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Abstract. On the Euclidean space, we establish some Weighted Logarithmic Sobolev (WLS) inequalities. We

characterize a symmetry range in which optimal functions are radially symmetric, and a symmetry breaking range.

(WLS) inequalities are a limit case for a family of subcritical Caffarelli-Kohn-Nirenberg (CKN) inequalities with similar

symmetry properties. A generalized carré du champ method applies not only to the optimal solution of the nonlinear

elliptic Euler-Lagrange equation and proves a rigidity result as for (CKN) inequalities, but also to entropy type

estimates, with the full strength of the carré du champ method in a parabolic setting. This is a significant improvement

on known results for (CKN). Finally, we briefly sketch some consequences of our results for the weighted diffusion flow.
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1 Introduction and main results

Logarithmic Sobolev inequalities are well known cases of functional inequalities with many applications in
various areas of mathematics ranging from information theory to probability theory, functional analysis,
differential geometry and mathematical physics. In partial differential equations, these inequalities now appear
as fundamental tools for the understanding of rates of convergence, not only for diffusion equations but also,
for instance, in kinetic theory. Various settings have been considered depending on the geometry, the presence
of a drift or a potential, or the choice of a reference measure. Sharp inequalities, with optimal constants, and
equality cases are trickier issues, as the problem is usually difficult to reduce to spectral estimates. Among the
few known examples, we can quote the case of the sphere and the characterization [15] by E. Carlen of the set
of optimal functions in the Euclidean logarithmic Sobolev inequalities. See [40] for general weights.

In this article, we mainly focus on the case of Rd with homogeneous (power-law) weights because of
the symmetry versus symmetry breaking issue. This is a well-known question for Caffarelli-Kohn-Nirenberg
inequalities. Although the weights are invariant under rotations, optimal functions are not necessarily spherically
symmetric. V. Felli and M. Schneider gave in [44] a condition for symmetry breaking based on the linear
instability of the radial solutions of the Euler-Lagrange equations. Symmetry is a global property. Proving
symmetry is therefore a delicate issue and standard methods like moving planes or symmetrization techniques
are not sufficient to cover all cases. The problem has recently been fully solved in [35, 38] for some special sub-
families of the Caffarelli-Kohn-Nirenberg inequalities using a nonlinear version of the carré du champ method
introduced by D. Bakry and M. Emery in [3], applied to the Euler-Lagrange equation solved by the optimal
functions. The underlying framework is based on entropy methods for nonlinear diffusion equations, but the
approach is so far formal by lack of regularity estimates to justify all computations: see [34] for partial results.
In the case of (WLS) inequalities, we can use the whole parabolic approach of entropy methods as there is a
dense set of (Hermite) polynomials and integrations by parts can be justified. As far as we know, this is the
first application of the parabolic carré du champ method to the symmetry versus symmetry breaking issue for
weighted inequalities on Rd.

Let Lqγ(Rd) with d ≥ 1 be the space of all measurable functions f such that

‖f‖q,γ :=

(∫
Rd
|f |q |x|−γ dx

)1/q
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is finite. We also define the space H1
β,γ(Rd) of the functions f ∈ L2

γ(Rd) such that ∇f ∈ L2
β(Rd) and consider

the weighted logarithmic Sobolev inequality∫
Rd

|f |2

‖f‖22,γ
log

(
|f |2

‖f‖22,γ

)
|x|−γ dx ≤ Cβ,γ +

n

2
log

(
‖∇f‖22,β
‖f‖22,γ

)
∀ f ∈ H1

β,γ(Rd) (WLS)

with

n :=
2 (d− γ)

β + 2− γ
(1)

and real parameters β and γ satisfying the condition

γ − 2 < β <
d− 2

d
γ < d . (2)

In (WLS), Cβ,γ denotes the optimal constant. Let us define the Felli & Schneider curve

βFS(γ) := d− 2−
√

(d− γ)2 − 4 (d− 1) , (3)

consider the additional parameter

α := 1 +
β − γ

2
, (4)

define the function

f?(x) := cn,d
√
α e−

1
4 |x|

2α

with cn,d =

√
Γ
(
d
2

)
2
n
2 π

d
2 Γ
(
n
2

)
such that ‖f?‖γ = 1 and the constant

C ?
β,γ := log

( (
2
n e

)n
2

αn−1 π
d
2

Γ
(
d
2

)
Γ
(
n
2

)) . (5)

Our main result deals with the symmetry versus symmetry breaking issue and goes as follows.

Theorem 1.1 . Let d ≥ 2. Assume that (β, γ) 6= (0, 0) satisfies (2). Then Inequality (WLS) holds for some
constant Cβ,γ ≤ C ?

β,γ . Equality in (WLS) is achieved by an optimal function fβ,γ ∈ H1,1
β,γ(Rd) \ {0} and there are

two cases:

(i) Symmetry breaking : Cβ,γ < C ?
β,γ and fβ,γ is not radially symmetric if and only if

γ < 0 and βFS(γ) < β <
d− 2

d
γ . (6)

(ii) Symmetry : Cβ,γ = C ?
β,γ and all optimal functions are given by f? up to a multiplication by an arbitrary

real constant and a scaling if and only if

γ < d and γ − 2 ≤ β ≤ βFS(γ) . (7)

In the symmetry breaking range, the set of optimal functions is generated by fβ,γ up to rotations, a multiplication
by an arbitrary real constant and a scaling. If (β, γ) = (0, 0), optimality is achieved by Gaussian functions
corresponding to α = 1 and translations also have to be taken into account according to [15]. If d = 1, we have the
same result as in the symmetry case: Cβ,γ = C ?

β,γ and all optimal functions are given by f? up to a multiplication
by an arbitrary real constant and a scaling. At this stage, the driving mechanism responsible for the symmetry
breaking phenomenon might still look somewhat mysterious. We will now reformulate Inequality (WLS) into
various equivalent forms before coming back to a qualitative explanation of the competition between terms of
different nature which explains why symmetry breaking occurs in the range β > βFS(γ).

As in [8], we can reduce (WLS) to the case β = γ, at the price of an anisotropy in the gradient term
measured by α 6= 1. Let us consider the artificial dimension n given by (1) and take

ν := d− n .
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Let us define the operator Dα

Dα = ∇+ (α− 1)
x

|x|2
(x · ∇) = ∇+ (α− 1)ω ∂r ,

so that, in spherical coordinates (r, ω) ∈ R+ × Sd−1, it writes

Dαw =

(
α∂rw
1
r∇ωw

)
.

By Condition (2), notice that n > d and ν < 0 arise from β < (d− 2) γ/d.
To a function f ∈ H1

β,γ(Rd), we associate the function g ∈ H1
ν,ν(Rd) such that

f(x) = g
(
|x|α−1 x

)
∀x ∈ Rd . (8)

With this change of variables, the function f? is transformed into the Gaussian function

g?(x) = cn,d e
− 1

4 |x|
2

with cn,d =

√
Γ
(
d
2

)
2
n
2 π

d
2 Γ
(
n
2

) , (9)

where the normalization constant cn,d is such that ‖g?‖2,ν = 1. Let us define

αFS :=

√
d− 1

n− 1
and K ?

n,α := C ?
β,γ − logα = log

((
2
n e

)n
2

αn π
d
2

Γ
(
d
2

)
Γ
(
n
2

)) .

Using (8), Inequality (WLS) is transformed into the n-dimensional weighted logarithmic Sobolev inequality∫
Rd

|g|2

‖g‖22,ν
log

(
|g|2

‖g‖22,ν

)
|x|−ν dx ≤ Kn,α +

n

2
log

(
‖Dαg‖22,ν
‖g‖22,ν

)
(WLSn)

where n plays the role of a dimension at least for scaling properties, even if it is not an integer. Rewritten with
the parameters α, n and ν, Theorem 1.1 goes as follows.

Corollary 1.2 . Let n > d ≥ 1, ν = d− n, and assume that α ∈ (0, 1) ∪ (1,+∞). Then Inequal-
ity (WLSn) holds for some constant Kn,α ≤ K ?

n,α. Equality in (WLSn) is achieved by an optimal function

gα,n ∈ H1
ν,ν(Rd) \ {0} and there are two cases:

(i) Symmetry breaking : Kn,α < K ?
n,α and gα,n is not radially symmetric if and only if α > αFS and d ≥ 2.

(ii) Symmetry : Kn,α = K ?
n,α and all optimal functions are given by g? up to a multiplication by an arbitrary

real constant and a scaling if and only if either d ≥ 2 and α ≤ αFS, or d = 1.

