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Abstract — The purpose of this paper is to explain the phenomenon of symmetry breaking for optimal
functions in functional inequalities by the numerical computations of some well chosen solutions of
the corresponding Euler-Lagrange equations. For many of those inequalities it was believed that the
only source of symmetry breaking would be the instability ofthe symmetric optimizer in the class of
all admissible functions. But recently, it was shown by an indirect argument that for some Caffarelli-
Kohn-Nirenberg inequalities this conjecture was not true.In order to understand this new symmetry
breaking mechanism we have computed the branch of minimal solutions for a simple problem. A
reparametrization of this branch allows us to build a scenario for the new phenomenon of symmetry
breaking. The computations have been performed usingFreefem++.
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1. Symmetry breaking for Caffarelli-Kohn-Nirenberg inequalities

In this paper we are interested in understanding thesymmetry breakingphenomenon
for theextremalsof a family of interpolation inequalities that have been established
by Caffarelli, Kohn and Nirenberg in [1]. More precisely, let d ∈ N∗ be the dimen-
sion of the space,p > 2,ϑ ∈ (0,1] and define

Θ(p,d) := d
p−2
2p

, ac :=
d−2

2
, b = a−ac +

d
p

, andp∗(ϑ ,d) :=
2d

d−2ϑ
.
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Notice that 2∗ := p∗(1,d) = 2d
d−2 if d > 3, while we set 2∗ := ∞ if d = 1, 2. For any

d > 3, we have

0 6 Θ(p,d) 6 ϑ 6 1 ⇐⇒ 2 6 p 6 p∗(ϑ ,d) 6 2∗ .

We shall assume thatϑ ∈ (0,1], a < ac, and 26 p 6 p∗(ϑ ,d) if either d > 3, or
d = 2 andϑ < 1, ord = 1 andϑ < 1/2. Otherwise, we simply assume 26 p < ∞:
b∈ [a,a+1] if d > 3, b∈ (a,a+1] if d = 2, andb∈ (a+ 1

2,a+1] if d = 1. Under
these assumptions, if we denote byS

d−1 the unit sphere inRd, theCaffarelli-Kohn-
Nirenberg inequalityamounts to

(

∫

Rd

|w|p

|x|bp
dx

)
2
p

6
KCKN(ϑ , p,Λ)

|Sd−1|(p−2)/p

(

∫

Rd

|∇w|2

|x|2a
dx

)ϑ (

∫

Rd

|w|2

|x|2(a+1)
dx

)1−ϑ

(1.1)
with Λ = (a−a2

c), for all functionsw in the space obtained by completion of the set
D(Rd \{0}) of smooth functions with compact support contained inR

d \{0}, with
respect to the norm

w 7→ ‖|x|−a ∇w‖2
L2(Rd) +‖|x|−(a+1) w‖2

L2(Rd) .

We assume thatKCKN(ϑ , p,Λ) is the best constant in the above inequality. We will
denote byK∗

CKN(ϑ , p,Λ) the best constant when the inequality is restricted to the
set of radially symmetric functions.

According to [2], the Caffarelli-Kohn-Nirenberg inequality onR
d can be rewrit-

ten in cylindrical variables using the Emden-Fowler transformation

s= log|x| , ω =
x
|x|

∈ S
d−1 , u(s,ω) = |x|ac−aw(x) .

and is then equivalent to the following Gagliardo-Nirenberg-Sobolev inequality on
the cylinderC := R×S

d−1, namely

‖u‖2
Lp(C ) 6 KCKN(ϑ , p,Λ)

(

‖∇u‖2
L2(C ) + Λ‖u‖2

L2(C )

)ϑ
‖u‖2(1−ϑ )

L2(C )
(1.2)

for anyu∈ H1(C ). Here we adopt the convention that the measure onS
d−1 is the

uniform probability measure.
The parametersa< ac andΛ > 0 are in one-to-one correspondence and we have

chosen to make the constantsKCKN andK
∗
CKN depend onΛ rather than ona because

in the sequel of the paper we will work on the cylinderC . Also, instead of working
with the parametersa andb, in the sequel we will work with the parametersΛ andp.

