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Abstract — The purpose of this paper is to explain the phenomenon ofrsyny breaking for optimal
functions in functional inequalities by the numerical cartgiions of some well chosen solutions of
the corresponding Euler-Lagrange equations. For manyasitinequalities it was believed that the
only source of symmetry breaking would be the instabilityred symmetric optimizer in the class of
all admissible functions. But recently, it was shown by adfirect argument that for some Caffarelli-
Kohn-Nirenberg inequalities this conjecture was not ttneorder to understand this new symmetry
breaking mechanism we have computed the branch of minintaligas for a simple problem. A
reparametrization of this branch allows us to build a sderfar the new phenomenon of symmetry
breaking. The computations have been performed USiegfem++
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1. Symmetry breaking for Caffarelli-Kohn-Nirenberg inequalities

In this paper we are interested in understandingsttmemetry breakinghenomenon
for the extremalsof a family of interpolation inequalities that have beerabished
by Caffarelli, Kohn and Nirenberg in[1]. More preciselyt tte N* be the dimen-
sion of the spacep > 2,9 € (0,1] and define

_g4P-2 _d-2 9 andp'(9,d) = - 2
.—d2—p>aC-—T’b_a_aC+B7 andp’(#,d):= 555 -

O(p,d)
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Notice that 2 := p*(1,d) = dz—_dz if d > 3, while we set2:= o if d =1, 2. For any
d > 3, we have

0<O(p,d)<I <1 <= 2<p<pi(d,d)<2.

We shall assume thdt € (0,1], a < ac, and 2< p < p*(9,d) if eitherd > 3, or
d=2andd < 1, ord =1 andd < 1/2. Otherwise, we simply assume2p < co:
belaa+1ifd>3,be(aa+1]ifd=2 andbe (a+ 3,a+1]if d=1. Under
these assumptions, if we denote$f{ ! the unit sphere ifRY, the Caffarelli-Kohn-
Nirenberg inequalityamounts to

p 2 2 g 2 1-3
/ |W| dx P < KCKN(797p7/\) / ||:|W| dx / |W| dx
Rd |X|PP T ISd-1(p-2)/p \ Jpa [x|2 Rd |x[2(@+1)
1.1
with A = (a—a2), for all functionsw in the space obtained by completion of the set

2(RY\ {0}) of smooth functions with compact support containe@fh, {0}, with
respect to the norm

Wi | X2 OW |2 ) + | X7 W2
We assume thdckn (3, p,/\) is the best constant in the above inequality. We will
denote byKgxn (2, p,A) the best constant when the inequality is restricted to the

set of radially symmetric functions.

According to [2], the Caffarelli-Kohn-Nirenberg inequglbnR? can be rewrit-
ten in cylindrical variables using the Emden-Fowler transfation

s=log|x|, w= % eS™ 1 u(s w) =[x 2w(x).
and is then equivalent to the following Gagliardo-Nirergp8i0bolev inequality on
the cylinder := R x S%-1, namely

g 219
HUHEp(%) < Kekn(3,p,A) (HDUHEZ(%)+/\HUHEZ(%)> ||U|||_(z(<,;)) 1.2)

for anyu € H(%). Here we adopt the convention that the measur8%n is the
uniform probability measure.

The parametera < a; and/A > 0 are in one-to-one correspondence and we have
chosen to make the constattskn andKg, depend om\ rather than o because
in the sequel of the paper we will work on the cylind€r Also, instead of working
with the parameteraandb, in the sequel we will work with the parametéxsandp.

Note thatu is anextremalfor (I.2) if and only if it is a minimizer for the energy
functional

9 _
(IO + A 1UZ2 ) (UZ2))

u— Q3 [u :=
" HUHEP(%)
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Radial symmetry of optimal functions ii_(1.1), symmetryto make it short,
means that there are optimal functiondin{1.2) which onjyeth& ors. Equivalently,
this means thakckn (9, A, p) = Kgen (9., p). On the opposite, we shall say that
there issymmetry breakingf and only if Kckn(3,A, p) > Kgkn (3., p). Notice
that on the cylinder the symmetric case of the inequalitygisielent to the one-
dimensional Gagliardo-Nirenberg-Sobolev inequality

* 9 2(1-8
ullZoz) < Ken (94 P) (1100122, + Allullage ) IS

for anyu € HY(R). The optimal constar (2,/, p) is explicit: seel[3].