Since Corollary 1.2 is equivalent to Theorem 1.1 by the change of variables (8), we will use interchangeably the
two statements. Any result proved for (WLS) is also true for (WLSn) and reciprocally. There are various other
equivalent forms of the (WLS) inequalities, exactly as for the standard logarithmic Sobolev inequalities:

� The two non-scale invariant weighted logarithmic Sobolev inequalities,

‖∇f‖22,β − σ
∫
Rd
|f |2 log

(
|f |2

‖f‖22,γ

)
|x|−γ dx ≥ σ

(
n

2
log

(
2 e

n σ

)
− Cβ,γ

)
‖f‖22,γ , (10a)

‖Dαg‖22,ν − σ
∫
Rd
|g|2 log

(
|g|2

‖g‖22,ν

)
|x|−ν dx ≥ σ

(
n

2
log

(
2 e

n σ

)
−Kn,α

)
‖g‖22,ν , (10b)

hold for any σ > 0 and are equivalent to (WLS) and (WLSn). This can be recovered by optimizing the
left-hand sides under the scalings λ 7→ λ(d−γ)/2 f(λ ·) and λ 7→ λn/2 g(λ ·). The equality case in (10b) is

achieved by the function gα,σ? (x) :=
(
2σ α−2

)n/4
g?
(√

2σ x/α
)

if Kn,α = K ?
n,α (symmetry case). Here g?

is the Gaussian function given in (9).
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� Gaussian-like inequalities. In the case of the standard Sobolev inequality, without weights, the Euclidean
form of the inequality is equivalent to the Gaussian form. We have the exact counterpart, which goes as
follows. Let us define the probability measure

dνσ := νσ dx with νσ(x) := |x|−ν
(
gα,σ? (x)

)2
= c2n,d

(
2σ
α2

)n
2 |x|−ν e−

σ
α2 |x|

2

with gα,σ? defined as above. Then (10b) applied to the function g = v gα,σ? amounts to∫
Rd
|Dαv|2 dνσ ≥ σ

∫
Rd
|v|2 log

(
|v|2∫

Rd |v|2 dνσ

)
dνσ + σ

(
Kn,α −K ?

n,α

)∫
Rd
|v|2 dνσ (11a)

for any v ∈ H1(Rd, dνσ), with Kn,α = K ?
n,α in the symmetry range and Kn,α −K ?

n,α < 0 in the symmetry

breaking range. Using the change of variable (8) with u(x) = v
(
|x|α−1 x

)
and the probability measure

dµσ := µσ dx with µσ(x) := ανσ
(
|x|α−1 x

)
,

we also obtain∫
Rd
|∇u|2 |x|γ−β dµσ ≥ σ

∫
Rd
|u|2 log

(
|u|2∫

Rd |u|2 dµσ

)
dµσ + σ

(
Cβ,γ − C ?

β,γ

)∫
Rd
|u|2 dµσ . (11b)

If Cβ,γ = C ?
β,γ (or equivalently Kn,α = K ?

n,α), the equality case in (11b) is achieved by the function
u(x) = 1 a.e. and in (11a) by v(x) = 1 a.e.

� Euclidean logarithmic Sobolev inequalities with Hardy-type correction terms. We denote by Lq(Rd) the
standard Lebesgue space with norm ‖f‖q := ‖f‖q,0 and consider the function h(x) := |x|−ν/2 g(x). An
expansion of the square and an integration by parts show that

‖Dαg‖22,ν =

∥∥∥∥Dαh+
1

2
αν

x

|x|2
h

∥∥∥∥2

2

= ‖Dαh‖22 −
1

4
α2 ν

(
2 (d− 2)− ν

) ∫
Rd

|h|2

|x|2
dx .

For any σ > 0, we can rewrite (10b) in terms of h as∫
Rd

(
|Dαh|2 + Vα,ν,σ |h|2 − σ |h|2 log

(
|h|2

‖h‖22

))
dx ≥ σ

(
n
2 log

(
2 e
n σ

)
−Kn,α

)
‖h‖22 ∀h ∈ H1(Rd) (12)

where the left-hand side is a Schrödinger energy with an anisotropic kinetic term if α 6= 1, a logarithmic
nonlinearity and a potential

Vα,ν,σ(x) := −1

4
α2 ν

(
2 (d− 2)− ν

) 1

|x|2
− σ ν log |x| ∀x ∈ Rd \ {0} . (13)

We recall that ν is a negative parameter: the potential Vα,ν,σ is radially symmetric, with a singularity at
x = 0 such that limx→0 Vα,ν,σ(x) = +∞, and we also have lim|x|→+∞ Vα,ν,σ(x) = +∞. An elementary com-

putation shows that Vα,ν,σ achieves its minimum on the centered sphere of radius α
√

(2 (d− 2)− ν)/(2σ).

Inequality (12) is typical a problem for symmetry breaking. If α = 1 and we omit the potential, a Schwarz
symmetrization shows that the minimum of the Schrödinger energy is achieved by a radially symmetric
function h, up to a translation. On the other hand, if we include Vα,ν,σ, in order to minimize the potential
energy term, it is favourable to localize as much as possible h close to a point x̄ in the set of the minima of Vα,ν,σ
which, as a curved surface is not compatible with radial symmetry centred at x̄. A competition between the
kinetic and the potential energy terms is taking place, and the arbitrage is gauged by the parameter α. In the
limiting case α→ 0, only gradients in the angular variables have to be minimized to make ‖Dαh‖22 small, which
favours radially symmetric solutions, but this is not the case for α large. Going further in this qualitative analysis
to decide which one of the two terms wins is difficult. It is the purpose of this paper to give a clear cut answer.

The carré du champ method does not only determine the optimal functions in the weighted logarithmic
Sobolev inequalities but also characterizes all positive critical points. If σ = 1, let us consider the Euler-Lagrange
equations associated with (10a) and (10b), that is,

− |x|γ ∇ ·
(
|x|−β ∇f

)
+ f = f log |f |2 and D∗α Dα g + g = g log |g|2 (14)

for an appropriate choice of ‖f‖22,γ and ‖g‖22,ν . We have the following rigidity result.
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Corollary 1.3 . Under the assumptions of Theorem 1.1 or Corollary 1.2, each of the two equations of (14)
admits a unique positive solution, given respectively, up to a scaling and a multiplication by a positive constant,
by f? and g?, in the symmetry range. In the symmetry breaking range, each of the two equations admits at least
one radially symmetric solution and a continuum of no-radial solutions.

In the limit case (β, γ) = (0, 0) corresponding to (n, α) = (d, 1), which is not covered in (2), uniqueness
is achieved only up to additional translations. We will not give a detailed proof of Corollary 1.3, as it is an
elementary consequence of the proof of Corollary 1.2. From the point of view of nonlinear elliptic equations, it
amounts to test the equations of (14) by − |x|γ ∇ ·

(
|x|−β ∇f

)
. To implement the carré du champ method, we

use a dynamical version of these test functions given by the weighted heat flows

∂u

∂t
= |x|γ ∇ ·

(
|x|−β ∇u

)
, (15)

Proving (WLS) and (WLSn) in the symmetry range is obtained by identifying the optimal decay rate of the
entropy. The core of the method of D. Bakry and M. Emery is to evolve the entropy by the weighted heat flow:
its time-derivative is the Fisher information. Reapplying the flow, the key point is to prove the exponential
decay of the Fisher information by computing one more t-derivative.

Let us give a a brief review of the literature. For sake of simplicity, results involving powers of |∇f |p with
p 6= 2, higher order derivatives related for instance to Rellich inequalities, critical weights corresponding to Hardy-
type inequalities or results on general manifolds or on Lie groups will not be systematically mentioned, but we
will give at least some entry points in the literature. Logarithmic Sobolev inequalities have been widely studied,
in various settings: see [26, 43, 48, 58, 60] for historical references, [2, 49, 56] for introductory books or lecture
notes, and [4, Chapter 5] for a general presentation of CD(ρ,N) methods applied to functional inequalities.
In [5, 45, 46] and [59, Chapter 5], one can find various sufficient conditions for logarithmic Sobolev inequalities
to hold. See [5, 53], [59, Chapter 6] and [1] for some results on the interpolation inequalities between Poincaré
and logarithmic Sobolev inequalities. Optimal constants and equality cases in logarithmic Sobolev inequalities
are tricky issues: beyond observations based on the carré du champ in [3], we refer to [15] in the Euclidean and
Gaussian cases, to [30] on cylinders (in connection with Caffarelli-Kohn-Nirenberg inequalities), and to [13] for
recent considerations on stability in strong norms (see references therein for other stability results measured in,
e.g., Wasserstein distance).