Note thatu is anextremalfor (1.2) if and only if it is a minimizer for the energy
functional

u 7→ Qϑ
Λ[u] :=

(

‖∇u‖2
L2(C )

+ Λ‖u‖2
L2(C )

)ϑ (

‖u‖2
L2(C )

)1−ϑ

‖u‖2
Lp(C )

.
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Radial symmetry of optimal functions in (1.1), orsymmetryto make it short,
means that there are optimal functions in (1.2) which only depend ons. Equivalently,
this means thatKCKN(ϑ ,Λ, p) = K

∗
CKN(ϑ ,Λ, p). On the opposite, we shall say that

there issymmetry breakingif and only if KCKN(ϑ ,Λ, p) > K
∗
CKN(ϑ ,Λ, p). Notice

that on the cylinder the symmetric case of the inequality is equivalent to the one-
dimensional Gagliardo-Nirenberg-Sobolev inequality

‖u‖2
Lp(R) 6 K

∗
CKN(ϑ ,Λ, p)

(

‖∇u‖2
L2(R) + Λ‖u‖2

L2(R)

)ϑ
‖u‖2(1−ϑ )

L2(R)

for anyu∈ H1(R). The optimal constantK∗
CKN(ϑ ,Λ, p) is explicit: see [3].

Symmetry breaking of course makes sense only ifd > 2 and we will assume it
is the case from now on. Let us summarize known results. Let

ΛFS(p,ϑ) := 4
d−1
p2−4

(2ϑ −1) p+2
p+2

and Λ⋆(p) :=
(N−1)(6− p)

4(p−2)
.

Symmetry breaking occurs for anyΛ > ΛFS according to [4,3] (also see [2] for pre-
vious results and [5] ifd = 2 andϑ = 1). This symmetry breaking is a straightfor-
ward consequence of the fact that forΛ > ΛFS, the symmetricextremalsare saddle
points of the energy functionalQ1

Λ in the whole space, and thus cannot be even local
minima.

If ϑ = 1, from [6], we know that symmetry holds for anyΛ 6 Λ⋆(p) . Moreover,
according to [7], there is a continuous curvep 7→Λs(p) with limp→2+ Λs(p) = ∞ and
Λs(p) > a2

c for anyp∈ (2,2∗) such that symmetry holds for anyΛ 6 Λs and there is
symmetry breaking ifΛ > Λs. Additionally, we have that limp→2∗ Λs(p) 6 a2

c if d >

3 and, ifd = 2, limp→∞ Λs(p) = 0 and limp→∞ p2Λs(p) = 4. The existence of this
functionΛs has been proven by an indirect way, and it is not explicitly known. It has
been a long-standing question to decide whether the curvesp→Λs(p) and the curve
p→ΛFS(p,1) coincide or not. This is still an open question. Let us noticethat for all
p∈ (2,2∗), Λ∗(p) 6 Λs(p) 6 ΛFS(p,1) and that the differenceΛFS(p,1)−Λ∗(p) is
small, and actually smaller and smaller, when the dimensiond increases. For more
details see [6].

According to [8], existence of an optimal function is granted for any ϑ ∈
(Θ(p,d),1), but for ϑ = Θ(p,d), only if KCKN(ϑ ,Λ, p) > KGN(p), whereKGN(p)
is the optimal constant in the Gagliardo-Nirenberg-Sobolev inequality

‖u‖2
Lp(RN) 6

KGN(ϑ , p,Λ)

|Sd−1|(p−2)/p
‖∇u‖2Θ(p,d)

L2(RN)
‖u‖2(1−Θ(p,d))

L2(RN)
∀ u∈ H1(Rd) .

A sufficient condition can be deduced, by comparison with radially symmetric func-
tions, namelyK∗

CKN(Θ(p,d),Λ, p) > KGN(p), which can be rephrased in terms ofΛ
as Λ < Λ∗

GN(p) for some non-explicit (but easy to compute numerically) func-
tion p 7→ Λ∗

GN(p). When ϑ = Θ(p,d) and Λ > Λ∗
GN(p), extremal functions (if

they exist) cannot be radially symmetric and in the asymptotic regime p → 2+,
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this condition is weaker thanΛ > ΛFS(p,Θ(p,d)). One can indeed prove that
limp→2+ ΛFS(p,Θ(p,d)) > limp→2+ Λ∗

GN(p). Actually, for everyϑ in an interval
(0,ϑd), ϑd < 1, and forp∈ (2,2+ ε) for someε > 0, sufficiently small, one can
prove thatΛFS(p,Θ(p,d)) > Λ∗

GN(p); see [9] for more detailed statements. Hence,
for ϑ ∈ (Θ(p,d),1), close enough toΘ(p,d) andp−2> 0, small, optimal functions
exist and are not radially symmetric ifΛ > Λ∗

GN(p), which is again a less restrict-
ive condition thanΛ > ΛFS(p,ϑ). See [9] for proofs and [10] for a more complete
overview of known results.

The above results show that for some values ofϑ andp there issymmetry break-
ing outside the zone, parametrized byΛ, where theradial extremalsare unstable.
So, in those zones the asymmetricextremalsare apart from theradial extremalsand
symmetry breaking does not appear as a consequence of an instability mechanism.
What is then the mechanism which makes theextremalslose their symmetry ? The
goal of this paper is to understand what is going on. A plausible scenario is provided
by the numerical computations that we present in this paper.They have been done
usingFreefem++.

