(

F (τ, ξ, η)

)

dξdη = −ǫ(τ)

∫ ∫ ∫ ∫

(IR3)3×S2

B(η − η∗, ω)

(

F ′F ′
∗ − FF∗

)

· log

(

F ′F ′
∗

FF∗

)

dξdηdη∗dω .

Remark 1.

L(t) =
1

2

∫ ∫

IR3×IR3

F (τ(t), ξ, η) (|η|2 + |ξ|2) dξdη

=
1

2
(1 + t2)

∫ ∫

IR3×IR3

f(t, x, v)|v − t

1 + t2
x|2 dxdv +

1

1 + t2

∫ ∫

IR3×IR3

f(t, x, v)|x|2 dxdv

plays the same role as the Lyapunov functional in [DR] but is actually (at least formally) a conserved
quantity. It can be seen as the limit as α → 0+ of Lyapunov functionals Lα given by

Lα(t) =
1

2

∫ ∫

IR3×IR3

Fα(τ(t), ξ, η) (|η|2 + |ξ|2) dξdη

where Fα is given by the same formula as F except that the new ansatz for R and A is now

A = R1−α(t) , R̈ = R4α−3 .

In that case,

d

dτ

∫ ∫

IR3×IR3

Fα(τ, ξ, η) (|η|2 + |ξ|2) dξdη = −4αR1−2α(t)Ṙ(t)

∫ ∫

IR3×IR3

Fα(τ, ξ, η) |η|2 dξdη ,

d

dt
Lα(t) = −2αṘ(t)R(t)

∫ ∫

IR3×IR3

f(t, x, v)|v − Ṙ(t)

R(t)
x|2 dxdv .

We shall use the identity (with α = 1) in Theorem 1 to prove the dispersion result. However, this essentially
says nothing but:
1)
∫ ∫

IR3×IR3 f(t, x, v)|x − vt|2 dxdv is preserved.

2)
∫ ∫

IR3×IR3 f(t, x, v)|x|2 dxdv grows at most like t2 (as t → +∞) which is clear because of 1) and the
conservation of the energy.

In the framework of the renormalized solutions of R.J. DiPerna and P.-L. Lions (see [DPL1], [DPL1]),
these estimates are transformed into a priori estimates under the following assumptions on the collision
kernel:

(H1) The Boltzmann collision kernel satifies the “weak angular cut-off”: B ∈ L1
loc(IR

3 × S2) which means

b ∈ L1(S2) and γ > −3 ⇐⇒ s > 2
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in the case of a power law 2-body interaction. Note that in this case the cross-section derived from the
corresponding force, which goes like 1

rs gives a singularity of the order of ( v−v∗

|v−v∗| ·ω)−α with α = s+1
s−1 and

that this singularity here is removed (but the term b( v−v∗

|v−v∗| · ω) is invariant under the time-dependent

rescaling).
(H2) The Boltzmann collision kernel satifies the “Mild Growth Condition”:

lim
|z|→+∞

1

1 + |z|2
∫

|z−v|<R

(

∫

S2

B(v, ω) dω) dv = 0 ∀ R > 0 ,

which means for the case of a power law 2-body interaction

γ < 2 ⇐⇒ s > 1 .

(H3) Almost everywhere in (v, ω) ∈ IR3 × S2, B is positive.
We first give a dispersion result for the Boltzmann equation which improves the one given in [P1]. This

result does not depend on the special form (PL) we assumed in Section 1.

Theorem 1. Assume that the collision kernel satifies assumptions (H1), (H2) and (H3), and consider a
renormalized solution f ∈ C0(IR+, L1(IR3 × IR3)) corresponding to an initial datum f0 ∈ L1(IR3 × IR3) such
that f0(|x|2 + |v|2 + | log f0|) is bounded in L1(IR3 × IR3), and such that for any t > 0, the estimate
∫ ∫

IR3×IR3

f(t, x, v)|v|2 dxdv +

∫ ∫

IR3×IR3

f(t, x, v)|x − vt|2 dxdv ≤
∫ ∫

IR3×IR3

f0(x, v)(|x|2 + |v|2) dxdv ,

and the entropy estimate
∫ ∫

IR3×IR3

f(t, x, v) log f(t, x, v) dxdv

+

∫ t

0

(

∫ ∫ ∫ ∫

(IR3)3×S2

B(v − v∗, ω)

(

f ′f ′
∗ − ff∗

)

· log

(

f ′f ′
∗

ff∗

)

dxdvdv∗dω) ds

≤
∫ ∫

IR3×IR3

f0(x, v) log f0(x, v) dxdv ,

hold. Then
(i) for any t > 0,

(1 + t2)

∫ ∫

IR3×IR3

f(t, x, v)|v − t

1 + t2
x|2 dxdv +

1

1 + t2

∫ ∫

IR3×IR3

f(t, x, v)|x|2 dxdv

≤
∫ ∫

IR3×IR3

f0(x, v)(|x|2 + |v|2) dxdv ,

(L)

(ii) there exists a positive constant C = C(f0) which depends only on f0 such that for any r > 0,

m(r, t) :=

∫

|x|<r

(

∫

IR3

f(t, x, v) dv)dx ≤ C(f0)

log

(√
1+t2

r

) . (D)

Proof : The simplest method to prove (i) is to notice that

(1 + t2)

∫ ∫

IR3×IR3

f(t, x, v)|v − t

1 + t2
x|2 dxdv +

1

1 + t2

∫ ∫

IR3×IR3

f(t, x, v)|x|2 dxdv

=

∫ ∫

IR3×IR3

f(t, x, v)|v|2 dxdv +

∫ ∫

IR3×IR3

f(t, x, v)|x − vt|2 dxdv .
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One may also use the method of P.-L. Lions for the Vlasov-Boltzmann equation (see [L1], III) to prove directly
(using approximating solutions and passing to the limit) that any solution F ∈ C0([0, π

2 [, L1(IR3 × IR3)) of
(RB) which is a limit of classical solutions of regularized problems has also to satisfy

∫ ∫

IR3×IR3

F (τ, ξ, η) (
1

2
|η|2 +

1

2
|ξ|2) dξdη ≤

∫ ∫

IR3×IR3

f0(x, v)(
1

2
|v|2 +

1

2
|x|2) dxdv

for any τ ∈ [0, π
2 [, which is equivalent.

We now use (i) to obtain a dispersion relation via an interpolation which is in a sense the limit case
as p → 1 of an interpolation between moments and an Lp-norm. The result is obtained using several times
Jensen’s inequality: if f and g are two nonnegative L1(Ω) solutions such that f(| log f |+ | log g|) belongs to

L1(Ω), Jensen’s inequality applied to t 7→ t log t = s(t) with the measure dµ(y) = g(y)dy
∫

Ω
g(y) dy

gives

∫

Ω

f log(
f

g
) dy =

∫

Ω

g(y) dy ·
∫

Ω

s(
f

g
) dµ(y) ≥

∫

Ω

g(y) dy · s
(∫

Ω

f

g
dµ(y)

)

=

∫

Ω

f(y) dy log

(

∫

Ω f(y) dy
∫

Ω
g(y) dy

)

.

(J)

Applying first this inequality to g = e
−(1+t2)|v− t

1+t2
x|2

with y = v, Ω = IR3, and then integrating with
respect to x, we get

∫

IR3

ρ(t, x) log ρ(t, x) dx ≤
∫ ∫

IR3×IR3

f(t, x, v) log f(t, x, v) dxdv

+ (1 + t2)

∫ ∫

IR3×IR3

f(t, x, v)|v − t

1 + t2
x|2 dxdv − 3

2
M log

(

1 + t2

π

) (T 1a)

where

M = m(∞, t) =

∫ ∫

IR3×IR3

f(t, x, v) dxdv =

∫

IR3

ρ(t, x) dx .