In this paper we consider the simple setting of Rd with power-law weights, for scaling reasons. Norms other
than the standard Euclidean norm could be considered, but the corresponding symmetry results are, to the best
of our knowledge, unknown. Our (WLS) inequalities appear as a limit case for a family of subcritical Caffarelli-
Kohn-Nirenberg inequalities (CKN), for which symmetry breaking is a well known issue that was addressed in
various papers: see [8, 9, 17, 23, 25, 35, 38, 39, 44, 50, 57], among others. See Section 3 for some explanations of
the mathematical issues. Concerning positive critical points of (CKN), a rigidity result holds as a consequence of
a generalized carré du champ method applied to the nonlinear elliptic equation solved by the optimal functions.
This rigidity result can be rephrased in terms of the properties of branches of solutions of nonlinear elliptic
equations depending on a parameter: see [37]. At a formal level, these results for (CKN) can also be interpreted
in the framework of entropy methods as strict monotonicity properties deduced from the carré du champ method
adapted to nonlinear diffusion equations.

The results on sharp functional inequalities in [33, 35] are inspired, on the one hand, by the rigidity results for
nonlinear elliptic equations studied in [6, 47], and on the other hand, by entropy and diffusion flows of [3, 29].
The connection is made precise and expanded in [33, 36]: the carré du champ method is a central idea for
the overall strategy which applies very well to linear diffusion flows with drift potential terms or on compact
manifolds. The carré du champ method has many aspects, but from the functional inequalities point of view, one
can just keep in mind that monotonicity properties through the diffusion flow relate the functional inequality
written for an arbitrary initial data to an asymptotic regime, which can be studied using spectral methods.
See [10] for an extended presentation applied to a family of Gagliardo-Nirenberg-Sobolev inequalities. Applied
to nonlinear flows on the Euclidean space, new difficulties arise as, for instance, integration by parts require
precise decay bounds which are not easy to justify. Progress in the absence of singular weights has been achieved
in [16, 52]. In presence of weights, the method formally applies but only partial results have been rigorously
justified in [11, 34, 42]. For the optimizers of functional inequalities involving singular weights, the difficulty can
be bypassed by proving the existence of minimizers and testing directly the solutions of the Euler-Lagrange,
which amounts to testing such critical points in the direction corresponding to the flow. This is the simplest
interpretation of the method of B. Gidas and J. Spruck in [47]. The issue is then reduced to a rigidity issue for
solutions of elliptic equations which, as such, have good regularity and decay properties. So far, all sharp results
of symmetry in Caffarelli-Kohn-Nirenberg inequalities have been obtained using such an approach. In the case
of logarithmic Sobolev inequalities, we are able to perform the whole parabolic method as there is a dense set



6 J. Dolbeault and A. Zuniga

of Hermite functions, in the appropriate version of the inequality, and integrations by parts can be justified. To
our knowledge, this is the first result of symmetry versus symmetry breaking to be proved with the parabolic
version of the carré du champ method.

The logarithmic Hardy inequalities studied in [28, 31] correspond to a boundary of the admissible domain
of parameters in (WLS). So far, we are not aware of a method that would allow us to deduce results from (WLS)
by taking an appropriate limit. For completeness, let us give a few additional reading indications on papers
related with ours. Concerning logarithmic Hardy and Sobolev inequalities on Lie groups, we refer to [22] and
references therein. See [27] and references therein for logarithmic inequalities involving powers of |∇f |p with
p 6= 2. We refer to [7, 18, 21] for logarithmic Sobolev inequalities corresponding to non-singular weights of
the form (1 + |x|2)−β/2 known as Cauchy measures and their links with the super Poincaré inequalities, and
to [19, 20, 24] for various related contributions.

This paper is organized as follows. In Section 2, we use the spectral method of V. Felli and M. Schneider
to prove the linear instability of the radial optimal functions in the symmetry breaking range of (WLS) and
the carré du champ method to establish the symmetry in the symmetry range, with self-contained proofs. We
use entropy methods in a parabolic setting to prove the symmetry result, which is the first result of this type
obtained at non-formal level using a diffusion equation of evolution, in presence of weights. In Section 3, we
show how (WLS) can be seen as a limit case for a family of subcritical Caffarelli-Kohn-Nirenberg inequalities.
Notice that Γ-convergence methods is expected to provide us with an alternative proof of Corollary 1.2 and
Theorem 1.1. Section 4 is devoted to some consequences of our results for the weighted heat flow associated to
our weighted logarithmic Sobolev inequalities.

2 Optimal functions, symmetry and symmetry breaking in (WLS) inequalities

2.1 The weighted logarithmic Sobolev inequality

We start by proving that Inequality (WLS) is well-defined.

Lemma 2.1 . Let d ≥ 1. Assume that (β, γ) 6= (0, 0) satisfies (2). Then the inequality∫
Rd

|f |2

‖f‖22,γ
log

(
|f |2

‖f‖22,γ

)
|x|−γ dx ≤ C ?

β,γ +
n

2
log

(
‖∇f‖22,β
‖f‖22,γ

)
∀ f ∈ H1,1

β,γ(Rd)

holds with C ?
β,γ defined by (5).

In other words, we prove here that Inequality (WLS) holds for some constant Cβ,γ ≤ C ?
β,γ . Since (WLS) is

subcritical, it is a standard strategy to establish the inequality using an Hölder interpolation and a critical
inequality.

Proof . Let p := 2 d−γ
d−2−β ∈ (2, 2∗) with 2∗ = +∞ if d = 1, 2 and 2∗ = 2 d/(d− 2) if d ≥ 3. Let us consider the

critical Caffarelli-Kohn-Nirenberg inequality∫
Rd
|∇u|2 |x|−β dx ≥ CCKN

(∫
Rd
|u|p |x|−γ dx

)2/p

(16)

which has been widely studied, see for instance [14, 17, 35, 51]. Here β and γ satisfy (2) and n given by (1) is
such that

p

p− 2
=
n

2
.

Hölder’s inequality
‖u‖q,γ ≤ ‖u‖

η
2 ‖u‖

1−η
p,γ ,

written with η = 2 p−q
q (p−2) for any q ∈ (2, p), degenenerates into an equality as q → 2+. By differentiating this

inequality with respect to q at q = 2, we obtain the logarithmic Hölder inequality∫
Rd
|u|2 log

(
|u|2

‖u‖22,γ

)
|x|−γ dx ≤ p

p− 2
‖u‖22,γ log

(
‖u‖2p,γ
‖u‖22,γ

)
(17)

for any p > 2. Combined with (16) in the case p = 2 d−γ
d−2−β , this establishes the weighted logarithmic Sobolev

inequality ∫
Rd
|u|2 log

(
|u|2

‖u‖22,γ

)
|x|−γ dx ≤ A ‖u‖22,γ log

(
‖∇u‖22,β
‖u‖22,γ

)
+ B ‖u‖22,γ (18)
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with A = n/2, n given by (1) and B = n log CCKN. The value of A cannot be improved, as shown by the scaling

λ 7→ uλ := λn/2 u(λ·) .

Testing (18) by f?(x) = cn,d
√
α e−

1
4 |x|

2α

shows that B ≥ C ?
β,γ . The optimal value of B is therefore the minimal

value for which (18) holds for any u ∈ H1
β,γ(Rd).

2.2 Existence of optimal functions

The existence of an optimal function for (WLS) is proved in [13] by concentration-compactness methods when
n = d and α = 1. A similar proof can be found in [30], which itself relies on an extension of the concentration-
compactness method of [54]. The proof in the case (n, α) 6= (d, 1) can also be done by the same method.

Proposition 2.2 . Let d ≥ 1 and asume that (β, γ) satisfies (2). Equality in (WLS) is achieved by a function
u ∈ H1

β,γ(Rd) if Cβ,γ is taken to its optimal value.

Proof . We work with the inequality written in the form (12) with Vα,ν,σ defined by (13) and rely on direct
variational methods. Since Vα,ν,σ is bounded from below, there is no significant difficulty compared to the
proof of the existence of a minimizer for logarithmic Sobolev inequalities without weights or potentials (see for
instance [13, 30] for similar results). For completeness, let us give a sketch of a proof.

Using the homogeneity, let us consider a minimizing sequence (hn)n∈N of functions in H1(Rd) such that
‖hn‖2 = 1 for any n ∈ N and

lim
n→+∞

∫
Rd

(
|Dαhn|2 + Vα,ν,σ |hn|2 − σ |hn|2 log |hn|2

)
dx = σ

(
Kn,α +

n

2
log

(
2 e

n σ

))
.