Symmetry breaking of course makes sense ontlyf 2 and we will assume it
is the case from now on. Let us summarize known results. Let

d—1 (29 -1)p+2 (N-1)(6—p)
pPP-4  p+2 4(p-2)

Symmetry breaking occurs for arly> Ars according to[[4,3] (also sekl[2] for pre-
vious results and [5] il = 2 andd = 1). This symmetry breaking is a straightfor-
ward consequence of the fact that for> Ars, the symmetriextremalsare saddle
points of the energy functionﬂ,l\ in the whole space, and thus cannot be even local
minima.

If $ =1, from [6], we know that symmetry holds for afy< A, (p). Moreover,
according to[[V], there is a continuous cugve- Ag(p) with limy_., As(p) = and
Ns(p) > &2 for any p € (2,2*) such that symmetry holds for afly< As and there is
symmetry breaking i\ > As. Additionally, we have that ligo As(p) < aZifd>
3 and, ifd = 2, limp_. As(p) = 0 and lim,_.., p?As(p) = 4. The existence of this
function/\g has been proven by an indirect way, and it is not explicitlgwn. It has
been along-standing question to decide whether the cprved\s(p) and the curve
p— Ars(p, 1) coincide or not. This is still an open question. Let us natiz for all
pe (2,2%), A\.(p) < Ns(p) < Aes(p, 1) and that the differencBgs(p,1) — A.(p) is
small, and actually smaller and smaller, when the dimendimtreases. For more
details se€]6].

According to [8], existence of an optimal function is grahtier any 3 €
(©(p,d),1), but ford = O(p,d), only if Kexn (3,7, p) > Ken(p), whereKgn(p)
is the optimal constant in the Gagliardo-Nirenberg-Sobatequality

LP(RN) == |Sd-1|(p-2)/p

Nrs(p,d) =4 and A.(p) =

20(p,d 2(1-0(pd
|OuPS R 250 P v ue HY(RY).

A sufficient condition can be deduced, by comparison witlelgdsymmetric func-
tions, namelyKg (©(p,d), A, p) > Kgn(p), which can be rephrased in terms/of
as/\ < Agn(p) for some non-explicit (but easy to compute numerically)cfun
tion p — Agn(P). Whend = ©(p,d) and A > Ay (p), extremal functions (if
they exist) cannot be radially symmetric and in the asyniptegimep — 2,
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this condition is weaker thal > Ags(p,©(p,d)). One can indeed prove that
limp_2, Ars(p,O(p,d)) > limp_o, Agy(p). Actually, for everyd in an interval
(0,94), 94 < 1, and forp € (2,2+ €) for somee > 0, sufficiently small, one can
prove that\gs(p,O(p,d)) > Agn(P); seel[9] for more detailed statements. Hence,
for 3 € (©(p,d), 1), close enough t®(p,d) andp— 2 > 0, small, optimal functions
exist and are not radially symmetric/A > A§y(p), which is again a less restrict-
ive condition tham\ > Ags(p,d). Seel[9] for proofs and [10] for a more complete
overview of known results.

The above results show that for some value& aihd p there issymmetry break-
ing outside the zone, parametrized Ay where theradial extremalsare unstable.
So, in those zones the asymmetgitremalsare apart from theadial extremalsand
symmetry breaking does not appear as a consequence of abilinstmechanism.
What is then the mechanism which makes ékremaldose their symmetry ? The
goal of this paper is to understand what is going on. A pldesibenario is provided
by the numerical computations that we present in this papey have been done
usingFreefem++

The paper is organized as follows. In Secfidbn 2 we exposehtimrétical setup
of our numerical computations. In Sectidn 3 we describe kfp@rihm. Sectio } is
devoted to the numerical results and their consequences.

Our numerical method takes full advantage of the theoletetaip and provides
a scenario which accounts for all known results, including éxistence of non-
symmetric extremal functions in ranges of the parametenatitcch symmetric crit-
ical points are locally stable. Although we cannot be suat domputed solutions
are global optimal functions, we are able to present a camgnexplanation of how
symmetry breaking occurs.