Applying now (J) to Ω = B(0, R), g ≡ 1, y = x, we find

m(r, t) log m(r, t) ≤ m(r, t) log(
4π

3
r3) +

∫

|x|<r

ρ(t, x) log ρ(t, x) dx . (T 1b)

But
∫

|x|<r

ρ(t, x) log ρ(t, x) dx =

∫

IR3

ρ(t, x) log ρ(t, x) dx −
∫

|x|>r

ρ(t, x) log ρ(t, x) dx . (T 1c)

Applying again (J) to Ω = IR3 \ B(0, r), y = x, g = e
− |x|2

1+t2 , we obtain

−
∫

|x|>r

ρ(t, x) log ρ(t, x) dx ≤
∫

|x|>r

ρ(t, x)
|x|2

1 + t2
dx

− (M − m(r, t)) log(M − m(r, t)) +
3

2
(M − m(r, t)) log[π(1 + t2)] .

(T 1d)

Combining (T1a), (T1b), (T1c) and (T1d), we find

3m(r, t) log

(
√

1 + t2

r

)

≤
∫ ∫

IR3×IR3

f(t, x, v)

(

log f(t, x, v) + (1 + t2)|v − t

1 + t2
x|2 +

|x|2
1 + t2

)

dxdv

− m(r, t) log m(r, t) − (M − m(r, t)) log(M − m(r, t))

+ 3M log(π) − m(r, t) log(
4

3
√

π
) .

t 7→ −t log t is bounded from above: combining the decay of t 7→
∫ ∫

IR3×IR3 f(t, x, v) log f(t, x, v) dxdv which
is given by the ”H-Theorem”, and (L1), we get the dispersion estimate (D). ⊔⊓
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However, the entropy production term for the rescaled distribution function provides further infor-
mations. Essentially, it controls the weak L1-convergence to the Maxwellian functions and the dynamical
stability in the sense of Y. Guo, G. Rein (see for instance [G1], [G2], [GR]) but is not sufficient to give the
strong L1-convergence to the Maxwellian functions as will be shown on a large class of counter-examples.
These three properties are the subject of the next three propositions.

Proposition 1. Weak L1-convergence. Under the same assumptions as in Theorem 1, for any sequence
τn such that limn→+∞ τn = π

2 , up to the extraction of a subsequence, there exists a function D ∈ L1(IR3)
and two functions ξ 7→ θ(ξ) and ξ 7→ U(ξ) such that F (τn, ., .) converges weakly in L1(IR3× IR3) as n → +∞
to the local Maxwellian function

MM (ξ, η) = D(ξ) · e−
1
2θ |η−U(ξ)|2

(2πθ)3/2
(M)

with M = ||D||L1(IR3) = ||f0||L1(IR3×IR3).

Notation : In the rest of this section, we denote by e[f ] the entropy production rate:

e[f ] =

∫ ∫ ∫ ∫

(IR3)3×S2

B(v − v∗, ω)

(

f ′f ′
∗ − ff∗

)

· log

(

f ′f ′
∗

ff∗

)

dξ, dη, η∗dω .

Proof : The key estimate is the decay of the entropy. Since
∫ τ

0
ǫ(τ) dτ diverges, there exists an (increasing)

sequence (τn)n∈IN with limn→+∞ τn = π
2 such that limn→+∞ e[F (τn, ., .)] = 0. But

τ 7→
∫ ∫

IR3×IR3

F (τ, ξ, η)

(

1

2
|η|2 +

1

2
|ξ|2 + log

(

F (τ, ξ, η)
)

)

dξdη

is decreasing and bounded by its initial value

∫ ∫

IR3×IR3

f0(ξ, η)

(

1

2
|η|2 +

1

2
|ξ|2 + log

(

f0(ξ, η)
)

)

dξdη .

Using the Dunford-Pettis criterion, we get the existence of an increasing subsequence of (τn)n∈IN (we still
denote it by (τn)n∈IN ) and of a function MM (ξ, η) ∈ L1(IR3 × IR3) such that

F (τn, ., .) → MM

weakly in L1(IR3 × IR3). The usual (see [L1]) convexity argument then proves:

e[MM ] = 0 .

According to [L1] for instance (see also [A], [CIP], [C]), MM is a Maxwellian function: there exist three
functions D, θ and U respectively in L1(IR3), L∞

loc(IR
3) and L∞

loc(IR
3) such that Equation (M) holds. ⊔⊓

The dynamical stability is a global property of the solution to the Cauchy problem, which is preserved
by the evolution. Since we deal with weak solutions, one cannot expect to prove more than such a result
in general. The nice property here is that the free energy controls the L1-norm of the difference with the
stationary solution. This situation is simpler than several situations that have been studied earlier (see [G1],
[G2], [GR], [R] for instance).

Proposition 2. Dynamical stability.

(i) For any θ > 0, there exists a unique minimum in

X = {F ∈ L1(IR3 × IR3) : F ≥ 0 a.e. , ||F ||L1(IR3×IR3)=M}
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of

FM,θ[F ] =

∫ ∫

IR3×IR3

F (τ, ξ, η)

(

1

2
|η|2 +

1

2
|ξ|2 + θ log

(

F (τ, ξ, η)
)

)

dξdη

which is reached by the following minimizer

GM,θ(ξ, η) =
M

(2πθ)3
e−

θ
2 (|η|2|ξ|2) .

In the following, we note
mM,θ = FM,θ[GM,θ] .

(ii) For any θ > 0, if F is a rescaled solution of the Boltzmann equation like in Theorem 1,

τ 7→ inf
θ>0

FM,θ[F (τ, ., .)] −FM,θ[mM,θ]

is decreasing, and for any τ ∈ [0, π
2 ],

1

2
||F (τ, ., .) − mM,θ||2L1(IR3×IR3) ≤ FM,θ[F (τ, ., .)] −FM,θ[mM,θ] ≤ FM,θ[f0(, ., .)] −FM,θ[mM,θ] .

Proof : The proof is a straightforward consequence of the Csiszár-Kullback inequality (see [Cs], [K],
[AMTU]) and the fact that τ 7→ FM,θ[F (τ, ., .)] is decreasing. ⊔⊓

To conclude this section, we exhibit examples of stationary or time-periodic solutions of the rescaled
Boltzmann equation that do not have a free energy as low as the one of the minimizer.

Proposition 3. Counter-examples to the strong convergence: stationary and time-periodic

solutions.

(i) Stationary solutions. For any θ > 0 and any ω ∈ IR3 with |ω| < 1,

HM,θ,ω(ξ, η) =
M

(2πθ)3
e−

1
2θ (|ξ|2+|η|2−2ω·ξ∧η)

is a solution whose free energy is

FM,θ[HM,θ,ω] = FM,θ[mM,θ] + 4Mθ
|ω|2

|ω|2 − 1
.

(ii) Time-periodic solutions. Given any solution of

ξ̈0 + ξ0 = 0

(E0 = 1
2 |ξ0|2 + 1

2 |ξ̇0|2 is a constant of the motion),

Jξ0(ξ, η) =
M

(2πθ)3
e−

1
2θ (|ξ−ξ0|2+|η−ξ̇0|2−2ω·ξ∧η)

is a time-periodic solution of period 2π whose free energy is

FM,θ[Jξ0 ] = FM,θ[mM,θ] + E0 .

(See Appendix B for the most general type of time-periodic solutions.)