An optimization under scalings shows that we can choose ‖Dαhn‖2 = σ n/2 with no loss of generality.
Using ‖Dαhn‖2 ≥ min{1, α} ‖∇hn‖2 and the standard Euclidean logarithmic Sobolev inequality, we have that(
|hn|2 log |hn|2

)
n∈N and

(
(Vα,ν,σ)

1/2
+ hn)n∈N are bounded in L2(Rd). For any R > 1 large enough, since∫
|x|>R

|hn|2 dx ≤
1

logR
≤ C

∫
Rd
Vα,ν,σ |hn|2 dx

for some positive constant C and since concentration is forbidden away from origin by standard Gagliardo-
Nirenberg embedding inequalities and (17) while concentration at x = 0 would provide us with an infinite
contribution to the potential energy term, the sequence (hn)n∈N is relatively compact in L2(Rd). Up to the
extraction of a subsequence, (hn)n∈N strongly converges in L2(Rd) to some limit h such that ‖h‖2 = 1. According
to [12, Theorem 2], we have

lim
n→+∞

∫
Rd
|hn|2 log |hn|2 dx =

∫
Rd
|h|2 log |h|2 dx+ lim

n→+∞

∫
Rd
|h− hn|2 log |h− hn|2 dx .

By (12) applied to (h− hn) and a convexity argument as in [30], limn→+∞
∫
Rd |h− hn|

2 log |h− hn|2 dx = 0 and
we conclude that h realizes the equality case in (12). This completes the proof.

2.3 Linear instability and a symmetry breaking range

With f(x, y) := x1− 2
n e

2
n

y
x , Inequality (WLSn) becomes

F [g] := ‖Dαg‖22,ν − e
− 2
n Kn,α f

(∫
Rd
|g|2 |x|−ν dx,

∫
Rd
|g|2 log

(
|g|2
)
|x|−ν dx

)
≥ 0 .

We Taylor expand F [g] around g∗ by computing F[φ] := 1
2 lim
ε→0

ε−2 F [g∗ + ε φ] and find that

F[φ] = ‖Dαφ‖22,ν − e
− 2
n Kn,α

(
∂xf(1, y∗) ‖φ‖22,ν + ∂yf(1, y∗)

(
3 ‖φ‖22,ν +

∫
Rd

log
(
|g∗|2

)
|φ|2 |x|−ν dx

))

for any φ such that
∫
Rd
(
1, |x|2

)
g∗ φ |x|−ν dx = (0, 0), where∫

Rd
|g∗|2 |x|−ν dx = 1 and y∗ :=

∫
Rd
|g∗|2 log

(
|g∗|2

)
|x|−ν dx = 2 log cn,d −

n

2
.
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In the symmetry range, we have Kn,α = K ?
n,α and

e−
2
n Kn,α f(1, y∗) = e−

2
n Kn,α e

2
n y∗ = ‖Dαg∗‖22,ν =

n

4
α2 .

Since ∂xf(1, y∗) =
(
1− 2

n −
2
n y∗

)
f(1, y∗) and ∂yf(1, y∗) = 2

n f(1, y∗), in that case we obtain

F[φ] = ‖Dαφ‖22,ν +
1

4
α2

∫
Rd
|φ|2 |x|2+n−d dx− n

4
α2

(
1− 2

n
− 2

n
y∗ +

6

n
+

4

n
log cn,d

)
,

so that, under the condition Kn,α = K ?
n,α, we have

F[φ] = ‖Dαφ‖22,ν − α
2
(

1 +
n

2

)
‖φ‖22,ν +

1

4
α2

∫
Rd
|φ|2 |x|2+n−d dx .

Lemma 2.3 . Let n > 1 and α > 0 be two real numbers and consider any integer d ≥ 2. If Kn,α = K ?
n,α, the

lowest nonradial eigenmode associated with the quadratic form φ 7→ F[φ] is

λ1(α) =
α

2

(√
4 (d− 1) + α2 (n− 2)2 − αn

)
. (19)

Proof . We use a decomposition into spherical harmonics. Since the lowest eigenvalue of the Laplace-Beltrami
operator on Sd−1 is (d− 1), we have to solve the eigenvalue problem

−α2

(
ϕ′′ +

n− 1

r
ϕ′
)

+
d− 1

r2
φ+

α2

4
r2 ϕ = λ1 ϕ

for some positive radial function r 7→ ϕ(r), r ∈ (0,+∞). Elementary computations show that ϕ(r) = r1+δ e−r
2/4

solves the equation with δ = λ1(α)/α2 and λ1(α) given by (19).

On R+, it is an elementary computation to check that α 7→ λ1(α) takes negative values if and only if

α > αFS =

√
d− 1

n− 1
. (20)

Here we find exactly the Felli & Schneider condition for symmetry breaking as in [38, 44].

Proposition 2.4 . If (20) holds, then Kn,α < K ?
n,α.

Proof . We argue by contradiction. If Kn,α = K ?
n,α, then g? is an optimal function. However, a perturgation

of g? by an eigenfunction associated with the eigenvalue λ1(α) < 0 given by (19) proves that F takes negative
values, a contradiction with the definition of Kn,α.

We learn from Propositions 2.2 and 2.4 that Inequality (WLS) admits only non-radial optimal functions
if (20) holds. The next step is to prove that all optimal functions for (WLS) are radially symmetric if α ≤ αFS

and given up to a multiplication by a constant and a scaling by f?.

2.4 A symmetry result by the carré du champ method

This section is devoted to the proof of Theorem 1.1, Part (ii), corresponding to the symmetry case, which is
the difficult range. The method relies on the carré du champ method and it is inspired from [34, Section 3].
However, the presence of the logarithmic nonlinearity imposes various non-trivial changes that are detailed
below. Altogether, this is a striking application of the nonlinear carré du champ method and we give a complete
and self-contained proof. Computations which have already appeared in the context of (CKN) inequalities are
clearly indicated. We consider here the weighted logarithmic Sobolev inequality written in the form of (10b) with
σ = 1/2. If D∗α is the adjoint operator of Dα acting on vector-valued functions F, with respect to the measure

dµn := rn−1 dr dω ,

then we have
D∗αF = − |x|d−n∇ · (|x|n−d F)− (α− 1) r1−n ω · ∂r(rn−1 F) .
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Moreover we have the useful identity

D∗α (uF) = −Dαu · F + uD∗αF (21)

if u and F are respectively scalar- and vector-valued functions. Let us define the operator Lα by

Lα = −D∗αDα = α2

(
∂2
r +

n− 1

r
∂r

)
+

∆ω

r2
,

where ∆ω denotes the Laplace-Beltrami operator on Sd−1, and consider the Fokker-Planck equation

∂u

∂t
= −D∗α (uF) (22)

where the flux F and the relative pressure variable p are defined by

F(t, x) := Dα log u+ x = Dα

(
log u+

|x|2

2α2

)
= Dαp , p := log u− 2 log g

α, 12
?

and g
α,1/2
? is the normalized optimal function for (10b) with σ = 1/2. Hermite functions are dense and stable

under the action of the flow (22) so that we can always work on a finite dimensional space generated by some
Hermite functions and argue by density. Since there is no difficulty in integrating by parts, we will do it without
further justification. This is the first major difference with [34] where a nonlinear flow is considered and one has
to do an approximation procedure on larger and larger balls. To simplify the proof, we divide it in several simple
statements. Our main goal is to prove the exponential decay of the Fisher information, which goes as follows.

Lemma 2.5 . Assume that d ≥ 2, n > d and α ∈ (0, αFS]. If u solves (22) with F = Dαp, then

d

dt

∫
Rd
u |F|2 dµn ≤ − 2α

∫
Rd
u |F|2 dµn .

It is straightforward to check that
∂F

∂t
+ Dα

(
u−1 D∗α (uF)

)
= 0

and, as a consequence,

d

dt

∫
Rd
u |F|2 dµn =

∫
Rd

∂u

∂t
|F|2 dµn + 2

∫
Rd
uF · ∂F

∂t
dµn

= −
∫
Rd

D∗α (uF) |F|2 dµn − 2

∫
Rd
uF · Dα

(
u−1 D∗α (uF)

)
dµn .

A first integration by parts shows that∫
Rd

D∗α (uF) |F|2 dµn =

∫
Rd
uF · Dα

(
|F|2
)
dµn .

