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Rául Manásevich 4

DIM & CMM (UMR CNRS no. 2071), FCFM,
Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile

email: manasevi@dim.uchile.cl

July 29, 2014

Abstract. We consider radial solutions of a general elliptic equation involving a weighted
p-Laplace operator with a subcritical nonlinearity. By a shooting method we prove the
existence of solutions with any prescribed number of nodes. The method is based on a
change of variables in the phase plane, a very general computation of an angular velocity
and new estimates for the decay of an energy associated with an asymptotic Hamiltonian
problem. Estimating the rate of decay for the energy requires a sub-criticality condition.
The method covers the case of solutions which are not compactly supported or which have
compact support. In the last case, we show that the size of the support increases with the
number of nodes.

Key words and phrases. p-Laplace operator; Nodal solutions; Nodes; Shooting method; Hamiltonian
systems; Energy methods; Action-angle variables; Compact support.

2010 Mathematics Subject Classification. 34C10; 35B05; 37B55.
1 Supported by Fondecyt 1110074. 2 Partially supported by Mathamsud 13MATH-03 and ECOS C11E07.

3 Partially supported by Fondecyt 1110268 and Mathamsud 13MATH-03. 4 Partially supported by Basal-
CMM-Conicyt, Milenio grant-P05-004F, Mathamsud 13MATH-03 and Fondecyt 1110268.
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1. introduction

In this paper we shall consider classical radial sign-changing solutions for a problem of the
form

div
(
a |∇u|p−2∇u

)
+ b f(u) = 0 , lim

|x|→+∞
u(x) = 0 (0)

where a and b are two positive, radial, smooth functions defined on Rd \ {0}, f ∈ C(R)
satisfying some growth conditions, and div

(
a |∇u|p−2∇u

)
denotes a p−Laplace operator

with weight, p > 1. Under appropriate conditions on a and b, this equation can be reduced
to

div
(
q |∇v|p−2∇v

)
+ q f(v) = 0 , lim

|x|→+∞
v(x) = 0 , (1)

on Rd, for some smooth radial function q defined on Rd \ {0}. Equations of this type have
been studied previously in [27], see also [4], where the existence of nonnegative solutions has
been studied.

Radial solutions to (1) satisfy the problem(
q(r)φp(v

′)
)′

+ q(r) f(v) = 0 , r > 0 ,

v′(0) = 0 , lim
r→+∞

v(r) = 0 ,
(2)

with q(r) = rd−1 q(x), r = |x|. Here and henceforth, for any s ∈ R \ {0}, φp(s) := |s|p−2 s
and φp(0) = 0. We denote by p′ the Hölder conjugate exponent of p, so that 1

p
+ 1

p′
= 1, and

observe that φp′ ◦ φp = Id. Also ′ denotes the derivative with respect to r = |x| ≥ 0, x ∈ Rd,
and for radial functions, as it is usual, we shall write v(x) = v(r).

We will be interested only in classical solutions of (2), i.e., functions v in C1([0,∞); R)
such that q φp(v

′) is in C1((0,∞); R), and we will look for solutions satisfying v(0) > 0.

For the weight q we assume:

(Q1) q ∈ C1(R+; R+) , q ≥ 0 and q′ > 0 on (0,∞) ,

(Q2) q′/q is strictly decreasing on (0,∞) ,

(Q3) there exist C1 > 0 and C2 > 0 such that C1 ≤
r q′(r)

q(r)
≤ C2 ∀ r ∈ (0,∞) ,

(Q4) for any r0 > 0 , lim
r→+∞

[
h(r + r0)− h(r)

]
= +∞

where h is defined by

h(r) :=
(
q(r)

)p′
for all r ≥ 0 . (3)

From (Q1), q is a strictly increasing nonnegative function in R+, and from (Q3), in the form
C1/r ≤ q′/q for all r > 0, after integration over (s, t), s ≤ t, we obtain that tC1q(s) ≤ sC1q(t),
hence it must be that lim

s→0+
q(s) = 0 and lim

t→∞
q(t) = ∞. For this reason, we redefine q at 0

if necessary to have q(0) = 0 and may assume that q ∈ C0(R+
0 ). Also, from (Q1) we may

define Q(r) =
∫ r

0
q(t)dt.
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A typical example of such a function q is q(r) = rN−1 for some N > 1 but as we shall see
below, much more cases of practical interest are covered. Condition (Q4) is slightly weaker
than asking that limr→+∞(q(r))p

′−1 q′(r) = +∞.
As for the nonlinearity f , we assume

(f1) f ∈ C(R), f is locally Lipschitz on R \ {0}, with f(0) = 0,

(f2) there exist β− < 0 < β+ such that F (s) < 0 for all s ∈ (β−, β+) \ {0}, F (β±) = 0,
f(s) > 0 for all s ∈ [β+,∞), f(s) < 0 for all s ∈ (−∞, β−], and F (∞) = F (−∞), where
we have denoted F (s) :=

∫ s
0
f(t)dt.