The paper is organized as follows. In Section 2 we expose the theoretical setup
of our numerical computations. In Section 3 we describe the algorithm. Section 4 is
devoted to the numerical results and their consequences.

Our numerical method takes full advantage of the theoretical setup and provides
a scenario which accounts for all known results, including the existence of non-
symmetric extremal functions in ranges of the parameters for which symmetric crit-
ical points are locally stable. Although we cannot be sure that computed solutions
are global optimal functions, we are able to present a convincing explanation of how
symmetry breaking occurs.

2. Theoretical setup and reparametrization of the problem for ϑ < 1
with the problem corresponding to ϑ = 1

Let us start this section with the caseϑ = 1 and consider the solutions to

−∆u+ µ u = up−1 in C . (2.1)

Any solutionu of (2.1) is a critical point ofQ1
µ with critical valueQ1

µ [u] = ‖u‖p−2
Lp(C ).

Up to multiplication by a constant, it is also a solution to

−∆u+ µ u−
κ

‖u‖p−2
Lp(C )

up−1 = 0 in C , (2.2)

where

µ =
‖∇u‖2

L2(C )
−κ ‖u‖2

Lp(C )

‖u‖2
L2(C )

⇐⇒ κ =
‖∇u‖2

L2(C )
+ µ ‖u‖2

L2(C )

‖u‖2
Lp(C )

= Q1
µ [u] .
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SinceQ1
µ [λ u] = Q1

µ [u] for anyλ ∈ R\{0}, (2.1) and (2.2) are equivalent. For sim-
plicity, we will consider primarily the solutions of (2.1).

Let us denote byuµ ,∗ the unique positive symmetric solution of (2.1) which
achieves its maximum ats= 0. We know from previous papers (see for instance [2]
and references therein) that the positive solution is uniquely defined up to transla-
tions. As a consequence it is a minimizer ofQ1

µ among symmetric functions and

Q1
µ [uµ ,∗] = ‖uµ ,∗‖

p−2
Lp(C ) = 1/K∗

CKN(1,µ , p).
Our first goal is to study the bifurcation of non-symmetric solutions of (2.1)

from the branch(uµ ,∗)µ of symmetric ones. Letf1 be an eigenfunction of the
Laplace-Beltrami operator on the sphereSd−1 corresponding to the eigenvalued−1
and consider the Schrödinger operatorH :=− d2

ds2 +µ +d−1−(p−1)up−2
µ ,∗ whose

lowest eigenvalue is given byλ1(µ) = d−1+ µ − 1
4 µ p2 (see [11], p. 74, for more

details). As in [4], letµFS be such thatλ1(µFS) = 0, that is

µFS = 4
d−1
p2−4

.

We look for a local minimizeruµ of Q1
µ by expandinguµ = uµ ,∗ + ε ϕ f1 + o(ε)

in terms ofε , for µ in a neighborhood of(µFS)+. We find thatQ1
µ [uµ ,∗ + ε f1 ϕ ] ∼

ε2(ϕ ,H ϕ)L2(C ) asε → 0. The problem will studied with more details in [12].
It is widely believed that forϑ = 1 the extremalsfor the Caffarelli-Kohn-

Nirenberg inequalities (1.2) are either the symmetric solutions uµ ,∗ for µ 6 µFS
or the solutions belonging to the branch which bifurcates from uFS := uµFS,∗. Nu-
merically, we are going to see that this is a convincing scenario.

For ϑ < 1, the Euler-Lagrange equation for the critical points ofQϑ
Λ can be

written as

−∆v+
1
ϑ

[

(1−ϑ) t[v]+ Λ
]

v−
κ

ϑ ‖v‖p−2
Lp(C )

vp−1 = 0 in C , (2.3)

where t[v] :=
‖∇v‖2

L2(C )

‖v‖2
L2(C )

and κ =
‖∇v‖2

L2(C )
+ Λ‖v‖2

L2(C )

‖v‖2
Lp(C )

= Q1
Λ[v] .

Any solutionu of (2.2) is also a solution of (2.3) ifΛ = ϑ µ − (1−ϑ) t[u]. Symmet-
ric solutionsuµ ,∗ give rise to a symmetric branch of solutionsµ 7→ vΛϑ

∗ (µ),∗ = uµ ,∗

of solutions for (2.3), where

Λϑ
∗ (µ) := ϑ µ − (1−ϑ) t[uµ ,∗] .