Using (21) and Dα log u = F− x, we get

d

dt

∫
Rd
u |F|2 dµn = −

∫
Rd
uF · Dα

(
|F|2
)
dµn − 2

∫
Rd
uF · Dα (D∗αF− F · Dα log u) dµn

= −
∫
Rd
uF · Dα

(
|F|2
)
dµn − 2

∫
Rd
uF · Dα

(
D∗αF− |F|2 + F · x

)
dµn

=

∫
Rd
uF · Dα

(
|F|2
)
dµn − 2

∫
Rd
uF · Dα(F · x) dµn − 2

∫
Rd
uF · Dα (D∗αF) dµn .

Using uF = Dαu+ xu and integrating by parts, we obtain∫
Rd
uF · Dα

(
|F|2
)
dµn = −

∫
Rd
u Lα

(
|F|2
)
dµn +

∫
Rd
ux · Dα

(
|F|2
)
dµn .
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Hence

d

dt

∫
Rd
u |F|2 dµn = − 2

∫
Rd
uK[F] dµn +

∫
Rd
ux · Dα

(
|F|2
)
dµn − 2

∫
Rd
uF · Dα(F · x) dµn −

2

n

∫
Rd
u (D∗αF)2 dµn

with

K[F] :=
1

2
Lα
(
|F|2
)

+ F · Dα (D∗αF)− 1

n
(D∗αF)2 . (23)

We recall that F = Dαp so that

K[Dαp] =
1

2
Lα |Dαp|2 − Dαp · DαLαp−

1

n
(Lαp)2 .

Let us state a result inspired by [35, Lemma 5.1], [38, Lemma 4.2 and Lemma 4.3].

Lemma 2.6 . With the above notations, we have the two following estimates:

(i) Pointwise estimate:

K[Dαp] = α4

(
1− 1

n

) ∣∣∣∣p′′ − p′

r
− ∆ω p

α2 (n− 1) r2

∣∣∣∣2 +
2α2

r2

∣∣∣∣∇ωp′ − ∇ωpr
∣∣∣∣2 +

k[p]

r4

where

k[p] :=
1

2
∆ω |∇ωp|2 −∇ωp · ∇ω(∆ω p)− 1

n− 1
(∆ω p)2 − (n− 2)α2 |∇ωp|2 .

(ii) Integral estimate on the sphere Sd−1 if d ≥ 2:∫
Sd−1

k[p]u dω ≥ (n− 2)
(
α2

FS − α2
) ∫

Sd−1

|∇ωp|2 u dω + δ

∫
Sd−1

|∇ωp|4 dω

where δ is a positive constant depending only on n and d.

Proof . Property (i) can be found in [35, Lemma 5.1] and [38, Lemma 4.2]. See Lemma A.1 in Appendix A.
for a more detailed statement and a proof. The regularity needed in Lemma A.1 is not an issue in our setting, as
we consider solutions in spaces generated by a finite number of Hermite polynomials and then argue by density.

Next we focus on the proof of (ii). We go along the lines of the proof of [38, Lemma 4.3], but many
details have to be changed to adapt the proof. The results are inspired from [29, 32, 33, 36] and we adopt the
presentation of [33]: Sd−1 is considered as a (d− 1)-dimensional compact manifold with metric g and uniform
probability measure dω. We shall indeed assume that it is normalized so that ω(Sd−1) = 1 to avoid carrying
normalization constants. Let us introduce some notation. If Aij and Bij are two tensors, then

A : B := gim gjn Aij Bmn and ‖A‖2 := A : A .

Here gij is the inverse of the metric tensor, i.e., gij gjk = δik. We use the Einstein summation convention and δik
denotes the Kronecker symbol. Let us denote the Hessian by Hωp and define the trace free Hessian by

Lωp := Hωp−
1

d− 1
(∆ωp) g .

We also consider the following trace free tensor

Mωp := ∇ωp⊗∇ωp−
1

d− 1
|∇ωp|2 g ,

where ∇ωp⊗∇ωp := (∂ip ∂jp)ij and ‖∇ωp⊗∇ωp‖2 = |∇ωp|4 = (gij ∂ip ∂jp)2. Using Lω : g = Mω : g = 0, we
obtain

‖Lωp‖2 = ‖Hωp‖2 −
1

d− 1
(∆ωp)2 , (24a)

‖Mωp‖2 = ‖∇ωp⊗∇ωp‖2 −
1

d− 1
|∇ωp|4 =

d− 2

d− 1
|∇ωp|4 , (24b)

Lωp : Mωp =

(
Hωp−

1

d− 1
(∆ωp) g

)
: (∇ωp⊗∇ωp) = Hωp : (∇ωp⊗∇ωp)− 1

d− 1
∆ωp |∇ωp|2 . (24c)
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Assume first that d ≥ 3. The Bochner-Lichnerowicz-Weitzenböck formula on Sd−1 takes the simple form

1

2
∆ω

(
|∇ωp|2

)
= ‖Hωp‖2 +∇ω(∆ωp) · ∇ωp + (d− 2) |∇ωp|2 (25)

where the last term, i.e., Ric(∇ωp,∇ωp) = (d− 2) |∇ωp|2, accounts for the Ricci curvature tensor contracted
with ∇ωp⊗∇ωp. With

k[p] :=
1

2
∆ω

(
|∇ωp|2

)
−∇ωp · ∇ω(∆ω p)− 1

n− 1
(∆ω p)2 − (n− 2)α2 |∇ωp|2 ,

we compute∫
Sd−1

u k[p] dω =

∫
Sd−1

u

(
‖Hωp‖2 + (d− 2) |∇ωp|2 −

1

n− 1
(∆ω p)2 − (n− 2)α2 |∇ωp|2

)
dω

=

∫
Sd−1

u

(
‖Lωp‖2 +

(
1

d− 1
− 1

n− 1

)
(∆ω p)2 +

(
(d− 2)− (n− 2)α2

)
|∇ωp|2

)
dω

using (25) and (24a).

With p = log u+ |x|2
2α2 , it turns out that

∇ωu = u∇ωp ,

whence, applying integrations by parts again and taking into account (24b) and (24c),∫
Sd−1

u∆ωp |∇ωp|2 dω = −
∫
Sd−1

u |∇ωp|4 dω − 2

∫
Sd−1

uHωp : (∇ωp⊗∇ωp) dω

=− d− 1

d− 2

∫
Sd−1

u ‖Mωp‖2 dω − 2

∫
Sd−1

uLωp : Mωp dω −
2

d− 1

∫
Sd−1

u∆ωp |∇ωp|2 dω .

As a consequence, we obtain∫
Sd−1

u∆ωp |∇ωp|2 dω = −d− 1

d+ 1

(
d− 1

d− 2

∫
Sd−1

u ‖Mωp‖2 dω + 2

∫
Sd−1

uLωp : Mωp dω

)
. (26)

On the other hand, integrating (25) on Sd−1 against u and performing an integration by parts shows that

1

2

∫
Sd−1

u∆ω

(
|∇ωp|2

)
dω +

∫
Sd−1

u∆ωp |∇ωp|2 dω +

∫
Sd−1

u (∆ωp)2 dω

=

∫
Sd−1

u ‖Hωp‖2 dω + (d− 2)

∫
Sd−1

u |∇ωp|2 dω

=

∫
Sd−1

u ‖Lωp‖2 dω +
1

d− 1

∫
Sd−1

u (∆ωp)2 dω + (d− 2)

∫
Sd−1

u |∇ωp|2 dω

by (24a). Integrations by parts also show that

1

2

∫
Sd−1

u∆ω

(
|∇ωp|2

)
dω =

1

2

∫
Sd−1

u |∇ωp|4 dω +
1

2

∫
Sd−1

u∆ωp |∇ωp|2 dω ,

so that, by (24b),

1

2

(d− 1)

(d− 2)

∫
Sd−1

u ‖Mωp‖2 dω +
3

2

∫
Sd−1

u∆ωp |∇ωp|2 dω +
d− 2

d− 1

∫
Sd−1

u (∆ωp)2 dω

=

∫
Sd−1

u ‖Lωp‖2 dω + (d− 2)

∫
Sd−1

u |∇ωp|2 dω .