Finally let us set
1

N
:= lim inf

r→0+

(Q
q

)′
(r) and µ∗ :=

[
1

p
− 1

N

]
+

where x+ denotes the positive part of x. From (Q3) it follows that N > 1.
We shall assume the following key sub-criticality condition:

(SC) there exist α ∈ (0, 1), µ ≥ µ∗ and r0 > 0 such that

µ+
(Q
q

)′
− 1

p
≥ 0 on (0, r0) (4)

and

lim
s→+∞

[
inf

s1, s2∈[α s, s]

(
F (s2)− µ s2 f(s2)

)
Q
(( (1−α) s

φp′ (f(s1))

)1/p′
)]

= +∞ . (5)

Remark 1. It follows from (Q1) and (Q2) that
(
Q
q

)′ ≥ 0, hence µ∗ ≤ 1/p. Indeed, from the

definition of Q, (Q1) and (Q2) we have

Q(r) =

∫ r

0

q(t)

q′(t)
q′(t)dt ≤ q(r)

q′(r)

∫ r

0

q′(t)dt =
(q(r))2

q′(r)

implying that 1 − Qq′

q2
≥ 0, that is, (Q/q)′ ≥ 0. We also observe that there is always some

µ > µ∗ such that (4) is satisfied. If p < N we notice that µ∗ = 1
p∗

where p∗ := N p
N−p is the

usual critical exponent associated with N when N = d is the dimension and there are no
weights in (0).

Condition (SC) is the precise condition that will be required in our proof. However if the
limit

γ := lim
|s|→+∞

s f(s)

F (s)
− 1

exists, then the reader is invited to check that f(s) ∼ |s|γ−1 s and F (s) ∼ |s|γ+1 when

|s| → +∞. Assume that 1
N

:= limr→0+

(
Q
q

)′
(r) is defined and such that N > p. If γ < p− 1,

we further assume that q(r) = rN−1 for any r > 0. We have

Q
((

(1−α) s
φp′ (f(s))

)1/p′
)
∼ |s|−

N
p

( (γ+1−p) as |s| → +∞ .

Then conditions (4) and (5) are satisfied if and only if the much simpler sub-criticality
condition

γ + 1 < p∗
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holds, that is, the standard sub-criticality condition for the p-Laplace operator in Rd with
N = d.

Remark 2. It is worth mentioning that in [4], where the existence of nonnegative solutions
to (2) is proven, they require a little more from the weight q (see (q3) in [4]), namely, that
the limit

lim
r→0+

rq′(r)

q(r)
exists.

In this case, also limr→0+

(
Q
q

)′
(r) exists, as(Q

q

)′
(r) = 1− Q(r)

rq(r)

rq′(r)

q(r)

and hence, by L’Hôpital’s rule,

lim
r→0+

(Q
q

)′
(r) = 1− lim

r→0+

Q(r)

rq(r)

rq′(r)

q(r)
= 1− lim

r→0+

rq′(r)

q(r)
lim
r→0+

Q(r)

rq(r)

= 1− lim
r→0+

rq′(r)

q(r)
lim
r→0+

q

rq′(r) + q(r)

=
1

lim
r→0+

rq′(r)
q(r)

+ 1

also exists and their critical exponent is the same as ours.

We will deal with existence of solutions with nodes, which are defined as the zeros of the
solution which are contained in the interior of its support. As we will see in Remark 4 in
Section 3, a solution to (2) can only have a finite number of nodes.

Next we establish our main result.

Theorem 1.1. Suppose that assumptions (Q1)-(Q4), (f1)-(f2) and (SC) are satisfied. Then
for any given k ∈ N0 := N ∪ {0}, there exists a solution of (2) with exactly k nodes.

The present paper is organized as follows. In Section 2 we shall first explain how the
problem with two independent weights a and b corresponding to Eq. (0) can be reduced to
the problem with a single weight q and illustrate our results with various examples. Also,
in that section, we will discuss the sub-criticality condition. In Section 3 we have collected
some preliminary results, including a non-oscillation result which, to our knowledge, is new
even for the case p = 2 without weights. Since we will work in a non-standard framework of
sign changing solutions, some care is required concerning results of existence and uniqueness.
These have been collected in Proposition 3.1 and a proof is given in Appendix A. Then we
adapt the methods developed for the standard case, q = 1, and give short but complete
proofs. We will then be able to emphasize the differences of our results with the standard
case. The core of our paper is concentrated in Section 4 that contains our two key estimates:

1. The Rotation Lemma (Lemma 4.1) measures the speed of rotation around the origin
in the phase space, thus providing an estimate of the number of zeros of the solution.
Interestingly, the angular velocity is estimated for finite energy levels, which allows
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to discard previous restrictions on the growth of the nonlinearity. Here r plays the
role of a time variable.

