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Abstract. A non-homogeneous Hardy-like inequality has recently been found to

be closely related to the knowledge of the lowest eigenvalue of a large class of Dirac

operators in the gap of their continuous spectrum.

Hardy inequalities and Coulomb singularities

The relationship between usual Hardy inequalities and spectra of elliptic
operators is quite well known: the classical Hardy inequality in IRN

−∆ ≥ (N − 2)2

4

1

|x|2(1)

and the fact that the constant (N−2)2/4 is optimal tells us that the operator
−∆− A

|x|2 is nonnegative if and only if A ≤ 1
4
(N − 2)2. When this condition

is not satisfied, the spectrum of −∆− A
|x|2 is actually the whole real line. In

the rest of these notes, we shall assume that N = 3.

In the case of the Dirac operator, no clear Hardy inequality is available
because this operator is not semibounded. In some well chosen units, the
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Dirac operator is given by

H0 = −i α · ∇+ β ,

with

α1, α2, α3, β ∈ M4×4(CI ) , β =

(

II 0
0 −II

)

, αi =

(

0 σi
σi 0

)

,

where σi are the Pauli matrices

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i
i 0

)

, σ3 =
(

1 0
0 −1

)

.

Two of the main properties of H0 are:

H2
0 = −∆ + 1 ,(2)

and
σ(H0) = (−∞,−1] ∪ [1,+∞) .

Denote by Y ± the spaces Λ±(H1/2(IR3,CI 4)), where Λ± are the positive and
negative spectral projectors on L2(IR3,CI 4) corresponding to the free Dirac
operator: Λ+ and Λ− = II

L2 − Λ+ have both infinite rank and satisfy

H0 Λ+ = Λ+H0 =
√

1−∆ Λ+ = Λ+
√

1−∆ ,

H0 Λ− = Λ−H0 = −
√

1−∆ Λ− = −Λ−
√

1−∆ .

As a straightforward consequence, one has the two following Hardy-like in-
equalities.

Proposition 1 There exists a positive constant K such that the following
inequalities hold for any ψ ∈ H1/2(IR3,CI 4):

(H0 Λ+ψ,Λ+ψ) ≥ K
∫

IR3
|ψ|2 dx|x| ,

(H0 Λ−ψ,Λ−ψ) ≤ −K
∫

IR3
|ψ|2 dx|x| .
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The first question is now to determine the best possible value of K. Because
of the property (1) and (2), it is clear that K ≥ 1/2. Kato proved that K ≥ 2

π

and Tix in [15], Burenkov and Evans in [1] improved this lower bound as far
as K ≥ 2

2/π+π/2
, as we shall see below. Let us note that we may write

|H0| = Λ+H0 Λ+ − Λ−H0 Λ− ,

and rephrase Proposition 1 as follows:

(ψ, |H0|ψ) ≥ K
∫

IR3
|ψ|2 dx|x| , ∀ ψ ∈ H1/2(IR3,CI 4) .

With these notations, the Hardy-like inequality known as Kato’s inequality
is, on H1/2(IR3,CI 4),

|H0| ≥ 2

π

1

|x| ,

while the one derived in [15, 1] corresponds to:

|H0| ≥ 2

(2/π + π/2)

1

|x| .(3)

However, these inequalities have no relation with the spectrum of H0 and
indeed the numbers ν = 2

π
or ν = 2

2/π+π/2
are not critical when one looks at

the (point) spectrum of the operator H0 − ν
|x| . The analysis of the operator

Hν := H0− ν
|x| yields that for 0 < ν < 1, the operator Hν can be defined as a

self-adjoint operator with domain included in H1/2(IR3,CI 4) and its spectrum
is given by

σ(Hν) = (−∞,−1] ∪ {λν1, λν2, . . .} ∪ (1,∞) ,

with
lim
ν→1

λν1 = 0

(see [11, 12, 10, 16, 14]). Note that Hν is self-adjoint only for ν < 1 and
speaking of its “first eigenvalue” in the interval (−1, 1) does not make sense
for ν ≥ 1 . In our previous works [7, 3], we used the above inequalities to
derive a min-max characterization of the eigenvalues of Dirac operators, but
actually there is an alternative approach which is much sharper and goes as
follows [4]:

∫

IR3

|(σ · ∇)ϕ|2
1 + 1

|x|
dx+

∫

IR3
|ϕ|2 dx ≥

∫

IR3

|ϕ|2
|x| dx , ∀ ϕ ∈ C∞0 (IR3,CI 2) .(4)
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This inequality is Hardy-like, but it is not scale invariant, as are the
usual and more classical Hardy inequalities. As we will see at the end of
these notes, this inequality is directly related to the spectral properties of
the Dirac-Coulomb operators Hν for 0 < ν < 1.