8



Proof :

Stationary solutions. A class of stationary solutions is given by functions which are Maxwellian in the
velocities and depend only of the integrals of the motion according to Newton’s law:

ξ̈ = −ξ ,

Since the force term derives from the harmonic potential 1
2 |ξ|2, which is radially symmetric, there are two

integrals of the motion:
|ξ|2 + |ξ̇|2 and ξ ∧ ξ̇ ,

which give rise to the stationary solutions of Proposition 3. We may then write:

|ξ|2 + |η|2 − 2ω · ξ ∧ η = |η − ω ∧ ξ|2 + |ξ|2 − |ω ∧ ξ|2

and the computation of FM,θ[HM,θ,ω] immediately follows.
Time-periodic solutions. A straightforward computation shows that

∂Jξ0

∂t
+ η · ∇ξJξ0 − ξ · ∇ηJξ0 =

1

θ
(ξ0ξ̇0 + ξ̇0ξ̈0)Jξ0 = 0 .

⊔⊓

Remark 2. The fact that there is no other stationary solution than the ones that depend of the integrals of
the motion is usually called Jeans’ theorem (see [Do1] for a general approach of these ideas). That there are
no other stationary solutions than the ones considered above can be studied directly following Desvillettes’
ordinary differential equations approach (see [De]): this method is detailed in Appendix B.

Remark 3. One may also study directly the dynamical stability of the solutions HM,θ,ω with the modified
free energy

F̃M,θ,ω[F ] =

∫ ∫

IR3×IR3

F (τ, ξ, η) (
1

2
|η − ω ∧ ξ|2 +

1

2
(|ξ|2 − |ω ∧ ξ|2) + θ log

(

F (τ, ξ, η)

)

) dξdη .

To obtain further results, θ and ω should be choosen consistently with the initial data, assuming for instance
that

∫ ∫

IR3×IR3

f0(ξ, η) ξ ∧ η dξdη =

∫ ∫

IR3×IR3

f0(ξ, η) ξ ∧ (ω ∧ ξ) dξdη

and
∫ ∫

IR3×IR3

f0(ξ, η) |η − ω ∧ ξ|2 dξdη = 3θ

∫ ∫

IR3×IR3

f0(ξ, η) dξdη .

However, it is not clear if these quantities, which are conserved for classical solutions, are still preserved
during the evolution for renormalized solutions.

Remark 4. If t 7→ R(t) is a solution of

R̈ =
1

R3
with R(0) = 1 , Ṙ(0) = 0 ,

t 7→ Rλ(t) =
√

λR( t
λ) is a solution of the same equation with Rλ(0) =

√
λ and Ṙλ(0) = 0. The generic

solution is therefore (for any R0 > 0)

R(t) = R0

√

1 + (
t

R2
0

)2 , t ∈ IR .
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To the family of the global Maxwellian stationary solutions HM,θ,ω(ξ, η) corresponds a whole family of
solutions of the Boltzmann equation

fR0

M,θ,ω(t, x, v) =
M

(2πθ)3
exp− 1

2θ

( |x|2
R2

0 + t2

R2
0

+ (R2
0 +

t2

R2
0

)

∣

∣

∣

∣

v − t

R4
0 + t2

x

∣

∣

∣

∣

2

− 2ω x ∧ v

)

.

The fact that there is no limit as R0 → 0+ reflects why (see [DR]) self-similar solutions do not appear
explicitely in the Boltzmann equation.

An even more general class of special solutions is given by the local Maxwellian that are solutions of
the free transport equation:

f(t, x, v) = g

(

Arctg(
t

R0
),

x

R(t)
, R(t)(v − Ṙ(t)

R(t)
x)

)

where g is given in Proposition 6 (g is a local Maxwellian which is a solution of the transport equation in an
external harmonic potential: see Appendix B). However, these solutions are classical. The decay is then of
course of order O(t−3) like for the solutions of R. Illner and M. Shindbrot (see [IS]), in an appropriate norm.

Note that the above remarks apply as well to the Landau or BGK equations (see Section III and IV).

III. The Landau equation

The same scaling as for the Boltzmann equation holds for the Landau equation. If

τ̇ =
1

A2(t)
, ξ(t, x) =

x

R(t)
and η(t, x, v) =

A2(t)

R(t)
(v − Ṙ(t)

R(t)
x) .

the rescaled distribution function F such that

f(t, x, v) =

(

A(t)

R(t)

)6

F (τ, ξ, η)

has to satisfy the rescaled Landau equation:

∂F

∂τ
+ η · ∇ξF + 2A2(t)

(

Ȧ(t)

A(t)
− Ṙ(t)

R(t)

)

divη(ηF ) − R̈(t)A4(t)

R(t)
ξ · ∇ηF = A2(1−γ)(t)Rγ−3(t)QL(F, F ) .

With the same ansatz as in Section II,

A = R , R̈ =
1

R3
, R(0) = 1 , Ṙ(0) = 0 and τ(0) = 0 ,

F becomes a solution of
∂F

∂τ
+ η · ∇ξF − ξ · ∇ηF = ǫ(τ)QL(F, F ) , (RL)

with

ǫ(τ(t)) =
1

R1+γ(t)
, R(t) =

√

1 + t2 , Ṙ(t) =
t√

1 + t2
and τ(t) = Arctg(t) .

The estimates are the same except the H Theorem which now is

d

dτ

∫ ∫

IR3×IR3

F (τ, ξ, η) log

(

F (τ, ξ, η)

)

dξdη = −ǫ(τ)e[F ](τ) ,
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e[F ](τ) =

∫ ∫

(IR3)3
|η∗ − η|γ+2(∇F −∇∗F )t Π(η∗ − η)(∇F −∇∗F )dξdη∗dη ,

Π(η∗ − η) beeing the orthogonal projection on (η∗ − η)⊥.
As a consequence, assuming that there exists a renormalized solution (see [L2], [V1]), we may state a

result analogous to the one we obtained for the Boltzmann equation (the proof is exactly the same).

Theorem 2. Assume that the collision kernel satifies assumptions (H1), (H2) and (H3), and that f is a
renormalized solution of the Landau equation with the same a priori estimates as in Theorem 1. Then
(i) for any t > 0,

(1 + t2)

∫ ∫

IR3×IR3

f(t, x, v)|v − t

1 + t2
x|2 dxdv +

1

1 + t2

∫ ∫

IR3×IR3

f(t, x, v)|x|2 dxdv

≤
∫ ∫

IR3×IR3

f0(x, v)(|x|2 + |v|2) dxdv ,

(ii) there exists a positive constant C = C(f0) which depends only on f0 such that for any r > 0,

m(r, t) :=

∫

|x|>r

(

∫

IR3

f(t, x, v) dv)dx ≤ C(f0)

log

(√
1+t2

r

) .

Note that the weak L1-convergence, the dynamical stability and the counter-examples hold exactly as
for the Boltzmann equation.

IV. The BGK and Vlasov-Fokker-Planck equations

Since the quantities preserved by the BGK equation are the same as the ones of the Boltzmannn equation
or the Landau equation, the same type of results holds. Dispersion estimates for a modified BGK equation
that satisfies a maximum principle have been obtained by B. Perthame in [P1]. Here we simply use the
entropy estimate to control the dispersion.