2. The Energy Dissipation Lemma (Lemma 4.2) measures the decay rate of the energy:
a solution with large energy needs a large interval in r to bring its energy in a range
where the Rotation Lemma applies. The sub-criticality condition is essential as shown
in Proposition 6.1.

A remarkable fact is that our method does not distinguish solutions with compact support
and solutions supported on the whole line. When solutions are not compactly supported,
we only need to discard oscillations; assumption (H) provides a sufficient condition for this,
which is probably not optimal. The proof of Theorem 1.1 is then completed in Section 5.
Finally, in Section 6, we establish the estimates which show that the examples of Section 2
are all covered by our results.

Concerning earlier contributions we shall primarily refer to [8, 14] and the references
therein. The goal of this paper is to extend the results of [8, 14] to general weights, and to
simplify some of the proofs. We refer to [15, 27] for the study of nonnegative solutions in
presence of weights. In particular the change of variables which reduces Eq. (0) to Eq. (1) has
been considered in [27]. As in [8], we will handle simultaneously the solutions with compact
support and the other ones. We shall refer to [23] and to [8] respectively for multiplicity
and existence results when q(r) = rN−1. Even if our equations have been considered mostly
in the case of nonnegative solutions, see for example [24] for the case with no weights and
[4], for the weighted case, there is still a large literature on sign changing solutions and we
refer to the two above mentioned papers for further details and references. Consequences
of a possible asymmetry of F are not fully detailed here: see [17] for more insight. At first
reading, it can be assumed that f is odd and β− = −β+, although we provide proofs in the
general case.

The change of variables of Section 4 can be seen as the canonical change of coordinates
corresponding either to N = 1 and f(u) = |u|p−2 u, or to the asymptotic Hamiltonian system
in the limit r → +∞, we refer to [17, 16, 1, 14] for earlier contributions. The role of the
critical exponent has been emphasized in [21] in terms of existence and non-existence for
weighted problems.

As we said before we will generalize and extend some previous results considered in [8, 14],
for the particular case q = 1 in equation (1) to the more general situation with weights.
However, our results are not simple extensions of previously known ones. For example, a
sub-critical growth condition, used previously in [24, 8], is generalized here and we prove that
is not only a sufficient condition, but also necessary: see Example 4 in Section 2. Compared to
the existing literature, we mention two new key ingredients in this paper: the computation
of the angular velocity in the phase plane is not anymore based on super- or sub-linear
growth assumptions on f , and the estimate on the size of the nodal domains, which arises
from energy estimates, is also new. Notably these energy estimates are valid for compactly
supported solutions as well as for solutions supported in the whole space. Throughout this
paper, we will establish a number of qualitative properties of the support, when the solutions
are compactly supported, and of the nodal domains, which are of interest for applications,
for instance in astrophysics. Notice that when solutions cannot be compactly supported,
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which depends on the local behavior of the nonlinearity f near 0, double zeros occur at
infinity; this will be further commented in Section 6.

2. General weights and examples

For radial solutions Eq. (0) can be rewritten as(
a(r)φp(u

′)
)′

+ b(r) f(u) = 0 , r > 0 ,

lim
r→0+

a(r)φp(u
′(r)) = 0 , lim

r→+∞
u(r) = 0

(6)

where r = |x|. We assume the weights a(r) = rd−1 a(x), b(r) = rd−1 b(x), satisfy the
condition

(W1) a, b > 0 in R+, a, b ∈ C1(R+), (b/a)1/p ∈ L1
loc(R+

0 ) and lim
r→+∞

∫ r

0

(
b(t)

a(t)

)1/p

dt = +∞.

For all r > 0, let us define

χ(r) :=

∫ r

0

(
b(t)

a(t)

)1/p

dt.

Then χ : R+
0 → R+

0 is such that χ(0) = 0, limr→+∞ χ(r) = +∞, by (W1), and is a
diffeomorphism of R+

0 onto R+
0 , with inverse r = χ−1(t), for any t ≥ 0.

As in [27], we introduce the change of variable

t = χ(r) ∀ r > 0,

and set

q :=
(
a ◦ χ−1

)1/p (
b ◦ χ−1

)1/p′
. (7)

Then, it is immediate to verify that u = u(r) is a radial solution of the equation in (6) if
and only if v = u ◦ χ−1 is a solution of the equation in (2) and clearly lim

r→∞
u(r) = 0 if and

only if lim
t→∞

v(t) = 0.