A min-max approach of Hardy inequalities

Assume that the potential V belongs to M 3(IR3)+L∞(IR3) (where M3(IR3)
is the Marcinkiewicz space which is also sometimes denoted by L3,∞(IR3))
and assume also that there is a positive constant δ such that

Λ+ (H0 + V ) Λ+ ≥ δ
√

1−∆ , Λ− (H0 + V ) Λ− ≤ − δ
√

1−∆(5)

in H1/2(IR3,CI 4). Next, define the sequence

λk(V ) = inf
F⊂Y+

F vector space
dim F=k

sup
ψ∈F⊕Y−

ψ 6=0

((H0 + V )ψ, ψ)

(ψ, ψ)
.(6)

Theorem 2 ([3]) Let V be a scalar potential satisfying assumption (5). As-
sume also that V ∈ L∞(IR3 \BR0) for some R0 > 0 and that we have :

lim
R→+∞

‖V ‖
L∞(|x|>R)

= 0 , lim
R→+∞

supess |x|>RV (x)|x|2 = −∞ .

Then λk(V ) as defined in (6) is an eigenvalue of H0 + V , {λk(V )}k≥1 is
the non-decreasing sequence of eigenvalues of H0 + V in the interval [0, 1),
counted with multiplicity, and

0 < δ ≤ λ1(V ) ≤ λk(V ) < 1 , lim
k→+∞

λk(V ) = 1 .

Note that Griesemer and Siedentop in [9] also proved an abstract result
which, when applied to Dirac operators, implies the above min-max char-
acterization for the eigenvalues of H0 + V . However, the class of potentials
that they could deal with was quite different from ours and did not include
singularities close to the Coulombic ones. This work was later improved in
[8].

Remark 3 Assume that V belongs to M 3(IR3) + L∞(IR3). Then V is |H0|-
bounded. In particular, any potential V such that |V | ≤ a|x|−β + C is |H0|-
bounded for all a, C > 0, β ∈ (0, 1]. If |V | ≤ a|x|−1, then by (3), V satisfies
(5) if a < 2/(π/2 + 2/π) ≈ 0.9. Moreover, any V ∈ L∞(IR3) satisfies (5) if
||V ||∞ < 1.
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Remark 4 Assumption (5) implies that for all constants κ > 1, close to 1,
there is a positive constant δ(κ) > 0 such that :

Λ+(H0+κV )Λ+ ≥ δ(κ)Λ+ , Λ−(H0+κV )Λ− ≤ −δ(κ)Λ− in H1/2(IR3,CI 4) .

Let us rewrite the Dirac operator in physical units, in the context of
atomic physics. Consider the case of a point-like nuclear charge Z, that is
the case of an electron in a singular nuclear potential of charge Z. Then
ν < ν̄ = 2/(π/2 + 2/π) is equivalent to Z ≤ 124. This is below what
we know to be the best possible range: Z ≤ 137 (or ν̄ = 1), by explicit
computations for the so-called hydrogenoid atoms. In [4] we improve the
above result by using a different method which relies on spectral arguments
instead of direct variational techniques. We proved that the above min-max
characterization could indeed be extended to potentials with singularities as
bad as Vν(x) = ν/|x| , for all 0 < ν < 1, which corresponds to the optimal
range in which the operator Hν has a well defined self-adjoint extension.

Further min-max results

Consider

HT
+ = L2(IR3,CI 2)⊗

{(

0

0

)}

, HT
− =

{(

0

0

)}

⊗ L2(IR3,CI 2) ,

so that, for any ψ =
(

ϕ
χ

)

∈ L2(IR3,CI 4),

ΛT
+ψ =

(

ϕ

0

)

, ΛT
−ψ =

(

0

χ

)

.

Assume also that the potential V satisfies

lim
|x|→+∞

V (x) = 0 ,(7)

− ν

|x| − c1 ≤ V ≤ c2 = sup(V ) ,(8)

with ν ∈ (0, 1) and c1, c2 ∈ IR. Finally, define the 2-spinor space W :=
C∞0 (IR3,CI 2) , and the 4-spinor subspaces of L2(IR3,CI 4)

W T
+ := W ⊗

{(

0

0

)}

, W T
− :=

{(

0

0

)}

⊗W .
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Then the eigenvalues of H0 + V in the interval (−1, 1) are all given by the
elements of the following (eventually finite) sequence of real numbers

inf
F⊂WT

+
F vector space

dim F=k

sup
ψ∈F⊕WT

−

ψ 6=0

((H0 + V )ψ, ψ)

(ψ, ψ)
,

that are contained in the interval (−1, 1), provided that the lowest of these
min-max values is larger than −1. In particular, under assumptions (7) and
(8) on V , we have

λ1(V ) = inf
ϕ6=0

sup
χ

(ψ, (H0 + V )ψ)

(ψ, ψ)
,(9)

where both ϕ and χ are in W and ψ =
(

ϕ
χ

)

, as soon a the above inf-sup

takes its values in (−1, 1).
This procedure to find the eigenvalues of Dirac operators was first pro-

posed in a heuristic way by Talman ([13]) and Datta-Deviah ([2]), and later
proved to be rigorous for a class of bounded potentials in [9] by Griesemer and
Siedentop. In [4] we proved that the result holds for a much larger class of
potentials, including the ones with Coulomb singularities. Griesemer, Lewis
and Siedentop also improved the result of [9] in [8].