Theorem 3. Assume that f is a solution of the BGK equation with the same a priori estimates as in [P1].
Then
(i) for any t > 0,

(1 + t2)

∫ ∫

IR3×IR3

f(t, x, v)|v − t

1 + t2
x|2 dxdv +

1

1 + t2

∫ ∫

IR3×IR3

f(t, x, v)|x|2 dxdv

≤
∫ ∫

IR3×IR3

f0(x, v)(|x|2 + |v|2) dxdv ,

(ii) there exists a positive constant C = C(f0) which depends only on f0 such that for any r > 0,

m(r, t) :=

∫

|x|>r

(

∫

IR3

f(t, x, v) dv)dx ≤ C(f0)

log

(√
1+t2

r

) .
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The same techniques also applies to the Vlasov-Fokker-Planck equation except that the two terms
(friction and diffusion) of the Fokker-Planck term do not have the same scaling properties, which makes the
analysis of the dispersion somehow a little bit tricky. We use here the same approach as in [DR] for the
Vlasov-Poisson-Fokker-Planck system.

If

f(t, x, v) = F (τ(t),
x

R(t)
, R(t)(v − Ṙ(t)

R(t)
x)) , τ(t) = Arctg(t) and R(t) =

√

1 + t2 ,

then F is a solution of

∂F

∂τ
+ η · ∇ξF − ξ · ∇ηF = βR2(t)divη(ηF ) + σR4(t)∆ηF . (RV FP )

The free energy is as usual (see [BD], [D], [DR])

F(τ) =

∫ ∫

IR3×IR3

F (τ, ξ, η)

(

1

2
|η|2 +

1

2
|ξ|2 +

σ

β
R2(t) log

(

F (τ, ξ, η)
)

)

dξdη

− σ

β
R2(t)||F ||L1(IR3×IR3) log ||F ||L1(IR3×IR3)

+ 3
σ

β
R2(t)||F ||L1(IR3×IR3) log

(

2π
σ

β
· R2(t)

)

≥ 0 ,

with of course τ = τ(t) = Arctg(t). Since t 7→ R(t) is increasing, it is more convenient to consider

L(τ) =
1

R2(t)
F(τ) ,

L(τ) =
1

R2(t)
E(τ) +

σ

β

∫ ∫

IR3×IR3

F (τ, ξ, η) log
(

F (τ, ξ, η)
)

dξdη

− σ

β
||F ||L1(IR3×IR3) log ||F ||L1(IR3×IR3)

+ 3
σ

β
||F ||L1(IR3×IR3) log

(

2π
σ

β
· R2(t)

)

,

with

E(τ) =
1

2

∫ ∫

IR3×IR3

F (τ, ξ, η)

(

|η|2 + |ξ|2
)

dξdη .

Then
dL

dτ
(τ) = −2

Ṙ(t)

R3(t)
(
dτ

dt
)−1E(τ) + 6

Ṙ(t)

R(t)
(
dτ

dt
)−1 σ

β
||F ||L1(IR3×IR3)

− β

∫ ∫

IR3×IR3

F (τ, ξ, η) |η +
σ

β
R2(t)

∂ηF

F
|2 dξdη .

Going back to the original variables, this means that

d

dt

[

1

2

∫ ∫

IR3×IR3

f(t, x, v)|v − t

1 + t2
x|2 dxdv +

1

2(1 + t2)2

∫ ∫

IR3×IR3

f(t, x, v)|x|2 dxdv

+
σ

β

∫ ∫

IR3×IR3

f(t, x, v) log f(t, x, v) dxdv

− σ

β
||f ||L1(IR3×IR3) log ||f ||L1(IR3×IR3) + 3

σ

β
||f ||L1(IR3×IR3) log

(

2π
σ

β
· (1 + t2)

)]

= − t

1 + t2

[∫ ∫

IR3×IR3

f(t, x, v)|v − t

1 + t2
x|2 dxdv +

1

(1 + t2)2

∫ ∫

IR3×IR3

f(t, x, v)|x|2 dxdv

]

+
6t

1 + t2
σ

β
||f ||L1(IR3×IR3) −

β

1 + t2

∫ ∫

IR3×IR3

f(t, x, v) |v − t

1 + t2
x +

σ

β

√

1 + t2
∂vf

f
|2 dxdv .
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With this computation and using the estimates given in Proposition 5 (Appendix A), we are in position
to state the following results on the long time behaviour of f .

Theorem 4 .Consider in C0([0, +∞[, L1(IR3 × IR3)) the solution of the Vlasov-Fokker-Planck equation
corresponding to a nonnegative initial data f0 in L∞(IR3 × IR3) such that

(x, v) 7→ f0(x, v) (|x|2 + |v|2 + | log f0(x, v)|)

belongs to L1(IR3 × IR3). Then

t 7→ 1

log(1 + t2)

∫ ∫

IR3×IR3

f(t, x, v)|v − t

1 + t2
x|2 dxdv

is uniformly bounded on IR+, f belongs to C0([0, +∞[, L1∩L∞(IR3×IR3)) and for any (p, q) ∈ [1, +∞]×[1, 5
3 ],

||f(t, ., .)||Lp(IR3×IR3) = o

(

t−
3
2 (1− 1

p )

)

and ||
∫

IR3

f(t, ., v) dv||Lq(IR3) = o

(

[log(1 + t2)]
3(q−1)

2q t−
3
2 (q−1)

)

,

as t → +∞.

Proof : The decay of ||f(t, ., .)||Lp(IR3×IR3)(t) is given by the results of Appendix A and interpolation
inequalities based on Hölder’s inequality.

Using that, on one side

L(τ(t)) ≤ L(0) + 3 log(1 + t2)
σ

β
||f0||L1(IR3×IR3) ,

and on the other side, by the mean of Jensen’s inequality,

L(t) − 1

4

∫ ∫

IR3×IR3

f(t, x, v)|v − t

1 + t2
x|2 dxdv ≥ −3σ

2β
||f0||L1(IR3×IR3) log 2 ,

one proves that 1
log(1+t2)

∫ ∫

IR3×IR3 f(t, x, v)|v − t
1+t2 x|2 dxdv is bounded.

The decay of ||
∫

IR3 f(t, ., v) dv||Lq(IR3)(t) is then a consequence of the following interpolation inequality
(see [Do3] for more details): there exists a constant C(p) > 0 such that

||
∫

IR3

f(t, ., v) dv||Lq(IR3) ≤ C(p)||f(t, ., .) dv||θLp(IR3×IR3) ·
(∫ ∫

IR3×IR3

f(t, x, v)|v − t

1 + t2
x|2 dxdv

)1−θ

with q = 5p−3
3p−1 and θ = 2p

5p−3 . ⊔⊓

Remark 5.

1) Note that the decay given above is mainly a consequence of the estimate given by the Green function, not
by a decay of the moment.
2) More precise estimates on the decay might be obtained using the expression of the Green function.
3) Using again interpolations results like in [Do3], one could also give decay estimates on moments in v of
order strictly less than 2.
4) The decay estimates on the moment in (v− t

1+t2 x) might be improved using one of the following logarithmic

Sobolev inequalities: for any nonnegative function g such that
√

g belongs to H1(IRd) (d ≥ 1), for any a > 0,

∫

IRd

g(y)(log g(y) +
|y|2
2a

) dy + ||g||L1(IRd) log

(

(2πa)d/2

||g||L1(IRd)

)

≤ a

2

∫

IRd

g(y) |∇g

g
+

y

a
|2 dy ,

∫

IRd

g(y) log g(y) dy + d

[

1 + ||g||L1(IRd) log

(
√

2πa

||g||L1(IRd)

)]

≤ a

2

∫

IRd

|∇g|2
g

dy .
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V. Conclusion

This paper has been focused on the dispersion properties of kinetic equations with collision terms.
However the rescaled equation does not provide much information because most of the solutions are defined
only in a very weak sense. The available information is too poor to prove that the rescaled solution converges
to the stationary solution of the rescaled equation. This is very similar to the situation that occurs for kinetic
equations without collision terms, for the Vlasov-Poisson system for instance (see [DR]) in the sense that the
results one can establish are simply based on the decay of the Lyapunov functional, which can be computed
directly.