A branchµ 7→ uµ of solutions for (2.1) indexed byµ , normalized by the condition
‖uµ‖

p−2
Lp(C ) = κ can be seen as a branch of solutions of (2.2) and also providesa

branchµ 7→ vΛϑ (µ) = uµ of solutions for (2.3) with

Λϑ (µ) := ϑ µ − (1−ϑ) t[uµ ] .
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If we can prove thatµ 7→ uµ bifurcates fromµ 7→ uµ ,∗ atµ = µFS, then we also have
found a branchΛ 7→ vΛ of solutions of (2.3) which bifurcates fromΛ 7→ vΛ,∗ at

Λϑ
FS := Λϑ (µFS) = ϑ µFS− (1−ϑ) t[uFS]

as has already been noticed in [3].
So, from the branch of solutions to (2.2) which bifurcates from uFS we will

construct a branch of solutions to (2.3) that contains candidates to beextremalsfor
the Caffarelli-Kohn-Nirenberg inequalities forϑ < 1. Of course, nothing guarantees
that theextremalsfor the inequalities (1.2) withϑ < 1 lie in this branch but, as we
shall see, such a scenario accounts for all theoretical results which have been ob-
tained up to now. In this paper we numerically compute the first branch bifurcating
from the symmetric branch atµFS, then transform it to a branch for (2.3) and study
the value ofJϑ (µ) := Qϑ

Λ(µ)[uµ ] in terms ofΛϑ (µ).

An important ingredient in our algorithm is related to the fact that minimizing
the first eigenvalues of Schrödinger operators−∆−V under some integral constraint
onV is equivalent to solving (2.1). One can indeed prove that

µ = − inf
‖V‖Lq(C )=1

inf
u∈H1(C )\{0}

∫

C
|∇u|2 dy−

∫

C
V |u|2 dy

∫

C
|u|2 dy

with q= p
p−2 has a minimizer, and that the operator−∆−V has a lowest negative ei-

genvalue,−µ , with associated eigenfunctionuµ . Up to multiplication by a constant,
V = up−2

µ /‖u‖p−2
Lp(C ), so thatuµ solves (2.1); see [6] for details, and also [13,14].

3. The algorithm

Based on the theoretical setup of the previous section, we are now ready to introduce
the algorithm used for the computation of the branch of non-symmetric solutions
of (1.2) which bifurcates fromµFS for ϑ = 1.

1) Initialization: obtaining one point on the non-symmetric branch.The function
uµ ,∗ is a saddle point ofQ1

µ for any µ > µFS. Choose thenµ0 larger thanµFS, but
not too large,ε > 0 small andw a direction of descent forQ1

µ0
atuµ0,∗. Starting from

uµ0,∗ + ε w, we use the conjugate gradient algorithm to decrease the energy and
search for a quasi-local minimum ofQ1

µ0
. The limit uµ0 solves (2.2) for someκ0 =

Q1
µ0

[uµ0]. Since its energy is lower thanQ1
µ0

[uµ0,∗], it is certainly a non-symmetric
critical point.

2) A fixed point method.Critical points ofQ1
µ can be characterized as fixed points

of anad hocmap as follows.

1. Chooseκ > 0, p∈ (2,2∗), q = p
p−2 and start with some potentialV0 normal-

ized by the condition:‖V0‖Lq(C ) = 1.



Symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities 7

2. For anyi > 1, define

λi(κ) := inf
u∈ H1(C )
‖u‖L2(C ) = 1

(

∫

C

|∇u|2 dy−κ

∫

C

Vi−1 |u|
2 dy

)

,

and get a minimizerui ∈ H1(C ) such that‖ui‖L2(C ) = 1.

3. DefineVi := |ui |
p−2/‖ui‖

p−2
Lp(C ) and iterate, by computingλi+1(κ) from Step 2.

The sequence(λi)i>1 is monotone non-increasing. Indeed, for anyi > 1, we have

λi+1(κ) = inf
u∈ H1(C )
‖u‖L2(C ) = 1

(

∫

C

|∇u|2 dy−κ

∫

C

Vi |u|
2 dy

)

6

∫

C

|∇ui |
2 dy−κ

∫

C

Vi |ui |
2 dy

= inf
V ∈ Lq(C )
‖V‖Lq(C ) = 1

(

∫

C

|∇ui |
2 dy−κ

∫

C

V |ui |
2 dy

)

6

∫

C

|∇ui |
2 dy−κ

∫

C

Vi−1 |ui |
2 dy= λi(κ) .