Next under certain additional conditions on a and b we will deduce from Theorem 1.1 a
useful corollary. We begin by definying

ψ :=

(
1

p

a′

a
+

1

p′
b′

b

)(a
b

)1/p

and assume that the following conditions hold:

(W2) the function ψ is positive and strictly decreasing on R+,

(W3) there is C1 > 0 and C2 > 0 such that

C1 ≤ χ(r)ψ(r) ≤ C2 ∀ r > 0 ,

(W4) for any r0 > 0,

lim
r→+∞

[(
a(r + r0)

)p′−1
b(r + r0)−

(
a(r)

)p′−1
b(r)

]
= +∞ .
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Under conditions (W1)-(W4) we have that the weight q as defined in (7) satisfies conditions
(Q1)-(Q4). Furthermore, by observing that for r > 0

b(r) =
( b(r)
a(r)

)1/p

a1/p(r)b1/p′(r) and φp′

(
B(r)

a(r)

)
≤ χp

′−1(r)χ′(r) (8)

we deduce from (W1) and (W2) that b ∈ L1
loc(R

+
0 ) and φp′

(
B
a

)
∈ L1

loc(R
+
0 ), hence setting

B(r) :=

∫ r

0

b(t) dt and TW (z) :=

∫ z

0

φp′

(
B(r)

a(r)

)
dr ,

it can be verified that

µ∗ = lim sup
r→0+

[
1

p a

(B a

b

)′
−
(B
b

)′ ]
and (SC) reads

(SCW )


there exist α ∈ (0, 1), µ ≥ µ∗ and r0 > 0 such that

µ+
(
B
b

)′ − 1
p a

(
B a
b

)′ ≥ 0 for all r ∈ (0, r0) ,

lims→+∞

[
infs1, s2∈[α s, s]

(
F (s2)− µ s2 f(s2)

)
B
(
T −1
W

( (1−α) s
φp′ (f(s1))

))]
= +∞ .

Hence from Theorem 1.1 we obtain the following corollary.

Corollary 2.1. Suppose that Assumptions (W1)-(W4), (f1)-(f2), and (SCW ) are satisfied.
Then for all given k ∈ N, there exists a solution of (6) with exactly k nodes.

We note that when a = b in (6), then χ(r) = r and ψ(r) = a′(r)/a(r). Assumption (W1)
reads a > 0 in R+ and a ∈ C1(R+) and assumption (W2) reads a′ > 0 in R+ and a′/a is
strictly decreasing in R+. Hence the two together are equivalent to (Q1) and (Q2) together
with q = a = b. Clearly, (W3) and (W4) correspond exactly to (Q3) and (Q4) respectively,
with q = a = b. Finally, we note that if u is a solution to (6) with u(0) > 0 (the argument is
similar if u(0) < 0), it is necessary (see Proposition 3.2) that u(0) > β+, hence by integration
of the equation in (6) and using the condition lim

r→0+

a(r)φp(u
′(r)) = 0 we obtain that as long

as u(r) ≥ β+, say for r ∈ (0, r0), it must be that

a(r)|u′(r)|p−1 =

∫ r

0

b(s)f(u(s))ds ≤ C0B(r), r ∈ (0, r0),

where we have denoted C0 = max
s∈[β+,u(0)]

f(s). Hence, from the second in (8) we obtain

|u′(r)| ≤ φp′(C0)φp′

(
B(r)

a(r)

)
≤ φp′(C0)χp

′−1(r)χ′(r), r ∈ (0, r0),

so, when a = b, so that χ(r) = r, it holds that

|u′(r)| ≤ φp′(C0)rp
′−1, r ∈ (0, r0),

and thus u′(0) = 0.

Many examples fall into the general form of (6), that is, of radial solutions to (0). The
following ones will be examined in more detail in Section 6.
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Example 1 (Generalized Matukuma equation).

∆pu+
f(u)

1 + |x|σ
= 0 , x ∈ Rd ,

p > 1 , d ≥ 1 , σ > 0 .

Here ∆p denotes the p-Laplace operator, namely ∆pu = ∇ · (|∇u|p−2∇u), and a(r) = rd−1,
b(r) = rd−1/(1 + rσ), r = |x|, N = d.

Example 2. A second example is provided by the equation

∆pu+
|x|σ

(1 + |x|p′)σ/p′
f(u)

|x|p′
= 0 , x ∈ Rd ,

p > 1 , d ≥ 1 , σ > 0 ,

of which Example 1 is a particular case corresponding to σ = p′. Now we have a(r) = rd−1,
b(r) = rd−1+σ−p′/(1 + rp

′
)σ/p

′
. This equation was first introduced in [2], with p = 2, as a

model of stellar structure. Other generalizations of the Matukuma equation and of the stellar
model of [2] can be found in [5, 21].

Example 3 (k-Hessian operator). A third example is given by elliptic equations involving
the k-Hessian operator, k > 0, see [5] which, in case of radial solutions, coincide with

∇ ·
(
|x|1−k |∇u|k−1∇u

)
+ f(u) = 0 , x ∈ Rd ,

k > 0 , d ≥ 1 .

Here p = k + 1, a(r) = rd−k, N = d− k + 1 and b(r) = rd−1.