2. Theoretical setup and reparametrization of the problem for 9 < 1
with the problem correspondingto 9 =1

Let us start this section with the ca8e= 1 and consider the solutions to
—Au+pu=uPl in %. (2.1)

Any solutionu of 2.) is a critical point of;; with critical valueQj, [u] = ||u||[’;fg
Up to multiplication by a constant, it is also a solution to

—A+puu—————uPt=0 in ¥, (2.2)
Ju HLW
where
IIDUHLZ% s ||ulZorg) HDUIILW +HHUHLW ol
IUIILW ullZo e, e
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SinceQ;[A u] = Q}[u] foranyA € R\ {0}, (1) and[(ZP) are equivalent. For sim-
plicity, We will conS|der primarily the solutions df(2.1).

Let us denote by, . the unique positive symmetric solution ¢f(.1) which
achieves its maximum at= 0. We know from previous papers (see for instanc¢e [2]
and references therein) that the positive solution is weligdefined up to transla-
tions. As a consequence itis a minimizer(@lf, among symmetric functions and

QHUM*] (U, *HLp ) = 1/Kekn (1, 4, p).-
Ouir first goal is to study the bifurcation of non-symmetridusions of [2.1)
from the branch(uy.), of symmetric ones. Lef; be an eigenfunction of the

Laplace-Beltrami operator on the sph&fe? corresponding to the eigenvalde- 1
and consider the Schrodinger operat6t:= —% +u+d—1—(p-—1) uf,;z whose
lowest eigenvalue is given by (u) =d— 1+ — %1 U p? (seel[11], p. 74, for more
details). As in[[4], leturs be such thah; (ugs) = 0, that is

d-1
IlFs—4p2_4-

We look for a local minimizew, of Q}l by expandingu, = uy . + £¢ f1 +0(¢)
in terms ofe, for u in a neighborhood ofugs) . We find thath Uy« +Efi @]~

e2(¢, jfd))l_z ) as€ — 0. The problem will studied with more details [n | In]12].

It is Wldeiy believed that ford = 1 the extremalsfor the Caffarelli-Kohn-
Nirenberg inequalities (11.2) are either the symmetric tsmhs uy, . for p < Urs
or the solutions belonging to the branch which bifurcatesnfugs := Uy .. Nu-
merically, we are going to see that this is a convincing séena

For 3 < 1, the Euler-Lagrange equation for the critical pointsQ;‘(f can be
written as

—Aw+%ﬂ1_snM+4\v — 2 Wl=0 in ¥, (23
9 M5 e

[1m%l5 IEVIZ2(qp) + AlIVIE
where t[v] := # and = 7~ Q.
IVIE2¢) HVHLp @)

Any solutionu of (2.2) is also a solution of (2.3) A = 3 p — (1— 3)t[u]. Symmet-
ric solutionsuy, .. give rise to a symmetric branch of solutiops— Vs ) . = Uy«
of solutions for[(Z.B), where

N (W) =9 p— (1= 9)tuy.].
A branchu — uy, of solutions for [[2.11) indexed by, normalized by the condition

||uu||[’;(fg> = » can be seen as a branch of solutions[0of](2.2) and also prosides
branchy — Vs ) = Uy of solutions for [(2.B) with

N (W) =8 p— (1= 9)t[uy].

H)
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If we can prove thap — uy, bifurcates fromu — uy, . at 4 = Urs, then we also have
found a branch\ — v of solutions of [[2.B) which bifurcates from — vy . at

NEs:= N’ (irs) = 9 trs— (1— 9)t[Ues]

as has already been noticedlin [3].

So, from the branch of solutions tb (P.2) which bifurcatesnfrurs we will
construct a branch of solutions fo (2.3) that contains chatds to bextremalsor
the Caffarelli-Kohn-Nirenberg inequalities f8r< 1. Of course, nothing guarantees
that theextremalsfor the inequalities[(1]2) witl® < 1 lie in this branch but, as we
shall see, such a scenario accounts for all theoreticaltsestiich have been ob-
tained up to now. In this paper we numerically compute the lhirgnch bifurcating
from the symmetric branch aiks, then transform it to a branch fdr (2.3) and study
the value of” (1) := QF , [uy] in terms of A (u).

An important ingredient in our algorithm is related to thetfthat minimizing
the first eigenvalues of Schrodinger operatefs—V under some integral constraint
onV is equivalent to solvind(211). One can indeed prove that
- J 10U dy— f, V |uf? dy

IVl =1 ueH(#)\{0} Jeulz dy

I‘l:

with q = prz has a minimizer, and that the operatah —V has a lowest negative ei-
genvalue—pu, with associated eigenfunctiarn,.. Up to multiplication by a constant,

v =ul /|yl E;(%@, so thatu, solves[Z11); se€ 6] for details, and alsol[13,14].