More inequalities

As a subproduct of our proof in [4], we obtained the following result. If for
every ϕ ∈ C∞0 (IR3,CI 2) we define the number

λ(ϕ) = sup
χ

(ψ, (H0 + V )ψ)

(ψ, ψ)
where ψ =

(

ϕ

χ

)

,

this number is achieved by the function

χ(ϕ) :=
−i (σ · ∇)ϕ

1− V + λ(ϕ)
.

Moreover, λ = λ(ϕ) is the unique solution to the equation

λ
∫

IR3
|ϕ|2 dx =

∫

IR3

(

|(σ · ∇)ϕ|2
1− V + λ

+ (1 + V )|ϕ|2
)

dx(10)
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(uniqueness is an easy consequence of the monotonicity of both sides of the
equation in terms of λ). Thus λ1(V ) is the solution of the following mini-
mization problem

λ1(V ) := inf{λ(ϕ) : ϕ ∈ C∞0 (IR3,CI 2)} .(11)

In other words, λ1(V ) is the solution of a minimization problem on a set
of numbers defined by the nonlinear constraint (10), which is by far simpler
than working with Rayleigh quotients.

From all these considerations we infer that when V satisfies the above
hypothesis, λ1(V ) is the best constant in the inequality

∫

IR3

|(σ · ∇)ϕ|2
1 + λ1(V )− V

dx +
∫

IR3
(1− λ1(V ) + V )|ϕ|2 dx ≥ 0 ∀ϕ ∈ W .(12)

In particular, since for the potential Vν(x) = −ν/|x| and ν ∈ (0, 1), we
explicitly know the first eigenvalue of H0 + Vν :

∫

IR3

|(σ · ∇)ϕ|2
1+
√

1−ν2+ ν
|x|

dx + (1−
√

1−ν2)

∫

IR3
|ϕ|2 dx ≥ ν

∫

IR3

|ϕ|2
|x| dx ∀ϕ ∈ W.

Moreover this inequality is achieved. On the contrary, when we take the
limit ν → 1 in the above inequality, we obtain the limiting, optimal (but
not achieved) inequality (4), which we recall for completeness:

∫

IR3

|(σ · ∇)ϕ|2
1 + 1

|x|
dx +

∫

IR3
|ϕ|2 dx ≥

∫

IR3

|ϕ|2
|x| dx ∀ϕ ∈ W ,

inequality which is not invariant under scaling: if we rescale it to enhance
its meaning for functions being supported near the origin, we find a more
classical (and homogeneous) Hardy inequality

∫

IR3
|x| |(σ · ∇)ϕ|2 dx ≥

∫

IR3

|ϕ|2
|x| dx ∀ ϕ ∈ C∞0 (IR3,CI 2) .

The best constant in the right hand side of the inequality is 1.

In the next section we show that the characterization of the first eigen-
value by the minimization problem (9) and its relation with the Hardy-like
inequality (12) are a useful tool to write a quite efficient algorithm for the
numerical computation of Dirac eigenvalues in the gap of the continuous
spectrum.
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A numerical algorithm

To numerically approximate the eigenvalues of the Dirac operator, one has
to look for the minima of the Rayleigh quotient

((H0 + V )ψ, ψ)

(ψ, ψ)

on “well chosen” subspaces of 4-spinors on which the above quotient is
bounded from below. Direct approaches may face serious numerical difficul-
ties [6], which can be avoided using (10) and (11) as follows. First discretize
(10) on a finite dimensional space En of dimension n of 2-spinor functions.
The discretized version of (10) is

An(λ) xn · xn = 0 ,

where xn ∈ En and An(λ) is a λ-dependent n× n matrix. If En is generated
by a basis set {ϕi, . . . ϕn} , the entries of the matrix An(λ) are the numbers

∫

IR3

(

((σ · ∇)ϕi, (σ · ∇)ϕj)

1− V + λ
+ (1− λ+ V ) (ϕi, ϕj)

)

dx ,

which are all monotone decreasing in λ. The ground state energy will then
be approached from above by the unique λ for which the first eigenvalue of
An(λ) is zero. This method has been tested on a basis of Hermite polyno-
mials (see [5] for some numerical results). More efficient computations have
been made recently on diatomic configurations (corresponding to a cylindri-
cal symmetry) with B-splines basis sets, involving very sparse matrices [6].
Approximations from above of the other eigenvalues of the Dirac operator,
or excited levels, can also be computed by requiring successively that the
second, third,... eigenvalues of An(λ) are equal to zero.
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ators with gaps. Application to Dirac operators. J. Funct. Anal.
174 (2000), p. 208-226.

[5] J. Dolbeault, M.J. Esteban, E. Séré, M. Vanbreugel. Minimization
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