Hence∫
Sd−1

u (∆ωp)2 dω +
1

2

(d− 1)

(d− 2)

(
d− 1

d− 2

∫
Sd−1

u ‖Mωp‖2 dω + 3

∫
Sd−1

u∆ωp |∇ωp|2 dω
)

=
d− 1

d− 2

∫
Sd−1

u ‖Lωp‖2 dω + (d− 1)

∫
Sd−1

u |∇ωp|2 dω . (27)
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We can now combine (26) and (27) to get∫
Sd−1

u (∆ωp)2 dω +
1

2

(
d− 1

d− 2

)2 ∫
Sd−1

u ‖Mωp‖2 dω

− 3

2

(d− 1)

(d− 2)

(d− 1)

(d+ 1)

(
d− 1

d− 2

∫
Sd−1

u ‖Mωp‖2 dω + 2

∫
Sd−1

uLωp : Mωp dω

)
=
d− 1

d− 2

∫
Sd−1

u ‖Lωp‖2 dω + (d− 1)

∫
Sd−1

u |∇ωp|2 dω .

This allows us to prove that∫
Sd−1

u k[p] dω =

∫
Sd−1

u
(
a ‖Lωp‖2 + bLωp : Mωp + c ‖Mωp‖2

)
dω + (n− 2)

(
α2

FS − α2
) ∫

Sd−1

u |∇ωp|2 dω

where we use the fact that

(d− 2)− (n− 2)α2 +

(
1

d− 1
− 1

n− 1

)
(d− 1) = (n− 2)

(
α2

FS − α2
)

with a = (d−1) (n−2)
(d−2) (n−1) , b = 3 (d−1) (n−d)

(n−1) (d+1) (d−2) and c = (d−1) (n−d)
(n−1) (d+1) (d−2) . Hence we obtain∫

Sd−1

u k[p] dω ≥ (n− 2)
(
α2

FS − α2
) ∫

Sd−1

u |∇ωp|2 dω +

(
c− b2

4 a

)∫
Sd−1

u ‖Mωp‖2 dω

because the discriminant b2 − 4 a c takes negative values. Taking into account (24b), this completes the proof
with

δ =

(
c− b2

4 a

)
d− 2

d− 1
= (n− d)

4 (d+ 1)(d− 2) + (4 d− 5) (n− d)

4 (n− 1) (n− 2) (d+ 1)2
> 0 .

If d = 2, we identify S1 with [0, 2π), denote by θ ∈ [0, 2π) the angular variable and by uθ and uθθ the first
and second derivatives of u with respect to θ. As in [35, Lemma 5.3] and [38, Lemma 4.3], we have

k[p] =
n− 2

n− 1
|pθθ|2 − (n− 2)α2 |pθ|2 = (n− 2)

(
α2

FS |pθθ|2 − α2 |pθ|2
)
.

Let w =
√
u and recall that u pθ = uθ so that

u |pθ|2 = 4 |wθ|2 and u |pθθ|2 = 4

∣∣∣∣wθθ − |wθ|2w

∣∣∣∣2 .
Notice that wθθ |wθ|2 = 1

3
d
dθ (wθ |wθ|2). With one integration by parts we obtain∫

S1

∣∣∣∣wθθ − |wθ|2w

∣∣∣∣2 dθ =

∫
S1
|wθθ|2 dθ +

∫
S1

|wθ|4

w2
dθ − 2

∫
S1
wθθ
|wθ|2

w
dθ =

∫
S1
|wθθ|2 dθ +

1

3

∫
S1

|wθ|4

w2
dθ .

By the Poincaré inequality, we have ∫
S1
|wθθ|2 dθ ≥

∫
S1
|wθ|2 dθ

and conclude that∫
S1
u k[p] dθ ≥ 4 (n− 2)

(
α2

FS − α2
) ∫

S1
|wθ|2 dθ +

4

3

∫
S1

|wθ|4

w2
dθ

= (n− 2)
(
α2

FS − α2
) ∫

S1
u |pθ|2 dθ +

1

12

∫
S1
u |pθ|4 dθ .

Lemma 2.7 . With the above notations, we have the identity∫
Rd
ux · Dα

(
|F|2
)
dµn − 2

∫
Rd
uF · Dα(F · x) dµn = − 2α

∫
Rd
u |F|2 dµn .
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Although very elementary, this estimate is fundamental as it establishes the exponential decay of the Fisher
information in the symmetry range. Lemma 2.7 is in fact no more than an integration by parts.

Proof . Since x · Dα = α r ∂r, x · F = α r ∂r p, x · ∇ω = 0, and F · ∂rF = F · ∂r(Dαp) = F · Dα ∂rp− 1
r3 |∇ωp|

2, we
have that∫

Rd
ux · Dα

(
|F|2
)
dµn − 2

∫
Rd
uF · Dα(F · x) dµn

= 2α

∫
Rd
u (r F · ∂rF− r F · Dα∂rp− α∂rp (ω · F)) dµn

= − 2α

∫
Rd
u

(
α2 |∂rp|2 +

|∇ωp|2

r2

)
dµn = − 2α

∫
Rd
u |F|2 dµn ,

which concludes the proof.

Proof of Lemma 2.5. Collecting the estimates of Lemmata 2.6 and 2.7 into (23), we have shown that

d

dt

∫
Rd
u |F|2 dµn + 2α

∫
Rd
u |F|2 dµn ≤ − 2 (n− 2)

(
α2

FS − α2
) ∫

Rd
u |∇ωp|2 dµn − 2 δ

∫
Rd
|∇ωp|4 dµn .

Under the assumptions of Lemma 2.5, the right-hand side is nonpositive, which completes the proof.

Proof of Theorem 1.1. We learn from Lemma 2.5 that

d

dt

(∫
Rd
u |F|2 dµn − 2α

∫
Rd
u p dµn

)
≤ 0 .

On the other hand, t 7→
∫
Rd u(t, ·) |F(t, ·)|2 dµn decays exponentially, whence limt→+∞

∫
Rd u(t, ·) |F(t, ·)|2 dµn = 0.

Any decomposition of u on a finite dimensional subspace of Hermite functions is exponentially decaying and
such that limt→+∞

∫
Rd u(t, ·) p(t, ·) dµn = 0, thus proving that the inequality

∫
Rd u |F|

2 dµn ≥ 2α
∫
Rd u p dµn is

always true for any t ≥ 0 and, in particular, it holds true for the initial datum, which can be chosen arbitrarily.
This amounts to (WLS) in the non scale-invariant form (10b).

3 (WLS) inequalities as an endpoint of some Caffarelli-Kohn-Nirenberg inequalities

This section relies on the results of [8, 38] and shows the consistency of our results with the symmetry properties
of (CKN) inequalities.

3.1 A brief summary of the symmetry properties of some (CKN) inequalities

On the space H1,p
β,γ(Rd) of the functions f ∈ Lp+1

γ (Rd), such that ∇f ∈ L2
β(Rd), we consider the special family

of Caffarelli-Kohn-Nirenberg interpolation inequalities

‖f‖2p,γ ≤ Cβ,γ,p ‖∇f‖ϑ2,β ‖f‖
1−ϑ
p+1,γ ∀ f ∈ H1,p

β,γ(Rd) (CKN)

with optimal constant Cβ,γ,p, and parameters β, γ and p such that

γ − 2 < β <
d− 2

d
γ , γ ∈ (−∞, d) , p ∈ (1, p?) with p? :=

d− γ
d− 2− β

. (28)

The exponent

ϑ =
(d− γ) (p− 1)

p
(
(d+ 2 + β − 2 γ)− p (d− 2− β)

)
is determined by the invariance under scalings. The limitation p ≤ p? in (28) amounts, for a given p > 1 to a
restriction to the admissible set of parameters (β, γ), namely

β ≥ d− 2− d− γ
p

. (29)
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On the other hand, if d ≥ 3, we notice that the condition p? < d/(d− 2) is equivalent to

β <
d− 2

d
γ .

The range of admissible parameters (β, γ) is limited by (28) to a cone in the quadrant β < d− 2 and γ < d with
the additional condition (29). See [38, Fig. 1].

The symmetry versus symmetry breaking issue is central in Caffarelli-Kohn-Nirenberg inequalities (CKN).
Symmetry in (CKN) means that the equality case is achieved by the (generalized) Aubin-Talenti type functions

g(x) =
(
1 + |x|2+β−γ)− 1

p−1 ∀x ∈ Rd . (30)

According to [44], [8, Theorem 2] and in [38, Theorem 1.1] symmetry breaking occurs if and only if (β, γ)
satisfy (6) where γ 7→ βFS(γ) is the Felli & Schneider curve defined by (3). In the symmetry range determined
by (7), the value of Cβ,γ,p is known. According to [8, Appendix A], if (7) holds, we have

Cβ,γ,p = C?β,γ,p (31)

where σd := |Sd−1| = 2πd/2

Γ(d/2) is the volume of the unit sphere Sd−1 ⊂ Rd,

C?β,γ,p := αζ K?α,n,p

where n and α are given respectively by (1) and (4), and

ζ :=
ϑ

2
+

1− ϑ
p+ 1

− 1

2 p
=

(2 + β − γ) (p− 1)

2 p
(
d+ 2 + β − 2 γ − p (d− 2− β)

) ,
1

K?α,n,p
= αϑ

(
4n

p− 1

1

n+ 2− p (n− 2)

)ϑ
2
(

2 (p+ 1)

n+ 2− p (n− 2)

) ϑ
p+1

(
σd

Γ(n2 ) Γ( 2 p
p−1 −

n
2 )

2 Γ( 2 p
p−1 )

)ζ
.