3. Thealgorithm

Based on the theoretical setup of the previous section, &weaw ready to introduce
the algorithm used for the computation of the branch of nonraetric solutions
of (1.2) which bifurcates fronugs for 9 = 1.

1) Initialization: obtaining one point on the non-symmethiranch. The function
Uy - is a saddle point OQ}, for any 1 > Urs. Choose theny larger thanugs, but
not too largeg > 0 small andv a direction of descent fd@},o atuy, .. Starting from
Uy« + EW, We use the conjugate gradient algorithm to decrease thegyeaad
search for a quasi-local minimum tho. The limit uy, solves [[Z.P) for someq =

LolUo). Since its energy is lower tha@y, [uy,.], it is certainly a non-symmetric
critical point.

2) A fixed point methodCritical points on}, can be characterized as fixed points
of anad hocmap as follows.
1. Choosex >0,p€ (2,2°),q= % and start with some potentig$ normal-
ized by the condition{|Vol| o) = 1.
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2. Foranyi > 1, define
Ai(5) = inf (/ |0ul? dy— %/ Vi 1 |uf? dy>
ue HY(%)
[ullLz() = 1
and get a minimizey; € H(%¢’) such that|u; L2y = 1.

3. DefineVi := |u;|P~ Z/HU,HU,%; and iterate, by computing ;1 () from Step 2.

The sequencé; )1 is monotone non-increasing. Indeed, for &gy 1, we have

Moals) = in (/ \Du]zdy—z/ Vi \u\zdy>
ueHiw) \Je g

[Ull o) =1
< / ]Duiyzdy—z/\/i]ui\zdy
@
— inf (/ |0u|? dy— %/V]u,yzdy>
V elLY?)
IV [Lage) —1
g/%)|Dui|2dy—%/(/Vi,1|ui|2dy: A

The sequencé);)i~1 is bounded from below, as an easy consequence of Holder’'s
inequality:

| 10 dy—s« [ vijuay> [ 10 dy— sV o) lulfogey
and the r.h.s. itself is bounded by the Caffareli-Kohn-Nioerg inequality:
nt ([ 1oy e, ) = nGo)
uc HY(%) 4 L®#
[Ull 2y =1
if we assume thafV || q(«) = 1. Indeed this amounts to
1BUl2p) +HGo) [UllEz) = 5 UlEos) ¥ ue HY(E),

which is exactly equivalent t¢_(1.1) up to a reparametraratf 1 in terms of .
This scheme is converging towards a solution of

—Au+p(u=xVu, V=sx|ulff uw? ine.
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See [6] for details and [113,14] for earlier references. diotihat if we start with
the potentiaVy = uﬁ;z/Hume;(?@ found at the end of the initialization of our al-
gorithm, then we find thatio = 11 (220) anduy, (as well as/) is a fixed point of our
algorithm, such thato = Qp[Upo] < Qfp[Upo <] _

The above iterative algorithm is a local version of a Rootalgorithm to com-
pute a fixed point. We have run it usikgeefem++in a self-adaptive way, where at
every step the computing mesh is based on the level lineg girttviously computed
function. This is important for large values gfbecause solutions asymptotically
tend to concentrate at some point.

3) Building the branch in terms of, starting from . We adopt a perturbative
approach by modifying the value of the parametemnd reapplying the above fixed-
point algorithm.

In practice we takes = 9 —n for n > 0 small,Vo = yuﬂoypﬂ/uuuoufg(;). We
get a new critical poinuy, with p = p(s). If n has been chosen small enough,
we still have th_aQ%, U] < Q}, [u,]. By iterating this method as long @s> Lfs,
we obtain a discretized branch of numerical solutipns- u, of (2.2) contain-
ing uy,. Numerically, we check tha@%, luy] < Q},[uu.*], hence proving that, is
non-symmetric as long gs$ > prs, and such thati, converges tairs as i tends
to urs. For simplicity, we adopt the following convention: we extethe branch to
any value ofu > 0 but observe that,, coincides withu, . for any i < prs.

We can do the same in the other direction and start with »o+n forn >0
small, take agaiVy as initial potential, and then iterate, with no limitation &.
Again we check tha®;,[u,] < Qj[uy..] for the discrete version of the branch cor-
responding tqu = (), > .