The sequence(λi)i>1 is bounded from below, as an easy consequence of Hölder’s
inequality:

∫

C

|∇u|2 dy−κ

∫

C

Vi |u|
2 dy>

∫

C

|∇u|2 dy−κ ‖V‖Lq(C ) ‖u‖2
Lp(C ) ,

and the r.h.s. itself is bounded by the Caffareli-Kohn-Nirenberg inequality:

inf
u∈ H1(C )
‖u‖L2(C ) = 1

(

∫

C

|∇u|2 dy−κ ‖u‖2
Lp(C )

)

=: µ(κ)

if we assume that‖V‖Lq(C ) = 1. Indeed this amounts to

‖∇u‖2
L2(C ) + µ(κ)‖u‖2

L2(C ) > κ ‖u‖2
Lp(C ) ∀ u∈ H1(C ) ,

which is exactly equivalent to (1.1) up to a reparametrization of µ in terms ofκ.
This scheme is converging towards a solution of

−∆u+ µ(κ)u= κ V u , V = κ ‖u‖2−p
Lp(C ) up−2 in C .
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See [6] for details and [13,14] for earlier references. Notice that if we start with
the potentialV0 = up−2

µ0 /‖uµ0‖
p−2
Lp(C ) found at the end of the initialization of our al-

gorithm, then we find thatµ0 = µ(κ0) anduµ0 (as well asV0) is a fixed point of our
algorithm, such thatκ0 = Q1

µ0
[uµ0] < Q1

µ0
[uµ0,∗].

The above iterative algorithm is a local version of a Roothanalgorithm to com-
pute a fixed point. We have run it usingFreefem++in a self-adaptive way, where at
every step the computing mesh is based on the level lines of the previously computed
function. This is important for large values ofµ because solutions asymptotically
tend to concentrate at some point.

3) Building the branch in terms ofκ, starting fromκ0. We adopt a perturbative
approach by modifying the value of the parameterκ and reapplying the above fixed-
point algorithm.

In practice we takeκ = κ0−η for η > 0 small,V0 = |uµ0|
p−2/‖uµ0‖

p−2
Lp(C ). We

get a new critical pointuµ with µ = µ(κ). If η has been chosen small enough,
we still have thatQ1

µ [uµ ] < Q1
µ [uµ ,∗]. By iterating this method as long asµ > µFS,

we obtain a discretized branch of numerical solutionsµ 7→ uµ of (2.2) contain-
ing uµ0. Numerically, we check thatQ1

µ [uµ ] < Q1
µ [uµ ,∗], hence proving thatuµ is

non-symmetric as long asµ > µFS, and such thatuµ converges touFS asµ tends
to µFS. For simplicity, we adopt the following convention: we extend the branch to
any value ofµ > 0 but observe thatuµ coincides withuµ ,∗ for anyµ < µFS.

We can do the same in the other direction and start withκ = κ0 + η for η > 0
small, take againV0 as initial potential, and then iterate, with no limitation on κ.
Again we check thatQ1

µ [uµ ] < Q1
µ [uµ ,∗] for the discrete version of the branch cor-

responding toµ = µ(κ), κ > κ0.

Altogether, we have approximated a branch which bifurcatesfrom the symmet-
ric one atµ = µFS. This branch is a very good candidate to be the branch of the
globalextremalsfor the Caffarelli-Kohn-Nirenberg inequalities forϑ = 1. The main
reason for this belief is that if we start our algorithm for aµ close enough toµFS,
we always hit the first (in terms ofµ) branch bifurcating from the symmetric one,
that is, the one bifurcating fromµFS and observe that its energy is below the energy
of corresponding symmetric solutions. On the other hand, the asymptotic value as
µ → ∞ is the one predicted by Catrina and Wang in [2] for optimal functions. The
estimates found in [6] indicate that the set of parameters inwhich a different branch
of optimal functions would co-exist with the branch of critical points we have com-
puted is remarkably narrow, and close in energy with the one we have found at least
for µ = µFS. The existence of another, distinct branch of non-symmetric solutions
which does not bifurcate from the symmetric ones, but still has the same asymptot-
ics asµ →∞, is therefore very unlikely. Hence we expect that our methodprovides a
complete answer for optimal functions and for the value of the best constant in (1.1)
for ϑ = 1.

Once we have constructed a discretized branch of solutions for ϑ = 1, we use
the transformation described in Section 2 to get a discretized branch of solutions
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for (2.3). Same comments apply as for the caseϑ = 1 (see [12] for the asymptotics
as µ → ∞) and we expect that the computed solution is the optimal one for (1.1)
with ϑ < 1.

Let us finally notice that by [15] (also see [16]), theextremalsof (1.2) enjoy
some minimal symmetry properties. They depend only onsand on one angle, which
can be chosen as the azimuthal angle onS

d−1. For anyd > 2, the problem we have
to solve is actually two-dimensional, which greatly simplifies the computations.

4. Numerical results

Solutions have been computed for various values ofpandϑ ∈ [Θ(p,d),1] in the typ-
ical cased = 5. Details of the concrete numerical implementation of theFreefem++
code are given at the end of this section.