3.2 (CKN) inequalities, the artificial dimension and the anisotropic gradient

Inequality (CKN) can be recast as an interpolation inequality with the same weight in all integrals which, in
terms of scaling properties, amounts to introduce an artificial dimension. To a function f ∈ H1,p

β,γ(Rd), let us

associate the function F ∈ H1,p
ν,ν(Rd) with ν := d− n < 0 such that f(x) = F

(
|x|α−1 x

)
for any x ∈ Rd as in (8).

Notice that p? = n/(n− 2). With α > 0 and p ∈ (1, p?], we can rewrite (CKN) as

‖F‖2p,ν ≤ Kα,n,p ‖DαF‖ϑ2,ν ‖F‖
1−ϑ
p+1,ν ∀F ∈ Hp

ν,ν(Rd) , (32)

for some optimal constant Kα,n,p which is explicitly related to the optimal constant in (CKN): see [8,
Proposition 6]. Inequality (32) can be interpreted as a Gagliardo-Nirenberg-Sobolev inequality in the artificial
dimension n. As α 6= 1 unless β = γ, notice that symmetry issues in (32) are in no way simpler than in (CKN).
A remarkable point is that the Aubin-Talenti type function as defined by (30) is transformed, up to a scaling,
into the more standard function

x 7→
(

1 +
p− 1

2
|x|2
) 1

1−p

,

which converges to the standard gaussian function as p→ 1. We refer to [8, Section 2.3] and [35, Section 3.1]
for further details. The limit of (32) as p→ 1+ is consistent with (WLSn). This is what we are going to exploit
next.

3.3 The limit as p→ 1

Assume that β > γ − 2 so that (29) is satisfied uniformly in the limit as p→ 1+. Inequality (CKN) can be
rewritten in logarithmic form as

log

( ‖f‖2p,γ
‖f‖p+1,γ

)
≤ logCβ,γ,p + ϑ(p) log

( ‖∇f‖2,β
‖f‖p+1,γ

)
. (33)
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It is clear from (CKN) that limp→1+
Cβ,γ,p = 1 and both sides in (33) vanish in the limit as p→ 1+, so that the

inequality degenerates into an equality. Let us divide both sides of (33) by (p− 1) and consider the limit. Using
the identity

d

dq
log ‖f‖q,γ =

1

q2

∫
Rd

|f |q

‖f‖qq,γ
log

(
|f |q

‖f‖qq,γ

)
|x|−γ dx ,

limp→1+
ϑ(p)/(p− 1) = n/4 where n is given by (1) and

lim sup
p→1+

1

p− 1
log

( ‖f‖2p,γ
‖f‖p+1,γ

)
=

1

4

∫
Rd

|f |2

‖f‖22,γ
log

(
|f |2

‖f‖22,γ

)
|x|−γ dx ,

we can pass to the limit as p→ 1+. The overall picture is consistent with logarithmic Sobolev inequalities (WLS).
In the limit as p→ 1+, it is straightforward to see that the conditions that define the symmetry range (7)
in (CKN) provide us with the conditions that define the symmetry range in (WLS) as stated in Theorem 1.1.
This is also true at the level of the optimal constants in the symmetry range. In fact, these observations provide
us with an alternative strategy of proof of Theorem 1.1 based on [38, Theorem 1.1] using Γ-convergence methods
in the spirit of [39, 41]. We do not expand on this as we already have a direct proof but for consistency, we state
the following result.

Proposition 3.1 . Let d ≥ 2 and assume that (β, γ) 6= (0, 0) satisfies (2). Then we have

Cβ,γ ≤ C ?
β,γ := 4 lim sup

p→1+

C?β,γ,p − 1

p− 1
.

Proof . In view of (31), in the symmetry range for the parameters (7), we can directly differentiate the formula

log C?β,γ,p = ζ(p) log α+ logK?α,n,p (34)

where ϑ = n ζ(p) and

1

K?α,n,p
= αn ζ(p)

(
4n

b(p)

1

p− 1

)n
2 ζ(p)

(
2 (p+ 1)

b(p)

) n
p+1 ζ(p)

(
1

2
σd Γ

(
n
2

) Γ
(

2 p
p−1 −

n
2

)
Γ
(

2 p
p−1

) )ζ(p)
and b(p) := n+ 2− p (n− 2). In particular, note that b(1) = 4 and b′(1) = − (n− 2). By taking the logarithm,
we obtain the identity

− logK?α,n,p = ζ(p)

(
n logα+

n

p+ 1
log

(
2 (p+ 1)

b(p)

)
+ log

(
1

2
σd Γ

(
n
2

))
+ f(p)

)
(35)

where

f(p) :=
n

2
log

(
4n

b(p)

1

p− 1

)
+ log

(
Γ
(

2 p
p−1 −

n
2

)
Γ
(

2 p
p−1

) )
.

By using the asymptotic expansion for the Gamma function

lim
x→+∞

Γ(x+ α)

xα Γ(x)
= 1

for any α ∈ R, one can compute the limits

lim
p→1+

f(p) = − 3

2
n log 2 .

As a result, we can take the derivative with respect to p and evaluate the limit as p→ 1+ in (35) by

− lim
p→1+

logK?α,n,p
p− 1

=
1

4
log

(
1

2
σd α

n
(
n e
2

)n
2 Γ
(
n
2

))
using the fact that ζ(p) = α p−1

p b(p) is such that ζ(1) = limp→1+
ζ(p) = 0 and ζ ′(1) = 1/4. With n and α given in

terms of β and γ respectively by (1) and (4), we deduce from (34) that C ?
β,γ = − log

(
1
2 σd α

n−1
(
n e
2

)n/2
Γ
(
n
2

))
.
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4 Some consequences for weighted diffusion flows

4.1 Self-similar solutions, intermediate asymptotics and entropy decay rates

Let us consider the self-similar change of variables

u(t, x) = R(t)γ−d v

(
logR(t),

x

R(t)

)
with

dR

dt
= Rγ−β−1 = R1−2α

which transforms (15) into the weighted Fokker-Planck equation

∂v

∂t
= |x|γ ∇ ·

(
|x|−β ∇v + x |x|−γ v

)
. (36)

A simple stationary solution is given by v?(x) = cn,d (2/α)n/4 exp
(
− 1

2α |x|
2α
)

= gα,α? (x) with the notations of
Section 1. With R(0) = R0 ≥ 0, we find that

R(t) =
(
R2α

0 + 2α t
) 1

2α ∀ t ≥ 0 ,

which shows that u?(t, x) = R(t)γ−d f?
(

logR(t), x/R(t)
)

is simply the Green function associated to (15) if we
choose R0 = 0. Another interesting choice of R0 is R0 = 1 so that the initial datum for (36) is the same as
for (15). If v solves (36), then the function w = v/v? solves the weighted Ornstein-Uhlenbeck equation

∂w

∂t
=
|x|γ

v?(x)
∇ ·
(
|x|−β v?∇w

)
. (37)

Proposition 4.1 . In the symmetry range, with dµα = |x|−γ v?(x) dx defined as in Section 1, any solution
of (37) with nonnegative initial datum w0 such that

∫
Rd w0 dµα = 1 decays according to∫

Rd
w(t, ·) logw(t, ·) dµα ≤

(∫
Rd
w0 logw0 dµα

)
e− 4α t ∀ t ≥ 0 .

Proof . We compute d
dt

∫
Rd w(t, ·) logw(t, ·) dµα and apply (11b) to u =

√
w.

By the Csiszár-Kullback-Pinsker inequality∫
Rd
|w − 1| dµα ≤

1

2

√∫
Rd w logw dµα

for any nonnegative function w such that
∫
Rd w dµα = 1. By undoing the above changes of variables with R0 = 1,

we can write the following intermediate asymptotics result.