Altogether, we have approximated a branch which bifurcait®s the symmet-
ric one atu = Urs. This branch is a very good candidate to be the branch of the
globalextremaldor the Caffarelli-Kohn-Nirenberg inequalities f8r= 1. The main
reason for this belief is that if we start our algorithm fopalose enough tQirs,
we always hit the first (in terms qf) branch bifurcating from the symmetric one,
that is, the one bifurcating fromrs and observe that its energy is below the energy
of corresponding symmetric solutions. On the other harel agymptotic value as
U — oo is the one predicted by Catrina and Wang(ih [2] for optimalctions. The
estimates found il [6] indicate that the set of parametewghich a different branch
of optimal functions would co-exist with the branch of a#l points we have com-
puted is remarkably narrow, and close in energy with the oméave found at least
for u = Urs. The existence of another, distinct branch of non-symmetrlutions
which does not bifurcate from the symmetric ones, but stifl the same asymptot-
ics asu — o, is therefore very unlikely. Hence we expect that our methradides a
complete answer for optimal functions and for the value eflibst constant i (1.1)
for 9 =1.

Once we have constructed a discretized branch of solutmm8 = 1, we use
the transformation described in Sectldn 2 to get a dis@étlaranch of solutions
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for (Z.3). Same comments apply as for the cse 1 (seel[12] for the asymptotics
as — o) and we expect that the computed solution is the optimal ongIf1)
with & < 1.

Let us finally notice that by [15] (also see [16]), thetremalsof (1.2) enjoy
some minimal symmetry properties. They depend onlgamd on one angle, which
can be chosen as the azimuthal angl&®nt. For anyd > 2, the problem we have
to solve is actually two-dimensional, which greatly sirfipb the computations.

4. Numerical results

Solutions have been computed for various valugsaidd € [©(p,d), 1] in the typ-
ical casad = 5. Details of the concrete numerical implementation offteefem++
code are given at the end of this section.

We adopt the convention that solutions with lowest energyrapresented by
plain curves while symmetric ones, when they differ, areesented by dashed
curves. Darker parts of the plots correspond to minimizersfiked A, at least
among the branches we have computed. Hence, define theofuscti

JS(“) = Qie(u)[uu] and Jf(“) = Q/{if(“)[uuv*]

whereuy, is the solution of[(21) which was obtained by the method atiBe[3 and
Uy« is the symmetric solution of (2.1). F@r < prs, these two functions coincide
and their value is a good candidate for determining the basstant in[(1.11). At
U = Hgs, non-symmetric solutions bifurcate from symmetric oned fam y > Lirs
the corresponding guess for optimal constants is givereagisely byJ? andJ?.

With the notations of Sectidnl 2, we know that =1(u) = u. Ford < 1, the
parameter we are interested inAisand we look for the solution of (2.3) which
minimizesQﬁ. The reparametrization of Sectibh 2 and the bifurcatiop at prs
suggest to still parametrize the set of solutiongubgnd consider

e (N, 97 (W) and s (A2 (), 37 () -

However, we will see that there is no reason why> A? (1) should be monoton-
ically increasing foru > Ugs; this is indeed not the case for certain valuesiop
andd.

To illustrate these preliminary remarks, assume firstdhat5 andp = 2.8. For
3 = 1, the bifurcation of non-radial solutions from the symritetmes occurs for
U = Urs ~ 4.1667. Ford ranging betweei®(2.8,5) ~ 0.714286 and 1, branches
can be computed using the reparametrization of SeCtion@F&g 1. Although it
is hard to see it on Fig. 1, right, the curvgs— (A”(u),Jl’(u)) may have a self
intersection. We are now going to investigate this issua@aigr details.

In the critical cased = O(p,d), the limiting valueJ. := lim . J%PY(u)
along the branch of non-symmetric solutions correspondsi@doest constant in
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J? () and J? ()
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a0l ,'I’ Jl (M)
1
30+ Il”
," =075
20F v =0,72
T (ues) = J! (ues)
10+
Urs ‘ ‘ ‘ u "
10 60 80 100 1 ) 5 4‘ 3 3
ashed curve) for & 5,

Figurel. Left.—Plot of u — J*(u) (plain curve) andu — J(u) (d

p= 2.8, 3 = 1. The branch of non-symmetric functions bifurcates fronbttaach of sym-
metric ones for 3(urs) ~ 4.17 and @, [urs] ~ 15.65. Right.—Plots of u — J% (i) and
u — J2(u) (dashed curve) for & 5, p= 2.8, for & = 0.72,0.75,0.8, 0.85, 0.9, 0.95, 1.