Before starting with proofs, let us comment on the sub-criticality assumptions (SC) and
(SCW ). Let us define the energy function by

E(r) :=
|v′(r)|p

p′
+ F (v(r)) . (9)

One of the two main ingredients of our method is based on the fact that for reducing the
energy of a solution v = vλ of Eq. (2) such that v(0) = λ > 0 to a finite, given range, a large
interval in r is needed in the large λ regime. In other words,

rλ(a) := inf {r > 0 : E(r) = a} (10)

is such that

lim
λ→+∞

rλ
(
θ F (λ)

)
= +∞ ,

where θ ∈ (0, 1) is fixed. To obtain such a property, sub-criticality is essential. The other
ingredient then guarantees that the solutions have to change sign a large number of times
in the finite energy range. Let us notice that this does not say anything on the intervals
delimited by the zeros and does not prevent them, a priori, to accumulate at r = 0. See [23]
for results on the number of zeros on a given interval, in the subcritical regime. We will now
provide two examples showing that (SC) is needed.
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Example 4 (Critical case). Consider some Aubin-Talenti functions restricted to the interval
r ∈ [0, R] and given by

v(r) =
λ(

1 + 1
d (d−2)

λ
4
d−2 r2

) d−2
2

∀ r ∈ [0, R] .

Then v solves Eq. (2) with p = 2 on [0, R], v(0) = λ, q(r) = rd−1 and f(s) = s2∗−1,
2∗ = 2 d

d−2
, for any s in the range (v(R),∞). We may extend f on (−∞, v(R)) by an odd

function satisfying all above conditions except (SC). The reader is invited to check that if

R = R(λ) is chosen in such a way that E(R(λ)) =
√
F (λ), then

lim
λ→+∞

R(λ) = 0 ,

which clearly indicates that most of the energy is lost in a critical layer as λ → +∞. Let
v = vλ be a solution of Eq. (2) such that v(0) = λ > 0. We will show in Section 6 that there
exists λ0 > β+ = −β− such that for any λ ≥ λ0 the solution vλ is positive, showing that
(SC) is necessary. We have chosen to use p = 2 for this example, just for simplicity, but
computations can be extended to the case of any p > 1 with no special difficulty.

One may wonder if the property shown in Example 4 is not directly linked with the scale
invariance of the Aubin-Talenti functions and therefore restricted to the critical exponent
γ + 1 = 2∗ = 2 d

d−2
. The next example shows that this is not the case.

Example 5 (Slightly super-critical case). Consider a radial solution of the Brezis-Nirenberg
problem on the unit ball B ⊂ Rd, d ≥ 3,

−∆u = µu+ u
d+2
d−2

+ε in B , u = 0 on ∂B

in the slightly super-critical regime, that is, for some ε > 0, small. If µ > 0 is chosen small
enough as ε→ 0, then it has been shown in [9, 12] that the corresponding solution uniformly
converges towards an Aubin-Talenti function if d ≥ 4 and, in the radial case, it is easy
to deduce that the uniform convergence also holds for the derivative of the solution on the
interval [0, R(λ)], with R(λ) defined as in Example 4. Notice that the case d = 3 deserves a
special treatment and has been studied in [10, 11].

Example 6. We conclude our examples by a case where p∗ is achieved but (SC) still holds.
Let us consider a function f satisfying (f1) and (f2) such that for some s0 > max{2 e, 2 β+}
and ζ > p

d−p , it holds that

f(s) =
|s|p∗−2 s

(log |s|)ζ
for all s such that |s| ≥ s0 ,

where as usual p∗ = d p/(d − p). In case d ≥ 2 we consider q(r) = rd−1, and thus µ in (4)
can be chosen to be µ∗ = 1/p∗.

This example is inspired by the ground state study of [19, Theorem 2]. Our method applies
and shows the existence of sign-changing solutions with an arbitrary given number of nodes.
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3. Preliminary results

To deal with Problem (2), we will use a shooting method and consider the initial value
problem {(

q(r)φp(v
′)
)′

+ q(r) f(v) = 0 , r > 0 ,

v(0) = λ > 0 , v′(0) = 0 .
(11)

To emphasize the dependence in λ, we shall denote the solution by vλ whenever necessary.

Proposition 3.1. Suppose that Assumption (f1)-(f2) hold. Assume also that q satisfies
(Q1). Then for any fixed λ ∈ R, (11) has a solution vλ defined in [0,∞). Moreover, such a
solution is unique at least until it reaches a double zero or a point r such that v′λ(r) = 0 and
f(vλ(r)) = 0.

A double zero of a function v means some r > 0 such that v(r) = v′(r) = 0. This can occur
only for values of v or v′ for which there is a regularity issue in the equation as, otherwise,
the solution would be constant and trivial. Since we are not aware of a reference for the
results of Proposition 3.1, we will sketch a proof. However, this is not central for our paper
and requires notations that will be introduced later, so we will postpone it in Appendix A.