We adopt the convention that solutions with lowest energy are represented by
plain curves while symmetric ones, when they differ, are represented by dashed
curves. Darker parts of the plots correspond to minimizers for fixed Λ, at least
among the branches we have computed. Hence, define the functions

Jϑ (µ) := Qϑ
Λϑ (µ)[uµ ] and Jϑ

∗ (µ) := Qϑ
Λϑ
∗ (µ)[uµ ,∗]

whereuµ is the solution of (2.1) which was obtained by the method of Section 3 and
uµ ,∗ is the symmetric solution of (2.1). Forµ < µFS, these two functions coincide
and their value is a good candidate for determining the best constant in (1.1). At
µ = µFS, non-symmetric solutions bifurcate from symmetric ones and for µ > µFS
the corresponding guess for optimal constants is given respectively byJϑ andJϑ

∗ .
With the notations of Section 2, we know thatΛϑ=1(µ) = µ . For ϑ < 1, the

parameter we are interested in isΛ and we look for the solution of (2.3) which
minimizesQϑ

Λ. The reparametrization of Section 2 and the bifurcation atµ = µFS
suggest to still parametrize the set of solutions byµ and consider

µ 7→
(

Λϑ (µ),Jϑ (µ)
)

and µ 7→
(

Λϑ
∗ (µ),Jϑ

∗ (µ)
)

.

However, we will see that there is no reason whyµ 7→ Λϑ (µ) should be monoton-
ically increasing forµ > µFS; this is indeed not the case for certain values ofd, p
andϑ .

To illustrate these preliminary remarks, assume first thatd = 5 andp= 2.8. For
ϑ = 1, the bifurcation of non-radial solutions from the symmetric ones occurs for
µ = µFS ≈ 4.1667. Forϑ ranging betweenΘ(2.8,5) ≈ 0.714286 and 1, branches
can be computed using the reparametrization of Section 2. See Fig. 1. Although it
is hard to see it on Fig. 1, right, the curvesµ 7→

(

Λϑ (µ),Jϑ (µ)
)

may have a self
intersection. We are now going to investigate this issue in greater details.

In the critical caseϑ = Θ(p,d), the limiting valueJ∞ := limµ→∞ JΘ(p,d)(µ)
along the branch of non-symmetric solutions corresponds tothe best constant in
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∗
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1
∗
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μ

J
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∗
(μ)

ϑ = 0 72
ϑ = 0 75

ϑ = 1

...

.
.

Figure 1. Left.– Plot of µ 7→ J1(µ) (plain curve) andµ 7→ J1
∗(µ) (dashed curve) for d= 5,

p = 2.8, ϑ = 1. The branch of non-symmetric functions bifurcates from thebranch of sym-
metric ones for J1(µFS) ≈ 4.17 and Q1

µFS
[uFS] ≈ 15.65. Right.–Plots ofµ 7→ Jϑ (µ) and

µ 7→ Jϑ
∗ (µ) (dashed curve) for d= 5, p= 2.8, for ϑ = 0.72, 0.75, 0.8, 0.85, 0.9, 0.95, 1.

Gagliardo-Nirenberg inequalities:

J∞ = k inf
u∈H1(Rd)\{0}

∫

Rd |∇u|2 dx+
∫

Rd |u|2 dx

(
∫

Rd |u|p dx)
2
p

wherek :=
(

sϑϑ (1−ϑ)1−ϑ )

|ϑ=Θ(p,d), according to [12]. Whenϑ = Θ(p,d), at
least in cases we have computed, there are optimal functions(see Fig. 2.) if and
only if

Λ 6 ΛGN := sup{ΛΘ(p,d)
∗ (µ) : JΘ(p,d)

∗ (µ) < J∞} .

2.65 2.70 2.75 2.80

7.65

7.70

7.75

7.80

7.85

J
ϑ (μ) and Jϑ

∗
(μ)

ΛΛ

J∞

J
1(μFS) = J

1
∗
(μFS)

FSΛGN (μ)
4 6 8 10 12 14

2.50

2.55

2.60

2.65

2.70

2.75

2.80

2.85

μμFS

Λ

ΛGN

ΛϑFS

Λϑ (μ)

Λϑ
∗
(μ)

Figure 2. Case d= 5, p= 2.8, ϑ = Θ(5,2.8). Left.–Plots of the curve
(

Λϑ (µ),Jϑ (µ)
)

and
of the (dashed) curve

(

Λϑ
∗ (µ),Jϑ

∗ (µ)
)

, both parametrized byµ . Right.–Reparametrization
µ 7→ Λϑ

∗ (µ) (dashed curve) andµ 7→ Λϑ (µ): they differ forµ > µFS≈ 4.17.
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Fix someϑ0 ∈ (0,1). Now we consider the subcritical regime, that is whenp
varies in the range(2, p∗(ϑ0,d)). Whenp is close enough top∗(ϑ0,d), the branch
stills bifurcates towards the left from the symmetric branch atΛϑ