Corollary 4.2 . In the symmetry range, any solution of (15) with nonnegative initial datum u0 such that
‖u0‖1,γ = 1 obeys to

‖u(t, ·)− u?(t, ·)‖1,γ ≤
1

2

√∫
Rd u0 log(u0/v?) |x|−γ dx (1 + 2α t)

−1 ∀ t ≥ 0 .

The above results are consistent with the flow

∂u

∂t
= |x|γ ∇ ·

(
|x|−β ∇um

)
with m < 1, which is adapted to (CKN) inequalities with p = 1/(2m− 1). Notice however that parabolic
computations as in Section 2.4 are, so far, only formal if m < 1: see [8, 34, 35, 38] for details.
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4.2 Hyper-contractivity estimates

Let us measure the gain of regularity by the weighted heat flow (15). the following result generalizes [43, 48, 55].

Proposition 4.3 . Let d ≥ 1, r > q > 1 and assume that β and γ satisfy (2). If u is a solution of (15) with
initial datum u0 ∈ Lqγ(Rd), then

‖u(t, ·)‖r,γ ≤H q,r
β,γ ‖u0‖q,γ t

−n2
r−q
q r ∀ t ≥ 0 (38)

where H q,r
β,γ := t

n
2
r−q
q r

? and t? := n
8 e

2
n Cβ,γ−1 log

(
r−1
q−1

)
.

Proof . For some exponent p depending smoothly on s with p′(s) > 0, let us consider the function

h(s) := ‖u(s, ·)‖p(s),γ .

By a standard computation which goes back to [48] we have

h′

h
=
p′

p2

∫
Rd

|u|p

hp
log

(
|u|p

hp

)
|x|−γ dx− 1

hp
4 (p− 1)

p2

∫
Rd

∣∣∣∇|u|p/2∣∣∣2 |x|−β dx ≤ p′

p2

(
Cβ,γ −

n

2
log

(
2 e

n σ

))
(39)

where the inequality holds as a consequence of (10a) applied to |u|p/2 with

p′ = 4σ (p− 1) . (40)

With the choice σ = σβ,γ where σβ,γ := 2
n e

1− 2
n Cβ,γ , so that h′ ≤ 0, and p(0) = q, (39) is solved by

p(s) = 1 + (q − 1) e4σβ,γ s ∀ s ≥ 0 . (41)

The condition p(t?) = r determines

t? =
1

4σβ,γ
log

(
r − 1

q − 1

)
such that

‖u(t?, ·)‖r,γ = ‖u0‖q,γ .

If t 6= t?, we use (39) again for σ > 0 such that r = 1 + (q − 1) e4σ t, i.e.,

t =
1

4σ
log

(
r − 1

q − 1

)
, (42)

and obtain
h′

h
≤ p′

p2

n

2
log

(
σ

σβ,γ

)
,

that is, after integration with respect to s ∈ [0, t],

‖u(t, ·)‖r,γ = ‖u0‖q,γ
(
t−1
? t
)−n2 r−q

r q ∀ t ≥ 0 .

Notice that the choice of t? in (38) is optimal because (38) with σ = σβ,γ means that h(s) ≤ h(0) for any
s > 0, hence h′(0) ≤ 0 so that the optimal value of σβ,γ in (41) determines the optimal constant in (10a). Slightly
more subtle is the fact that H q,r

β,γ is also the optimal constant. Using (39) with the condition p(t) = r, we can
write that

‖u(t, ·)‖r,γ = h(t) ≤ h(0) exp

(∫ t

0

p′(s)

p2(s)

(
Cβ,γ −

n

2
log

(
2 e

n σ

))
ds

)
where h(0) = ‖u0‖q,γ and σ can be taken s-dependent. With the change of variables s 7→ z, z = Z(s) = 1/p(s),
we can compute∫ t

0

p′(s)

p2(s)

(
Cβ,γ −

n

2
log

(
2 e

n σ

))
ds =

(
Cβ,γ −

n

2
log

(
2 e

n

))(
1

q
− 1

r

)
− n

2

∫ 1/q

1/r

log σ(z) dz
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where, up to a slight abuse of notations, we consider σ as a function of z and deduce from (40) that

σ(z) = 4
p2

p′
p− 1

p2
= 4

z (z − 1)

(Z ′ ◦ Z−1)(z)
,

although we do not make use of this identity. Indeed, an infinitesimal variation of
∫ 1/q

1/r
log σ(z) dz directly shows

that the optimal case is achieved by a constant function z 7→ σ(z) corresponding to the choice (42). Hence H q,r
β,γ

as defined in Proposition 4.3 is optimal.

Appendix A. A purely algebraic computation

For completeness, let us give a proof of Lemma 2.6, (i). We recall that

K[Dαp] =
1

2
Lα |Dαp|2 − Dαp · DαLαp−

1

n
(Lαp)2

and

k[p] =
1

2
∆ω |∇ωp|2 −∇ωp · ∇ω∆ω p−

1

n− 1
(∆ω p)2 − (n− 2)α2 |∇ωp|2 .

Lemma A.1 . Let d ∈ N, n ∈ R such that n > d ≥ 2, and consider a function p ∈ C3(Rd \ {0}). Then,

K[Dαp] = α4

(
1− 1

n

) ∣∣∣∣p′′ − p′

r
− ∆ω p

α2 (n− 1) r2

∣∣∣∣2 +
2α2

r2

∣∣∣∣∇ωp′ − ∇ωpr
∣∣∣∣2 +

k[p]

r4
.

This result is a purely algebraic computation which involves no integration by parts and in which, for (CKN),
neither p nor m plays any role, so that it perfectly makes sense to consider the limit case m = 1 and p = 1. We
recall that the original result of [35, Lemma 5.1] was given in the framework of m < 1.

Proof . By definition of K[Dαp], we have

K[Dαp] =
α2

2

[
α2 p′2 +

|∇ωp|2

r2

)′′
+
α2

2

(n− 1)

r

[
α2 p′2 +

|∇ωp|2

r2

)′
+

1

2 r2
∆ω

[
α2 p′2 +

|∇ωp|2

r2

)
−α2 p′

(
α2 p′′ + α2 (n− 1)

r
p′ +

∆ω p

r2

)′
− 1

r2
∇ωp · ∇ω

(
α2 p′′ + α2 (n− 1)

r
p′ +

∆ω p

r2

)
− 1

n

(
α2 p′′ + α2 (n− 1)

r
p′ +

∆ω p

r2

)2

,

which can be expanded as

K[Dαp] =
α2

2

[
2α2 p′′2 + 2α2 p′ p′′′ + 2

|∇ωp′|2 +∇ωp · ∇ωp′′

r2
− 8
∇ωp · ∇ωp′

r3
+ 6
|∇ωp|2

r4

)
+α2 (n− 1)

r

[
α2 p′ p′′ +

∇ωp · ∇ωp′

r2
− |∇ωp|

2

r3

)
+

1

r2

[
α2 p′∆ω p

′ + α2 |∇ωp′|2 +
∆ω |∇ωp|2

2 r2

)
−α2 p′

(
α2 p′′′ + α2 (n− 1)

r
p′′ − α2 (n− 1)

r2
p′ − 2

∆ω p

r3
+

∆ω p
′

r2

)
− 1

r2

(
α2∇ωp · ∇ωp′′ + α2 (n− 1)

r
∇ωp · ∇ωp′ +

∇ωp · ∇ω∆ω p

r2

)
− 1

n

[
α4 p′′2 + α4 (n− 1)2

r2
p′2 +

(∆ω p)2

r4
+ 2α4 (n− 1)

r
p′ p′′ + 2α2 p′′∆ω p

r2
+ 2α2 (n− 1)

r3
p′∆ω p

)
.

Collecting terms proves the result.
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[20] P. Cattiaux, A. Guillin, P. Monmarché, and C. Zhang, Entropic multipliers method for Langevin diffusion
and weighted log Sobolev inequalities, J. Funct. Anal., 277 (2019), pp. 108288, 24.

[21] P. Cattiaux, A. Guillin, and L.-M. Wu, Some remarks on weighted logarithmic Sobolev inequality, Indiana Univ.
Math. J., 60 (2011), pp. 1885–1904.

[22] M. Chatzakou, A. Kassymov, and M. Ruzhansky, Logarithmic Hardy-Rellich inequalities on Lie groups. Preprint
arXiv: 2107.04874, 2021.

[23] C. C. Chen and C. S. Lin, Uniqueness of the ground state solutions of ∆u + f(u) = 0 in Rn, n ≥ 3, Comm. Partial
Differential Equations, 16 (1991), pp. 1549–1572.
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