The following proposition collects several properties of the solution v to (11). Properties
(iii) and (iv) extend properties that were used in [14] and provide us with some understanding
of the classification of all solutions. We will come back to this in Section 6.

Proposition 3.2. Let v be a solution of (11) for some λ > 0, with q and f satisfying
(Q1)-(Q3) and (f1)-(f2) respectively, and consider the energy E defined by (9).

(i) The energy E is nonincreasing and bounded, hence limr→+∞E(r) =: E is finite.
(ii) There exists Cλ > 0 such that |v(r)|+ |v′(r)| ≤ Cλ for all t ≥ 0.

(iii) If v reaches a double zero at some point r0 > 0, then v does not change sign on
[r0,∞). Moreover, if v 6≡ 0 for r ≥ r0, then there exists r1 ≥ r0 such that v(r) 6= 0,
and E(r) < 0 for all r > r1 and v ≡ 0 on [r0, r1].

(iv) If lim
r→+∞

v(r) = ` exists, then ` is a zero of f and lim
r→∞

v′(r) = 0.

Proof. Let v be any solution of (11). As

E ′(r) = − q
′(r)

q(r)
|v′(r)|p , (12)

by (Q1), we have that E is decreasing in r implying that F (v(r)) ≤ E(r) ≤ F (λ) for all
r > 0. By (f2), there exists a positive constant F such that F (s) ≥ −F for all s ∈ R and
hence E(r) ≥ −F for all r ≥ 0, thus (i) and (ii) follow.

Assume next that v reaches a double zero at some point r0 > 0. Then E(r0) = 0 implying
that E(r) ≤ 0 for all r ≥ r0. If v is not constantly equal to 0 for r ≥ r0, then E(r1) < 0 for
some r1 > r0 and thus, by monotonicity of E, E(r) < 0 for all r ≥ r1. Moreover v cannot
have the value 0 again (because at the zeros of v we have E ≥ 0). This proves (iii) by taking
the infimum on all r1 with the above properties.

Finally, assume that limr→+∞ v(r) = `, and recall that Q(r) :=
∫ r

0
q(s) ds. From (Q3), we

know that limr→+∞ q(r) = +∞ and limr→+∞
∫ r

0
φp′(Q/q) ds = +∞. Using (11) and applying
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L’Hôpital’s rule twice, we obtain that

0 = lim
r→+∞

v(r)− `∫ r
0
φp′(Q/q) ds

= lim
r→+∞

v′(r)

φp′(Q/q)(r)
= φp′

(
lim

r→+∞

q(r)φp(v
′(r))

Q(r)

)
= −φp′

(
lim

r→+∞

q(r) f(v(r))

q(r)

)
= −φp′(f(`)) .

Next, from the definition of E in (9), it follows that limr→+∞ |v′(r)| =
(
p′ (E − F (`)

)1/p

exists. As ` = limr→+∞ v(r) also exists, we must have that limr→∞ v
′(r) = 0. �

Proposition 3.3 (Asymptotic Hamiltonian system). Let q and f satisfy (Q1)-(Q3) and
(f1)-(f2) respectively, and let v be a solution of (11). Let {rn} be any sequence in [0,∞)
that tends to ∞ as n→ +∞ and define the sequence of real functions {vn} by

vn(r) = v(r + rn) .

Then {vn} contains a subsequence, still denoted the same, such that vn and v′n converge
pointwise to a continuous function v∞ and v′∞ respectively, with uniform convergence on
compact sets of [0,∞). Furthermore the function v∞ is a solution to the asymptotic equation(

φp(v
′)
)′

+ f(v) = 0 , r ∈ [0,∞) . (13)

Proof. We know that there exist two positive constants c1
λ and c2

λ such that

v(r) ≤ c1
λ , v′(r) ≤ c2

λ , for all r ≥ 0

and, as a consequence,

vn(r) ≤ c1
λ , v′n(r) ≤ c2

λ , for all r ≥ 0

for any n ∈ N. Hence {vn} is equicontinuous: for any r, s > 0 and for all n ∈ N,

|vn(s)− vn(r)| ≤ c2
λ |s− r| .

Then, from Ascoli’s theorem (see [30, Theorem 30]), {vn} contains a subsequence, still de-
noted the same, that converges pointwise to a continuous function v∞, with uniform conver-
gence on compact sets of [0,∞).

It is clear that each function vn satisfies(
q(r + rn)φp(v

′
n)
)′

+ q(r + rn) f(vn(r)) = 0 ,

and hence

φp(v
′
n(r)) =

q(rn)

q(r + rn)
φp(v

′
n(0))−

∫ r

0

q(s+ rn)

q(r + rn)
f(vn(s)) ds = 0 .