Gagliardo-Nirenberg inequalities:
Jre |OU|? dX+ [ra [U? dX

Jo =k inf 3
ueH(RY)\{0} (Jga |ulPdx)®

wherek := (s87 (1-8)*7) 5_g(pa), according to[[12]. Wher® = ©(p,d), at
least in cases we have computed, there are optimal funcfgmesFig. 2.) if and

only if
o(pd . 19(pd

A < Agn = supiA°PY (1) - 38PD (1) < 31

79 () and 22 (1) Ay

I (urs) = J1 (urs) g 1 .: Afs

AN
N A ()
AoN Ass A(u) LM ‘ ‘ ‘ u

(5,2.8). Left.—Plots of the curvé A (1), 3% (1)) and

Figure2. Casé 0= 5,7p: 28,9 = G)
of the (dashed) curvé’\f(u) Jﬁ(u)), both parametrized by. Right.—Reparametrization
p — A? (1) (dashed curve) ang — A? (u): they differ fory > pps~ 4.17.
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Fix somedg € (0,1). Now we consider the subcritical regime, that is when
varies in the rangé2, p*(Jp,d)). Whenp is close enough tp*(J¢,d), the branch
stills bifurcates towards the left from the symmetric btaatAZg = A? (ues) and
then, for larger values dfi, turns towards the right, crosses the symmetric branch
(in the plang A, Qﬁ [u]), not in the functional space), and then stays under this sym-
metric branch for any larger value of. In other words, the map — A%(p) is
monotone decreasing {Mgs, Lo) for somepp > Ugs and then monotone increasing
in (Up,). See Fig. 3. This case is interesting, because when theymomstric

I (w)

i (AP (), J7 (w))

/ b w A% (u
7800 ;MHA?(‘M)

1705k 9 9 s A
IV () 57 (w,4) N ¢

7790

DA o
A A o .
"Sis 2850 2855 2860 2865 5

Figure3. Plots for d=5, p=2.78, 9 = ©(5,2.8). Left.—Plot of the curvg{A? (11),3% (1))
parametrized byu. Right.— Reparametrizatiory — A? (1) (dashed curve) angi —

N? (u): the functionA? is increasing foru < pirs, while the functiom\® is decreasing
on (Urs, 41) and increasing fot > L.

branch crosses the symmetric one, if the critical pointsaateally the optimal
functions for [(1.1), then a symmetraxtremaland a non-symmetric one coexist.
Denote byA; the corresponding value &X. In this case, for\ < A; the extremals

of (I.2) are all symmetric. Af\ = A, there is coexistence of a symmetric and a
non-symmetricextrema) and for any\ > A; the extremalsare non-symmetric. Let
us denote by the minimizer ofQR: the mapA — ug is not continuous, since at
N\ = A1 there is a jump.

In terms ofp, there is somel; € (0, Urs) such that\? (K1) =1, and extremal
functions forA < A belong to the sefuy . : 4 < pi}. There is also somg; €
(Mo, ) such that\? (u1) = A1, and extremal functions fak > A; belong to the set
{Uy o > pa} At A= Ag, Uy , anduy, are two different optimal functions.

In Figs. 4 and 5, we show the very different shapes of the symicrend the
non-symmetriextremalsat A = A1.
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[0,7/2]

Uy«
R

Figure 4. Case d=5, p= 278, 9 = ©(5,2.8) and A\; = A? (), corresponding to the
crossing of the curvéA? (u), 32 (u)) with the non-symmetric curv@\? (i), 3% (u)). Plot
of the symmetric squtionutf{*: Left.—level lines,Right.—3d plot.

0 /2]

|

Figure 5. Case d=5, p=2.78, & = ©(5,2.8) and A; = A?(uy), corresponding to the

crossing of the curv(e/\f( ),J32 (1)) with the non-symmetric curv@\? (i), 3% (u)), with
p1 > pi. Plot of the symmetric solution,u Left.—level linesRight.—3d plot.