Here, the method provides dispersion results because the collision kernels are local in x and (except
for the Vlasov-Fokker-Planck equation) and preserve the local energy (the momentum of order 2 in v is
conserved).

As a consequence, the rate of dispersion is determined more by the quantities one uses for the interpo-
lation than by the structure of the equation itself. For instance, in the case of the Boltzmann equation, the
solution found by R. Illner and M. Shindbrot (see [IS]) are such that ||ρ(t, .)||L∞(IR3) has a decay of order

O(t−3) while one proves only a decay of order O( 1
log(t) ) for the renormalized solution of R. DiPerna and P.-L.

Lions, simply because the interpolation uses the estimate
∫ ∫

IR3×IR3 f(t, x, v) log(f(t, x, v)) dxdv instead of
an L∞ (with weight) norm of f .

Similarly, for non-collisional kinetic equations, one may expect that the dispersion rate one can obtain
with interpolation methods will depend in a crucial way whether the solution is strong, weak, or renormalized.
A very simple illustration of this fact is given by the Vlasov-Poisson system: while the decay is of order
O(t−3) for classical solutions (see [BaDe]), the decay turns out to be weaker for strong solutions (see [P1],
[IR]), actually of order O(t−3/5). It is still weaker if we consider the renormalized solutions defined by R. J.
DiPerna and P.-L. Lions in [DPL3] as shown by the following result.

Proposition 4. Consider a renormalized solution of the Vlasov-Poisson system















∂f

∂t
+ v · ∇xf −∇xU · ∇vf = 0

− ∆U =

∫

IR3

f(t, x, v) dv

such that

(∫ ∫

IR3×IR3

f(t, x, v) (|v|2 + |x − vt|2 + log(f(t, x, v)) dxdv +

∫

IR3

|∇xU(t, x)|2 dx

)

|t=0

< +∞ .

Assume moreover that f(t = 0, ., .) = f0 has a spherical symmetry (i.e. depends only on t, |x| , |v| and
(x · v), and that at t = 0, f(t = 0, ., .) is supported in the set {(x, v) ∈ IR3 × IR3 : (x · v) > 0}. Then f is
spherically symmetric for any t > 0,

sup
t>0

∫ ∫

IR3×IR3

f(t, x, v) (|v|2 + |x − vt|2 + log(f(t, x, v)) dxdv +

∫

IR3

|∇xU(t, x)|2 dx < +∞

and
(i) for any t > 0,

(1 + t2)

∫ ∫

IR3×IR3

f(t, x, v)|v − t

1 + t2
x|2 dxdv +

1

1 + t2

∫ ∫

IR3×IR3

f(t, x, v)|x|2 dxdv

≤
∫ ∫

IR3×IR3

f0(x, v)(|x|2 + |v|2) dxdv ,
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(ii) there exists a positive constant C = C(f0) which depends only on f0 such that for any r > 0,

m(r, t) :=

∫

|x|<r

(

∫

IR3

f(t, x, v) dv)dx ≤ C(f0)

log

(√
1+t2

r

) .

The proof of (ii) is essentially the same as before except that we have to prove first that under the
symmetry assumptions made on f0, the solution has a Lyapunov functional which essentially has the same
decay as the solution of the free transport equation. We may note that for a strong solution, one would get
a decay of order O(t−6/5).

Of course, for a spherically symmetric solution, more results on the regularity are available and it is
possible to consider a stronger form of the solution than simply renormalized solutions. However, we will
here only use the a priori estimates that are required to define a renormalized solution (for the interpolation
method). The symmetry assumptions are done only to prove the decay of the Lyapunov functional. Without
these assumptions, the usual Lyapunov functional, or even its slightly improved form (see [DR]) involving a
moment of order 2 in x, is not sufficient to apply our interpolation method.

Proof : First, we may notice that for a spherically symmetric solution, the potential U is radial and decaying:
x ·∇xU(t, x) ≤ 0 for (t, x) ∈ IR+ × IR3 a.e. The argument is then very simple. Assume first that the solution
is a classical one (assertion (i) will be satisfied as soon as it is verified uniformly for classical solutions). One
may see that for any characteristic starting in the support of f0 at t = 0, for any t > 0,

d

dt
(
1

2
|v|2) = (x · v) and

d

dt
(x · v) = |v|2 − (x · ∇xU) ≥ 0 ,

(
1

2
|v|2)|t=0 ≥ 0 and (x · v)|t=0 ≥ 0 .

The kinetic energy is therefore increasing, and because of the conservation of energy,

d

dt

∫

IR3

|∇xU(t, x)|2 dx ≤ 0 .

Exactly as in [DR], instead of making a complete change of variables in t, x and v like in section II, one
may simply consider the equation for F defined by

f(t, x, v) = F (t, x, η = v − Ṙ

R
x) .

F is a solution of

∂F

∂t
+ v · ∇xF −∇xU · ∇vF − R̈

R
x · ∇vF +

Ṙ

R
∇x · (xF ) − Ṙ

R
∇v · (vF ) = 0 .

For any given function t 7→ B(t) in C1, a computation provides the identity

d

dt

[

B(t)·
(∫ ∫

IR3×IR3

F (t, x, η) |η|2 dxdη +
R̈

R

∫ ∫

IR3×IR3

F (t, x, η) |x|2 dxdη +

∫

IR3

|∇xU(t, x)|2 dx

)]

=B(
Ḃ

B
− 2

Ṙ

R
)

∫ ∫

IR3×IR3

F (t, x, η) |η|2 dxdη
BR̈

R
(
Ḃ

B
+

(d3R
dt3 )

R̈
+

Ṙ

R
)

∫ ∫

IR3×IR3

F (t, x, η) |x|2 dxdη

+ Ḃ

∫

IR3

|∇xU(t, x)|2 dx +
BṘ

R

∫ ∫

IR3×IR3

F (t, x, η) (x · ∇xU(t, x)) dx

≤ B(
Ḃ

B
− 2

Ṙ

R
)

∫ ∫

IR3×IR3

F (t, x, η) |η|2 dxdη

+
BR̈

R
(
Ḃ

B
+

(d3R
dt3 )

R̈
+

Ṙ

R
)

∫ ∫

IR3×IR3

F (t, x, η) |x|2 dxdη + Ḃ

∫

IR3

|∇xU(t, x)|2 dx
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as soon as Ṙ > 0. Assuming now simply that R(t) =
√

1 + t2 and B(t) = R2(t) = 1 + t2, we get

d

dt

[

B(t)·
(∫ ∫

IR3×IR3

F (t, x, η) |η|2 dxdη+
R̈

R

∫ ∫

IR3×IR3

F (t, x, η) |x|2 dxdη

)]

≤ d

dt

∫

IR3

|∇xU(t, x)|2 dx ≤ 0

which proves (i) when one replaces η and R(t) by their values. ⊔⊓

Appendix A: Green’s function of the Vlasov-Fokker-Planck operator

In order to give a complete description of the asymptotic behaviour of the Vlasov-Fokker-Planck equa-
tion, we state in this Appendix the decay properties that arise from the symmetries of the Green’s function.
The proof exactly follows the method one may apply to the heat equation.

Proposition 5.