FS = Λϑ (µFS) and
then, for larger values ofµ , turns towards the right, crosses the symmetric branch
(in the plane(Λ,Qϑ

Λ [u]), not in the functional space), and then stays under this sym-
metric branch for any larger value ofµ . In other words, the mapµ 7→ Λϑ0(µ) is
monotone decreasing in(µFS,µ0) for someµ0 > µFS and then monotone increasing
in (µ0,∞). See Fig. 3. This case is interesting, because when the non-symmetric

2.845 2.850 2.855 2.860 2.865
7.785

7.790

7.795

7.800

7.805

Λ ϑ

μ Λϑ (μ), Jϑ (μ)

J
ϑ(μ)

J
ϑ (μ1) = J

ϑ
∗

(μ1 ∗)

Λ1

,

Λϑ (μ)FS
5 6 7 8

2.82

2.84

2.86

2.88

2.90

ΛϑFS

μ Λϑ (μ)

μ

Λϑ
∗
(μ)

Λ1

μ

μ

1
μ0

Figure 3. Plots for d= 5, p= 2.78, ϑ = Θ(5,2.8). Left.–Plot of the curve
(

Λϑ (µ),Jϑ (µ)
)

parametrized byµ . Right.– Reparametrizationµ 7→ Λϑ
∗ (µ) (dashed curve) andµ 7→

Λϑ (µ): the functionΛϑ
∗ is increasing forµ < µFS, while the functionΛϑ is decreasing

on (µFS,µ1) and increasing forµ > µ1.

branch crosses the symmetric one, if the critical points areactually the optimal
functions for (1.1), then a symmetricextremaland a non-symmetric one coexist.
Denote byΛ1 the corresponding value ofΛ. In this case, forΛ < Λ1 theextremals
of (1.2) are all symmetric. AtΛ = Λ1 there is coexistence of a symmetric and a
non-symmetricextremal, and for anyΛ > Λ1 theextremalsare non-symmetric. Let
us denote byuϑ

Λ the minimizer ofQϑ
Λ: the mapΛ 7→ uϑ

Λ is not continuous, since at
Λ = Λ1 there is a jump.

In terms ofµ , there is someµ∗
1 ∈ (0,µFS) such thatΛϑ

∗ (µ∗
1) = Λ1, and extremal

functions forΛ < Λ1 belong to the set{uµ ,∗ : µ < µ∗
1}. There is also someµ1 ∈

(µ0,∞) such thatΛϑ (µ1) = Λ1, and extremal functions forΛ > Λ1 belong to the set
{uµ : µ > µ1}. At Λ = Λ1, uµ∗

1 ,∗ anduµ1 are two different optimal functions.
In Figs. 4 and 5, we show the very different shapes of the symmetric and the

non-symmetricextremalsat Λ = Λ1.
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[0,π

R

uμ∗
1
,∗

]/2

[0,π

R

uμ∗
1
,∗

]/2

Figure 4. Case d= 5, p = 2.78, ϑ = Θ(5,2.8) and Λ1 = Λϑ
∗ (µ∗

1), corresponding to the
crossing of the curve(Λϑ

∗ (µ),Jϑ
∗ (µ)) with the non-symmetric curve(Λϑ (µ),Jϑ (µ)). Plot

of the symmetric solution, uµ∗
1 ,∗: Left.– level lines,Right.–3d plot.

[0,π

R

uμ1

]/2

[0,π ]

R

uμ1

/2

Figure 5. Case d= 5, p = 2.78, ϑ = Θ(5,2.8) and Λ1 = Λϑ (µ1), corresponding to the
crossing of the curve(Λϑ

∗ (µ),Jϑ
∗ (µ)) with the non-symmetric curve(Λϑ (µ),Jϑ (µ)), with

µ1 > µ∗
1 . Plot of the symmetric solution, uµ1: Left.– level lines,Right.–3d plot.

When p takes smaller values in the range(2, p∗(ϑ0,d)), the branch bifurcates
towards the right and stays under the symmetric branch. In other words, the map
µ 7→ Λϑ (µ) is monotone increasing forµ > µFS. See Fig. 6.