When p takes smaller values in the ran@® p*(J,d)), the branch bifurcates
towards the right and stays under the symmetric branch.Haratords, the map
u — AP (i) is monotone increasing fQr > Urs. See Fig. 6.

e (A2 (u), 0 () ) A*ﬁ(‘u)/'/
L Afs L)
A (N ). ()
T pes) = (ues ) I
7 AP =A? (urs) A = UEs u

L
g 325 730 35 0 345 50 20 a5 50

Figure6. Plots ford=5, p=2. 7 8 0(5,2.8). Left.—Plots of the curve(/\ﬁ ),3% (1))
and of the (dashed) cur\(ei!\‘9 (u)) both parametrized by. Right. Reparametriz-
ation  — A? () (dashed curve) an;j — A7 ().
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We may now come back to Fig. 1, right. An enlargement of thevesi\ =
AP (1) — J%(u) clearly shows how one moves from the limiting pattern of Big.
(left) to the generic case of Fig. 3 (left) and finally to thginee of Fig. 6 (left) when
9 varies in[®(p,d),1): see Fig. 7.

wf = I ()

(a)

u— A% (w)

Figure 7. Case d=5, p=2.8: curves (N? (u)7J‘9(ﬂ)) for 9 = ©(2.8,5) ~ 0.7143 (a)
9 ~0.7213 (b)and 9 ~ 0.7283 (c)

Let us end this section by giving some details of the condrafgementation
of the Freefem++code used to make the above computations. The computational
domain is chosen to be a rectangle, 3) € (0, ) x (0,12). Since we know that
the solutions of our equations decay quickly at infinity- 12 has been checked to
be large enough not to have too much boundary effec fiige. The computations
are made using an adaptive mesh, of approximately 300@tesnand we use a P2
discretization. The mesh has been taken large enough sthératis a qualitative
agreement with the theoretical values of the optimal cantstdor large values qf.

The conjugate gradient that we use to construct our firsttpoitthe branch
converges typically in about 70 steps, with a pre-definedraf 1012 as stopping
parameter. We use preconditioning in order to make the descicker.

For the iterative algorithm which constructs the branchjteate the search of
eigenvalues of a sequence of linear operators by using tmenemdEigenvalue
included inFreefem++ which is based on the th®RPACKIibrary. Whenever we
go to a new point in the branch, we need about 30 iterationsrieerge.

We use very refined error tests. Branches are constructeaingwvery slowly
from a point to the next, but even so, the computations do tyeffectly the bifurc-
ation pattern that we know to take place nga# Lrs. We have carefully checked
that improving the stopping criteria gives us a better agipnation in the cases
where we have theoretical information available. We hage akrified that the
asymptotics of the branch fqr large is compatible with the theoretical one. And
increasing the number of finite elements in the mesh, or damimg the stopping
criteria improves it. All this has been checked carefulty,see that the observed
errors are only due to discretization errors, and not to liperihm itself.

Finally, note that whem increases, the solutions that we compute tend to con-
centrate around one single point. The computation needsod fwecision because
otherwise we would lose information around the concermmnapioint.
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Concluding remarks

In this paper, we have observed that any critical poir@fgfis also a critical point

of Q}, and can be rewritten as a solution[of {2.1) up to a multiglicaby a constant.
Using reparametrizations, it is therefore obvious thdtemalsor (1.1) belong to a
union of branches that can all be parametrizegibWe have found no evidence for
other branches than the ones made of symmetric solutionsfainel non-symmetric
ones that bifurcate from the symmetric solutions (when timaler of eigenvalues
of the operator7Z changes agt increases). Among non-symmetric branches, the
first one is the best candidate for extremal function§in)(1.1

At this point we have no reason to discard the possibilityemfomdary bifurc-
ations. Branches of solutions which do not bifurcate fromglimmetric ones may
also exist. Among the various branches, we have no thealeti@ason to decide
which one minimizes the energy, and the minimum may jump foora to another.
This is indeed the phenomenon we have observed for instarig.i 3.

However, the branch that we have computed is a good candatat@énimizing
the energy. It is the natural one when one starts with smalegaofyu and tries to
optimize locally the energy functional, and it has the cctrteehavior agu — .
Known estimates, like the ones 6f [6], show that there is natimspace for unex-
pected solutions in the range of parameters or of the ersengies therefore quite
reasonable to conjecture that the solutions that we have@etmu are the actual ex-
tremals for Caffarelli-Kohn-Nirenberg inequalities andyide a complete scenario
for the symmetry breakinghenomenon of thextremals even if a complete proof
is still missing.