(i) The Green function G ∈ C1(IR+;D(IR4N )) of the Vlasov-Fokker-Planck operator, i.e. the solution of

{

∂tG + v · ∂xG − β∂v · (vG) − σ∆vG = 0

G(t = 0, x, v, y, w) = δ(x − y, v − w)

is

G(t, x, v, y, w) = eNβtF (t, x +
1 − eβt

β
− y, eβtv −w) , with F (t, x, v) =

e
−λ(t)|v|2−2µ(t)(x·v)+ν(t)|x|2

4σ(λ(t)ν(t)−µ2 (t))

(4πσ)N (λ(t)ν(t) − µ2(t))N/2
,

or

G(t, x, v, y, w) = J(t) · H
(

M(t)
(

(x, v) − U(t)(y, w)
)

)

with
H(x, v) = (4π)−N · e− 1

4 (|x|2+|v|2) ,

J(t) =
(

a(t)d(t) − b(t)c(t)
)N

=
eNβt

(

σ2(λ(t)ν(t) − µ2(t))
)N/2

,

U(t)(y, w) =

(

y − 1

β
(e−βt − 1)w, e−βtw

)

and M(t)(x, v) =
(

a(t)x + b(t)v, c(t)x + d(t)v
)

,

a(t) = 1√
σλ(t)

, b(t) = 1√
σλ(t)

· 1−eβt

β ,

c(t) = − µ(t)

λ(t)

√

σ(ν(t)− µ2(t)
λ(t)

)

, d(t) =
eβt−µ(t)

λ(t)
· 1−eβt

β
√

σ(ν(t)− µ2(t)
λ(t)

)

,

λ(t) =
3
2 − 2 eβ t + e2 β t

2

β3
+

t

β2
, µ(t) =

−1 + 2 eβ t − e2 β t

2 β2
and ν(t) =

−1 + e2 β t

2 β
.

(ii) f is a solution of the linear Vlasov-Fokker-Planck equation

∂tf + v · ∂xf − β∂v · (vf) − σ∆vf = g
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corresponding to the initial condition f0 if and only if

f(t, x, v) = f0 ∗ G(t, .) +

∫ t

0

g(s, .) ∗ G(t − s, .) ds

where
(

h ∗ G(t, .)
)

(t, x, v) =

∫ ∫

IRN×IRN

h(y, w)G(t, x, v, y, w) dydw .

(iii) The fundamental solution is invariant under the following transformation: for any α > 0,

G(t, x, v, y, w) = k(α, t) · G(αt, T (α, t)(x, v), U−1(αt)oT (α, t)oU(t)(y, w))

∀ (t, x, v, y, w) ∈]0, +∞[×IR4N

with

k(α, t) =
J(t)

J(αt)
and T (α, t) = M−1(αt) o M(t) .

As a consequence, if g ≡ 0 and if f0 belongs to L1(IRN × IRN ), then

lim
t→+∞

tN/2 · ||f(t, x, v) − ||f0||L1(IRN×IRN ) · G(t, x, v, 0, 0)||L∞(IRN×IRN ; dxdv) = 0 ,

lim
t→+∞

||f(t, x, v) − ||f0||L1(IRN×IRN ) · G(t, x, v, 0, 0)||L1(IRN×IRN ; dxdv) = 0 .

Proof : (i) is a classical computation which can be found in [Bo2] or [H]. Let us give a sketch of the proof:
with the change of variables

G(t, x, v, y, w) = eNβtF (t, x +
1 − eβt

β
v − y, eβtv − y) ,

F has to be the fundamental solution of

∂tF (t, x, v) = σ

(

dλ

dt
(t) · ∂2F

∂x2
(t, x, v) + 2

dµ

dt
(t) · ∂2F

∂x∂v
(t, x, v) +

dν

dt
(t) · ∂2F

∂v2
(t, x, v)

)

A Fourier transform shows that

F̂ (t, x̂, v̂) =

∫ ∫

IRN×IRN

F (t, x, v)ei(x·x̂+v·v̂) dxdv

is a solution of

∂tF̂ (t, x̂, v̂) = −σ

(

dλ

dt
(t) · |x̂|2 + 2

dµ

dt
(t) · (x̂ · v̂) +

dν

dt
(t) · |v̂|2

)

F̂ (t, x̂, v̂)

with the normalization condition F̂ (t, 0, 0) = 1 for any t > 0.

log

(

F̂ (t, x̂, v̂

F̂ (t, 0, 0)
)

)

= −σ

(

λ(t)|x̂|2 + 2µ(t) · (x̂ · v̂) + ν(t)|v̂|2
)

= −σ

(

λ(t)
∣

∣x̂ +
µ(t)

λ(t)
v̂
∣

∣

2
+
(

ν(t) − µ2(t)

λ(t)

)∣

∣v̂
∣

∣

2
)
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An inverse Fourier transform now gives

F (t, x, v)

=

∫ ∫

IRN×IRN

e−i(x·x̂+v·v̂)F̂ (t, x̂, v̂)
dx̂dv̂

(2π)2N

=
e
− |x|2

4σλ(t)

(4πσλ(t))N/2
·
∫

IRN

e−iv·v̂ · ei
µ(t)
λ(t)

·(x·v̂) · e−
σ

λ(t)
(λ(t)ν(t)−µ2(t))|v̂|2 dv̂

(2π)N

=
e
− |x|2

4σλ(t)

(4πσλ(t))N/2
·
∫

IRN

e−iv·v̂ · e−
σ

λ(t)
(λ(t)ν(t)−µ2(t))|v̂− iµ(t)

2σ(λ(t)ν(t)−µ2(t))
x|2 · e

µ2(t)

4σλ(t)(λ(t)ν(t)−µ2 (t))
|x|2 dv̂

(2π)N

=
e
− 1

4σλ(t)
(1+

µ2(t)

λ(t)ν(t)− mu2(t)
)|x|2

(4πσλ(t))N/2
· e

− λ(t)

4σ(λ(t)ν(t)−µ2 (t))
|v|2

(

4πσ · λ(t)ν(t)−µ2(t)
λ(t)

)N/2
· e−

µ(t)

2σ(λ(t)ν(t)−µ2 (t))
·(x·v)

=
e
−λ(t)|v|2−2µ(t)(x·v)+ν(t)|x|2

4σ(λ(t)ν(t)−µ2(t))

(4πσ)N (λ(t)ν(t) − µ2(t))N/2
,

which provides the result for G, since

λ(t) · |v|2 − 2µ(t) · (x · v) + ν(t) · |x|2
σ(λ(t)ν(t) − µ2(t))

=

∣

∣

∣

∣

√

λ(t)

σ(λ(t)ν(t) − µ2(t))

(

v − µ(t)

λ(t)
x

)∣

∣

∣

∣

2

+

∣

∣

∣

∣

1
√

σλ(t)
x

∣

∣

∣

∣

2

.

(ii) The integral form of the equation is classically given by the following computation: if G is the Green
function corresponding to

∂G

∂t
= LG , G(t = 0, .) = δ ,

a solution of
∂f

∂t
= Lf + g , f(t = 0, .) = f0

is then formally given by

f = G ∗ f0 +

∫ t

0

g(s, .) ∗ G(t − s, .) ds

(apply ( ∂
∂t −L) to [G∗f0+

∫ t

0
g(s, .)∗G(t−s, .) ds] and integrate by parts). Since the solution of the equation

is unique, (ii) is proved.

(iii) The invariance of G is easily derived from the following identities:

k(α, t)J(αt) · H(M(αt) o T (α, t)(x, v)) = J(t)H(M(t)(x, v)) ,

G(t, x, v, y, w) = G(t, (x, v) − U(t)(y, w), 0, 0) .

In the following we denote by G0 the fundamental solution:

G0(t, x, v) = G(t, x, v, 0, 0) .