3.20 3.25 3.30 3.35 3.40 3.45 3.50
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7.7

7.8
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8.0

8.1

μ Λϑ
∗
(μ), Jϑ

∗
(μ)

Λ

J (μFS) = J
∗
(μFS)

ϑ ϑ

μ Λϑ (μ), Jϑ (μ)

Λϑ Λϑ ( )μFS= μμ

Λϑ (μ)

Λϑ
∗
(μ)

Λϑ
FS

FS

4.0 4.5 5.0 5.5 6.0

2.8

3.0

3.2

3.4

3.6

Figure 6. Plots for d= 5, p= 2.7, ϑ = Θ(5,2.8). Left.–Plots of the curve
(

Λϑ (µ),Jϑ (µ)
)

and of the (dashed) curve
(

Λϑ
∗ (µ),Jϑ

∗ (µ)
)

, both parametrized byµ . Right.–Reparametriz-
ation µ 7→ Λϑ

∗ (µ) (dashed curve) andµ 7→ Λϑ (µ).
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We may now come back to Fig. 1, right. An enlargement of the curves Λ =
Λϑ (µ) 7→ Jϑ (µ) clearly shows how one moves from the limiting pattern of Fig.2
(left) to the generic case of Fig. 3 (left) and finally to the regime of Fig. 6 (left) when
ϑ varies in[Θ(p,d),1): see Fig. 7.

2.6 2.7 2.8 2.9

7.6

7.7

7.8

7.9

8.0

8.1 μ J
ϑ (μ)

μ Λϑ (μ)

(a)

(b)

(c)

Figure 7. Case d= 5, p = 2.8: curves
(

Λϑ (µ),Jϑ (µ)
)

for ϑ = Θ(2.8,5) ≈ 0.7143 (a),
ϑ ≈ 0.7213 (b)andϑ ≈ 0.7283 (c).

Let us end this section by giving some details of the concreteimplementation
of the Freefem++code used to make the above computations. The computational
domain is chosen to be a rectangle{(s,ϑ) ∈ (0,π)× (0,12). Since we know that
the solutions of our equations decay quickly at infinity,L = 12 has been checked to
be large enough not to have too much boundary effect fors large. The computations
are made using an adaptive mesh, of approximately 3000 triangles, and we use a P2
discretization. The mesh has been taken large enough so thatthere is a qualitative
agreement with the theoretical values of the optimal constants, for large values ofµ .

The conjugate gradient that we use to construct our first point in the branch
converges typically in about 70 steps, with a pre-defined error of 10−12 as stopping
parameter. We use preconditioning in order to make the descent quicker.

For the iterative algorithm which constructs the branch, weiterate the search of
eigenvalues of a sequence of linear operators by using the commandEigenvalue
included inFreefem++, which is based on the theARPACKlibrary. Whenever we
go to a new point in the branch, we need about 30 iterations to converge.

We use very refined error tests. Branches are constructed by moving very slowly
from a point to the next, but even so, the computations do not fit perfectly the bifurc-
ation pattern that we know to take place nearµ = µFS. We have carefully checked
that improving the stopping criteria gives us a better approximation in the cases
where we have theoretical information available. We have also verified that the
asymptotics of the branch forµ large is compatible with the theoretical one. And
increasing the number of finite elements in the mesh, or diminishing the stopping
criteria improves it. All this has been checked carefully, to see that the observed
errors are only due to discretization errors, and not to the algorithm itself.

Finally, note that whenµ increases, the solutions that we compute tend to con-
centrate around one single point. The computation needs a lot of precision because
otherwise we would lose information around the concentration point.



14 Jean Dolbeault, and Maria J. Esteban

Concluding remarks

In this paper, we have observed that any critical point ofQϑ
Λ is also a critical point

of Q1
µ and can be rewritten as a solution of (2.1) up to a multiplication by a constant.

Using reparametrizations, it is therefore obvious thatextremalsfor (1.1) belong to a
union of branches that can all be parametrized byµ . We have found no evidence for
other branches than the ones made of symmetric solutions andof the non-symmetric
ones that bifurcate from the symmetric solutions (when the number of eigenvalues
of the operatorH changes asµ increases). Among non-symmetric branches, the
first one is the best candidate for extremal functions in (1.1).

At this point we have no reason to discard the possibility of secondary bifurc-
ations. Branches of solutions which do not bifurcate from the symmetric ones may
also exist. Among the various branches, we have no theoretical reason to decide
which one minimizes the energy, and the minimum may jump fromone to another.
This is indeed the phenomenon we have observed for instance in Fig. 3.

However, the branch that we have computed is a good candidatefor minimizing
the energy. It is the natural one when one starts with small values ofµ and tries to
optimize locally the energy functional, and it has the correct behavior asµ → ∞.
Known estimates, like the ones of [6], show that there is not much space for unex-
pected solutions in the range of parameters or of the energies. It is therefore quite
reasonable to conjecture that the solutions that we have computed are the actual ex-
tremals for Caffarelli-Kohn-Nirenberg inequalities and provide a complete scenario
for thesymmetry breakingphenomenon of theextremals, even if a complete proof
is still missing.
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