From (Q3), it follows that(s+ rn
r + rn

)C1

≤ q(s+ rn)

q(r + rn)
≤
(s+ rn
r + rn

)C2

,

hence, for any given r, s ≥ 0,

lim
n→+∞

q(s+ rn)

q(r + rn)
= 1 .
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By passing to a subsequence if necessary we can assume that limn→∞ φp(v
′
n(0)) = a. Let us

choose some T > 0. Since {f(vn)} uniformly converges in [0, T ] to f(v∞), we find that v′n
uniformly converges to a continuous function z given by

z(r) = φp′
(
a−

∫ r

0

f(u∞λ (s)) ds
)
.

Hence z′ exists and is continuous. Furthermore from

vn(r) = vn(0) +

∫ r

0

v′n(s) ds ,

by letting n→ +∞, we obtain that

v∞(r) = v∞(0) +

∫ r

0

z(s) ds .

Hence v∞ is continuously differentiable, v′∞(r) = z′(r), for all r ∈ [0, T ] and

φp(v
′
∞(r)) = a−

∫ r

0

f(v∞(s)) ds

implies first that a = φp(v
′
∞(0)), and then that

(φp(v
′
∞(r)))′ + f(v∞(r)) = 0 .

This argument shows that v∞ is a solution to (13) for all r ∈ [0,∞). �

Proposition 3.4. Let q and f satisfy (Q1)-(Q3) and (f1)-(f2) respectively, and let v be a
solution of (11). Then E = limr→∞E(r) = F (`) ≤ 0 and ` is a zero of f .

Proof. Let T > 0 be arbitrary but fixed. Then

E(k0 T )− E =

∫ ∞
k0T

q′(r)

q(r)
|v′|p dr =

∞∑
k=k0

∫ (k+1)T

k T

q′(r)

q(r)
|v′|p dr

≥ C1

∞∑
k=k0

∫ T

0

|v′(r + k T )|p

r + k T
dr ≥ C1

∞∑
k=k0

1

(k + 1)T

∫ T

0

|v′(r + k T )|p dr

where C1 is defined in (Q3). As the left hand side of this inequality is finite, it must be that

lim infk→+∞
∫ T

0
|v′(r + k T )|p dr = 0, hence there is a subsequence {nk} of natural numbers

such that limk→+∞
∫ T

0
|v′(r+nk T )|p dr = 0. From Proposition 3.3, vk(r) := v(r+nk T ) has

a subsequence, still denoted the same, such that

lim
k→+∞

vk(r) = v∞(r) and lim
k→+∞

v′k(r) = v′∞(r)

uniformly in compact intervals, where v∞ is a solution of(
φp(v

′
∞)
)′

+ f(v∞) = 0 .

Since
∫ T

0
|v′∞(s)|p ds = 0, v∞ is a constant, say v∞(r) ≡ v and f(v) = 0. On the other hand,

1

p′
|v′k(r)|p + F (vk(r)) =

1

p′
|v′(r + nk T )|p + F (v(r + nk T )) = E(r + nk T )→ E
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as k → +∞ and thus, from (f2),

E = F (v) ≤ 0 .

�

Remark 3. The monotonicity of E and Proposition 3.4 justify the definition of rλ(a) in
(10). For any λ > β+, the solution vλ is uniquely defined in [0, rλ(0)). Indeed, from Propo-
sition 3.1, besides double zeros, uniqueness can be lost only at points r0 where v′(r0) = 0 and
f(v(r0)) = 0 with v(r0) 6= 0, and at this kind of point, by (f2), E(r0) = F (v(r0)) < 0, hence
rλ(0) < r0. Also, E is strictly decreasing in [0, rλ(0)). Finally, we note that if a > 0, this
infimum is a minimum, i.e., it is attained.

We end this section by giving a sufficient condition so that solutions vλ to (11) cannot be
oscillatory. This was done in [14] under the assumption that

∫
0

ds
|F (s)|1/p < ∞ and without

weights. Now we present a result valid for any f satisfying only the structural assumptions
(f1)-(f2), regardless of the support, but under a slightly stronger assumption than (Q4) on
the weight q, namely assumption (H) below. We note that this assumption is satisfied for
q(r) = rN−1 whenever N > p, hence it is a true improvement of [14, Proposition 3.2].

Theorem 3.5. Let f and q satisfy (f1)-(f2), (Q1)-(Q3) respectively and assume furthermore
that

(H) Either there exists ε > 0 such that s 7→ |F (s)|−1/p is integrable (−ε, ε) or h defined
by (3) is such that h′ is non-decreasing and limr→+∞ h

′(r) = +∞.

If vλ solves (11), then it has at most a finite number of sign changes.

Proof. From Proposition 3.4, we know that E ≤ 0. From Assumption (f1)-(f2), either E < 0
or E = 0 and ` = 0, according to Propositions 3.4 and 3.2 (iv).