Like for the heat equation we may now compute

k(t, 1)f(t, T (t, 1)(x, v)) =

∫ ∫

IRN×IRN

f0(y, w) k(t, 1) G0

(

t, T (t, 1)[(x, v) − T−1(t, 1)oU(t)(y, w)]

)

dydw

=

∫ ∫

IRN×IRN

f0(y, w) G0

(

1, (x, v) − T−1(t, 1)oU(t)(y, w)

)

dydw

18



where

T−1(t, 1) = M−1(1) o M(t) ∼

√

β
σ

a(1)d(1) − b(1)c(1)

(

d(1) −b(1)
−c(1) a(1)

)

·
(

√
2βe−βt −

√
2

√

β
t

1√
βt

)

,

T−1(t, 1)oU(t) ∼

√

β
σ

a(1)d(1) − b(1)c(1)





−
√

β
t · b(1) −

√
2 d(1)

√

β
t a(1)

√
2 c(1)



 ·
(

1 1
β

0 0

)

as t → +∞ .

This proves that

lim
t→+∞

k(t, 1)f(t, T (t, 1)(x, v)) =

∫ ∫

IRN×IRN

f0(y, w) dydwG0(1, x, v) .

To conclude the proof, we have to notice that

lim
t→+∞

sup
(x,v)∈IRN×IRN

k(t, 1) ·
∣

∣

∣

∣

f(t, x, v) − ||f0||L1(IRN×IRN ) · G0(t, x, v)

∣

∣

∣

∣

= lim
t→+∞

sup
(x,v)∈IRN×IRN

k(t, 1) ·
∣

∣

∣

∣

f
(

t, T (t, 1)(x, v)
)

− ||f0||L1(IRN×IRN ) · G0

(

t, T (t, 1)(x, v)
)

∣

∣

∣

∣

≤ lim
t→+∞

sup
(x,v)∈IRN×IRN

∫ ∫

IRN×IRN

f0(y, w) k(t, 1) ·
∣

∣

∣

∣

G0

(

t, T (t, 1)[(x, v) − T−1(t, 1)oU(t)(y, w)]

)

− G0(t, T (t, 1)[(x, v))

∣

∣

∣

∣

dydw

= 0

because of Lebesgue’s theorem of dominated convergence. The result holds for the L∞-estimate since k(t, 1) ∼
J(1)σN

(2β)N/2 · tN/2 as t → +∞. The result for the L1-norm is obtained in the same way, but

∫ ∫

IRN×IRN

∣

∣

∣

∣

f(t, x, v) − ||f0||L1(IRN×IRN ) · G0(t, x, v)

∣

∣

∣

∣

dxdv

= k(t, 1) ·
∫ ∫

IRN×IRN

∣

∣

∣

∣

f
(

t, T (t, 1)(x, v)
)

− ||f0||L1(IRN×IRN ) · G0(t, x, v)

∣

∣

∣

∣

dxdv ,

which explains why there is no explicit w.r.t. t uniform convergence. ⊔⊓

Remark 6. The above computation also shows that || ||f0||L1(IRN×IRN ) · G(t, x, v, 0, 0)||L1(IRN×IRN ; dxdv) is
a constant (which is consistent with the fact that the L1-norm of f is conserved) and that

||f(t, x, v)||L∞(IRN×IRN ; dxdv) ∼ ||f0||L1(IRN×IRN ) ·G(t, x, v, 0, 0)||L∞(IRN×IRN ; dxdv) = O(t−N/2) as t → +∞ .

From a heuristical point of view, the equivalence results as t → +∞ are easily recovered if one notices
that f is a solution of the Vlasov-Fokker-Planck equation corresponding to an initial data f0 if and only if

fα(t, x, v) = k(α, t)f(αt, T (α, t)(x, v))

is a solution of the Vlasov-Fokker-Planck equation corresponding to an initial data

fα
0 (x, v) = k(α, t)f0

(

U−1(t)oT−1(α, t)oU(αt)(x, v)

)
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(the proof relies on a simple change of variables). But for a fixed t,

fα
0 → ||f0||L1(IRN×IRN ) · δ as α → +∞

(in the sense of the distributions), which proves the assertion :

f(t, x, v) = f t(1, x, v) ∼ ||f0||L1(IRN×IRN ) · G(t, x, v, 0, 0) as t → +∞ .

Appendix B: Positive Maxwellian solutions of the Vlasov equation in an harmonic potential

In this last part of the paper, we give the general expression of nonnegative local Maxwellian solutions of
the transport equation in an harmonic potential by solving the corresponding equations for the coefficients.
These solutions form a bigger class than the periodic solutions given in Proposition 3 (Section II) and might
even be pseudo-periodic.

Most probably, the main interest of such solutions is that they straightforwardly give special solutions of
the Boltzmann, Landau or BGK equations in the whole space simply by using the time dependant rescaling.
These solutions (for the unscaled equations) are of course local Maxwellians.

Proposition 6. Any nonnegative local Maxwellian solution

g(t, x, v) = r(t, x) exp{−σ(t, x)|v − u(t, x)|2} (B1)

of the transport equation in an harmonic potential:

∂g

∂t
+ v · ∇xg − x · ∇vg = 0 (B2)

such that the coefficients r(t, x), u(t, x) and σ(t, x) are Lipschitz and such that (t, x, v) 7→ g(t, x, v) (1 +
|x|2 + |v|2 + | log g(t, x, v)|) belongs to L∞(IR, L1(IR3 × IR3)) is given by

r(t, x) = M(
σ0

π
)

3
2 (1 − |ω0|2

σ2
0

) e
−σ0|x−x0(t)|2+ 1

σ0
|ω0∧(x−x0(t))|2 ,

σ(t, x) = σ0 ,

u(t, x) = u1
⊥ cos(

|ω0|
σ0

t + ϕ1)e
1
⊥ + u2

⊥ cos(
|ω0|
σ0

t + ϕ2)e
2
⊥ + uω0 cos(t + ϕω0)

ω0

|ω0|
,

where (σ0, ω0) ∈]0, +∞[×IR3 are constants such that

|ω0| < σ0 ,

(e1
⊥, e2

⊥, ω0

|ω0| ) is a given orthonormal basis in IR3,

(

(u1
⊥, u2

⊥, uω0), (ϕ1, ϕ2, ϕω0)

)

∈ IR3 × [0, 2π[3, M =

||g(t, ., .)||L1(IR3×IR3) and x0(t) is given by

x0(t) =
σ2

0

σ2
0 − |ω0|2

[

1

|ω0|2
ω0 ∧

(

ω0 ∧ u′
0(t)
)

− 1

σ0
ω0 ∧ u0(t)

]

− u′
0(t) · ω0

|ω0|2
ω0 .
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Proof : If g is a Maxwellian solution of Equation (B2) of the form given in Equation (B1), its coefficients
have to satisfy to the following system

∂r

∂t
− |v − u|2r∂σ

∂t
+ 2rσ

∂u

∂t
· (v − u) + v · ∇xr − |v − u|2rv · ∇xσ

+2rσ∇xu(v, v − u) + 2rσx · (v − u) = 0

or, assuming that the coefficients of the polynomial in v − u cancel

∂r

∂t
+ u · ∇xr = 0, (B3)

2rσ
∂u

∂t
+ ∇xr + 2rσu∇xu + rσ∇x(|x|2) = 0, (B4)

−r
∂σ

∂t
− ru · ∇xσ + 2rσ∇xu(h, h) = 0, (B5)

r∇xσ = 0, (B6)

for any h ∈ S2. Assume first that r > 0 almost everywhere. Then Equation (B6) gives

σ(t, x) = σ0(t),

and Equation (B5) is now

−r
∂σ

∂t
+ 2rσ∇xu(h, h) = 0.