References

1. Luis Caffarelli, Robert Kohn, and Louis Nirenberg. Fiostler interpolation inequalities with
weights.Compositio Math.53(3):259-275, 1984.

2. Florin Catrina and Zhi-Qiang Wang. On the Caffarelli-ieNirenberg inequalities: sharp con-
stants, existence (and nonexistence), and symmetry adreatrfunctions. Comm. Pure Appl.
Math,, 54(2):229-258, 2001.

3. Manuel del Pino, Jean Dolbeault, Stathis Filippas, ankillss Tertikas. A logarithmic Hardy
inequality. J. Funct. Anal, 259(8):2045-2072, 2010.

4. Veronica Felli and Matthias Schneider. Perturbationultesof critical elliptic equations of
Caffarelli-Kohn-Nirenberg typel. Differential Equations191(1):121-142, 2003.

5. Jean Dolbeault, Maria J. Esteban, and Gabriella TatanfEhe role of Onofri type inequalities
in the symmetry properties of extremals for Caffarelli-leNirenberg inequalities, in two space
dimensions Ann. Sc. Norm. Super. Pisa Cl. Sci.,(3§2):313—-341, 2008.

6. Jean Dolbeault, Maria J. Esteban, and Michael Loss. Symné extremals of functional
inequalities via spectral estimates for linear operatdksXiv e-prints, To appear in J. Math.
Phys, September 2012.

7. Jean Dolbeault, Maria J. Esteban, Michael Loss, and @l&bfiarantello. On the symmetry of
extremals for the Caffarelli-Kohn-Nirenberg inequaktieAdv. Nonlinear Stud9(4):713-726,
20009.



Symmetry breaking in Caffarelli-Kohn-Nirenberg ineqtiab 15

8.

10.

11.

12.

13.

14.

15.

16.

Jean Dolbeault and Maria J. Esteban. Extremal functionEaffarelli-Kohn-Nirenberg and
logarithmic Hardy inequalitiesTo appear in Proc. A Edinburgt2012.

Jean Dolbeault, Maria Esteban, Gabriella Tarantelld, Achilles Tertikas. Radial symmetry
and symmetry breaking for some interpolation inequaliti€alculus of Variations and Partial
Differential Equations42:461-485, 2011.

Jean Dolbeault and Maria J. Esteban. About existenoengyry and symmetry breaking for ex-
tremal functions of some interpolation functional inedtirs. In Helge Holden and Kenneth H.
Karlsen, editorsNonlinear Partial Differential Equationsvolume 7 ofAbel Symposiapages
117-130. Springer Berlin Heidelberg, 2012. 10.1007/98+2-25361-4-6.

Lev Davidovich Landau and E. LifschitPhysique théorique. Tome Ill: Mécanique quantique.
]’héorie non relativiste. (French)Deuxieme édition. Translated from russian by E. Gloahhi
Editions Mir, Moscow, 1967.

Jean Dolbeault and Maria J. Esteban. Symmetry breakingrilinear elliptic partial differential
equations: a scenario based on bifurcations and repaiaatin. In preparation.

Joseph B. Keller. Lower bounds and isoperimetric inktigmfor eigenvalues of the Schrodinger
equation.J. Mathematical Phys2:262—-266, 1961.

Elliott H. Lieb and Walter Thirring. Inequalities for the moments of the eigenvalues of the
Schrodinger Hamiltonian and their relation to Sobolevdnelities pages 269-303. Essays in
Honor of Valentine Bargmann, E. Lieb, B. Simon, A. WightmatsEPrinceton University Press,
1976.

Didier Smets and Michel Willem. Partial symmetry andnaptotic behavior for some elliptic
variational problemsCalc. Var. Partial Differential Equationsl8(1):57-75, 2003.

Chang-Shou Lin and Zhi-Qiang Wang. Symmetry of extrémattions for the Caffarelli-Kohn-
Nirenberg inequalitiesProc. Amer. Math. Soc132(6):1685-1691 (electronic), 2004.



	Symmetry breaking for Caffarelli-Kohn-Nirenberg inequalities
	Theoretical setup and reparametrization of the problem for theta<1 with the problem corresponding to theta=1
	The algorithm
	Numerical results