According to L. Desvillettes (see [De]), (∇⊗u− σ′
0(t)

2σ0(t)Id) is an antisymmetric bilinear form: there exist two

functions t 7→ ω(t) and t 7→ u0(t) such that

u(t, x) =
σ′

0(t)

2σ0(t)
x + ω(t) ∧ x + u0(t).

According to Equation (B4),

∂u

∂t
+

σ′
0(t)

σ0(t)
ω ∧ x = − 1

2σ0
∇x(log r) +

1

2
∇x(|ω ∧ x|2)− 1

2

(

(
σ′

0(t)

2σ0(t)
)2 + 1

)

∇x(|x|2)−
(

(
σ′

0(t)

2σ0(t)
)u0 + ω ∧ u0

)

is a gradient. This is possible only if
∂ω

∂t
= −σ′

0(t)

σ0(t)
ω(t),

ω(t) =
ω0

σ0(t)

for some fixed ω0 ∈ IR3.
With the notation

M =

∫ ∫

IR3×IR3

g(t, x, v) dxdv ∀ t ∈ IR,

and using again Equation (B4), r(t, x) takes the form

r(t, x) =
M

(2π)3/2
·
√

a(t)

(

a(t) + |ω0|2b(t)
)

· e
−

(

a(t)
2 |x−x0(t)|2+ b(t)

2 |ω0∧(x−x0(t))|2
)

provided
a(t) + |ω0|2b(t) > 0 ∀ t ∈ IR
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and if a(t), b(t) and x0(t) satisfy the following equations which are obtained by identifying to zero the
coefficients of the polynomial in (x − x0(t)) in Equation (B4):

a(t) = σ′′
0 (t) − (σ′

0(t))
2

2σ0(t)
+ 2σ0(t),

b(t) = − 2

σ0(t)
,

1

2σ0(t)

(

σ′′
0 (t)− (σ′

0(t))
2

2σ0(t)
+2σ0(t)

)

x0(t)+
1

(σ0(t))2
ω0∧(ω0∧u0(t))+

(

u′
0(t)+

σ′
0(t)

2σ0(t)
u0(t)+

1

σ0(t)
ω0∧x0

)

= 0.

(B7)
The solution of Equation (B7) is given by:

x0(t) = −
(

σ′′
0 (t)

2σ0(t)
− (σ′

0(t))
2

4(σ0(t))2
+ 1 − |ω0|2

(σ0(t))2

)−1

·
{

1

|ω0|2
ω0 ∧ (ω0 ∧

(

u′
0(t) +

σ′
0(t)

2σ0(t)
u0(t)

)

− 1

σ0(t)
ω0 ∧ u0(t)

}

−
(

σ′′
0 (t)

2σ0(t)
− (σ′

0(t))
2

4(σ0(t))2
+ 1

)−1

·
{(

(

u′
0(t) +

σ′
0(t)

2σ0(t)
u0(t)

)

· ω0

|ω0|

)

ω0

|ω0|

}

(B8)

The problem is now reduced to solve Equation (B3):

∂(log r(t, x))

∂t
+ u(t, x) · ∇x(log r(t, x)) = 0,

which gives the explicit expressions for σ0(t) and u0(t) by identifying the coefficients of the polynomial in
(x − x0(t)) to 0:

a′(t)

2a(t)
+

a′(t) + |ω0|2b′(t)
a(t) + |ω0|2b(t)

− a′(t)

2
|x − x0(t)|2 −

b′(t)

2
|ω0 ∧ (x − x0(t))|2

+ a(t)(x − x0(t)) · x′
0(t) + b(t)(ω0 ∧ (x − x0(t))) · (ω0 ∧ x′

0(t))

−
(

σ′
0(t)

2σ0(t)
x +

1

σ0(t)
ω0 ∧ x + u0(t)

)

·
(

a(t)(x − x0(t)) − b(t)ω0 ∧
(

ω0 ∧ (x − x0(t))
)

)

.

The second order terms in (x − x0(t)) provide the identity:

a(t) =
a0

σ0(t)

for some constant a0 ∈]0, +∞[ and the condition on ω0 is now

|ω0|2 <
a0

2
.

The first order coefficients in (x − x0(t)) give

a0

(

x′
0(t) −

(σ′
0(t)

σ0(t)
x0(t) +

1

σ0(t)
ω0 ∧ x0(t) + u0(t)

)

)

+ 2ω0 ∧
[

ω0 ∧
(

x′
0(t) −

(σ′
0(t)

σ0(t)
x0(t) +

1

σ0(t)
ω0 ∧ x0(t) + u0(t)

)

)]

= 0 ,

which is equivalent to

x′
0(t) =

σ′
0(t)

σ0(t)
x0(t) +

1

σ0(t)
ω0 ∧ x0(t) + u0(t) . (B9)
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The zeroth order coefficient corresponds to
σ′

0(t)

σ0(t)
= 0 .

σ0 is therefore a constant as well as a = 2σ0 and b = − 2
σ0

, and the condition on ω0 is now

|ω0| < σ0 .

According to Equation (B8),

x0(t) =
σ2

0

σ2
0 − |ω0|2

[

1

|ω0|2
ω0 ∧

(

ω0 ∧ u′
0(t)
)

− 1

σ0
ω0 ∧ u0(t)

]

− u′
0(t) · ω0

|ω0|2
ω0 .

Plugging this expression for x0(t) into Equation (B9), we get for u(t) the system











(u′′
0 + u0) · ω0 = 0

[(u′′
0 +

|ω0|2
σ2

0

u0) ∧ ω0 = 0

which achieves the proof of Proposition 6 in the case r > 0 a.e.
Note that the same proof holds on any connected component of

{(t, x) ∈ IR+ × IR3 : r(t, x) > 0},

so that r cannot vanish. ⊔⊓
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[H] L. Hörmander, The analysis of linear partial differential operators. I, Distribution theory and Fourier
analysis, Second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Math-
ematical Sciences], 256. Springer-Verlag, Berlin, 1990.

[IR] R. Illner & G. Rein, The time decay of the solutions of the Vlasov-Poisson system in the plasma physical
case, Math. Methods Appl. Sci. 19 no. 17 (1996) 1409-1413.

[IS] R. Illner, M. Shinbrot, The Boltzmann equation: global existence for a rare gas in an infinite vacuum,
Comm. Math. Phys. 95 no. 2 (1984) 217-226.

[K] S. Kullback, A lower bound for discrimination information in terms of variation, IEEE Trans. Information
theory 13 (1967) 126-127.

[L1] P.-L. Lions, Compactness in Boltzmann’s equation via Fourier integral operators and applications. I,
II. J. Math. Kyoto Univ. 34 no. 2 (1994) 391-427, 429-461. III. J. Math. Kyoto Univ. 34 no. 3 (1994)

24



539-584.

[L2] P.-L. Lions, On Boltzmann and Landau equations, Philos. Trans. Roy. Soc. London Ser. A 346 (1994)
191-204.

[M] S. Mischler, Uniqueness for the BGK-equation in IRN and rate of convergence for a semi-discrete scheme,
Differential Integral Equations 9 no. 5 (1996) 1119-1138.

[MP] S. Mischler, B. Perthame, Boltzmann equation with infinite energy: renormalized solutions and distri-
butional solutions for small initial data and initial data close to a Maxwellian. SIAM J. Math. Anal. 28 no.
5 (1997) 1015-1027.

[P1] B. Perthame, Time decay, propagation of low moments and dispersive effects for kinetic equations,
Comm. P.D.E. 21 (1& 2) (1996) 659-686.

[P2] B. Perthame, Décroissance en temps: analogie entre les équations du transport cinétique, de Schrödinger
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