Assume first that rλ(0) is finite, which corresponds either to E < 0 or to a case in which
E = 0 and vλ reaches a double zero at rλ(0). If {zn} is a sequence of zeros accumulating
at some r∞ ≤ rλ(0), then vλ(r∞) = 0 and for each n ∈ N, there exists a unique point
rn ∈ (zn, zn+1) at which vλ reaches a local maximum or minimum value. At these points,
using that Eλ(rn) ≥ Eλ(zn+1) ≥ 0, we must have that either vλ(rn) ≤ β− or vλ(rn) ≥ β+,
a contradiction. This proves that vλ has only a finite number of zeros on (0, rλ(0)), and by
Proposition 3.2 (iii), we know that vλ cannot change sign on (rλ(0),∞).

The last case corresponds to E = 0 and ` = 0 and rλ(0) = +∞. If s 7→ |F (s)|−1/p is
integrable (−ε, ε), then the same proof given in [14, Proposition 3.2] can be adapted to the
case of a weight q by using (Q1)-(Q3) so we omit it. According to (H), we are therefore
assuming that h = qp

′
is such that h′ is non-decreasing and limr→+∞ h

′(r) = +∞.
We argue by contradiction and suppose that there is an infinite sequence (tending to

infinity) of simple zeros of v. Then Eλ(r) ≥ 0 for all r > 0. We denote by {z+
n } the zeros

for which v′(z+
n ) > 0 and by {z−n } the zeros for which v′(z−n ) < 0. We have

0 < z−1 < z+
1 < z−2 < · · · < z+

n < z−n+1 < z+
n+1 < · · ·

Between z−n and z+
n there is a minimum rmn where v(rmn ) < 0 and between z+

n and z−n+1 there
is a maximum rMn where v(rMn ) > 0. As Eλ(r

M
n ), Eλ(r

m
n ) ≥ 0, it must be that v(rmn ) < β−
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and v(rMn ) > β+. As we must have limr→+∞Eλ(r) = 0, it follows that limn→+∞ v(rMn ) = β+

and limn→+∞ v(rmn ) = β−.
Let b+ be the largest positive zero of f (b− the smallest negative zero of f). Set

d+ = β+ − b+ , b1 = b+ +
d+

4
, d− = b− − β− , b2 = b− − d−

4
,

and let a1, a2 be such that
b2 < a2 < 0 < a1 < b1 .

We define the unique points r1,n ∈ (z+
n , r

M
n ), r2,n ∈ (rMn , z

−
n+1), s1,n ∈ (r2,n, z−n+1), t1,n ∈ (z−n+1,

rmn+1), s2,n ∈ (z−n+1, t1,n) so that

v(r1,n) = b1 = u(r2,n) , v(s1,n) = a1 , v(s2,n) = a2 , v(t1,n) = b2 .

We have
z+
n < r1,n < rMn < r2,n < s1,n < z−n+1 < s2,n < t1,n < rmn+1 .

For r ∈ (r2,n, s1,n) ∪ (s2,n, t1,n), v(r) ∈ [b2, a2] ∪ [a1, b1] ⊂ (β−, β+), hence F (v(r)) ≤ 0, but
also |F ◦v| ≥ k0 for some positive constant k0 independent of n. Moreover, by applying the
mean value theorem, we get that there exists a constant k1, which is independent of n, such
that

0 < k1 ≤ s1,n − r2,n and 0 < k1 ≤ t1,n − s2,n .

Next, let us define
f := min

s∈[b1,λ]
f(s)

and notice that f > 0 by (f1)-(f2). From (11) we have that

|(φp(v′))′(r)| =
∣∣∣ N − 1

r
φp(v

′(r)) + f(v(r))
∣∣∣ ≥ f − N − 1

r
φp(Cλ)

for any r ∈ [r1,n, r2,n]. If additionally r ≥ r := 2 (N − 1)φp(Cλ)/ f , then the r.h.s. in the

above inequality is bounded from below by f/2. Hence, choosing n0 such that z+
n ≥ r for all

n ≥ n0, we have that

|(φp(v′))′(r)| ≥
1

2
f for all r ∈ [r1,n, r2,n]

and therefore, again from the mean value theorem, we get that

2φp(Cλ) ≥ |φp(v′(r2,n))− φp(v′(r1,n))| = |(φp(v′))′(ξ)| (r2,n − r1,n) ≥ 1

2
f (r2,n − r1,n)

implying that

r2,n − r1,n ≤
2φp(Cλ)

f
.

Let
H(r) := h(r)E(r) .

A straightforward computation shows that

H ′(r) = p′ (q(r))p
′−1 q′(r)E(r) + h(r)E ′(r)

= p′ (q(r))p
′−1 q′(r)E(r)− h(r)

q′(r)

q(r)
|v′(r)|p = h′(r)F (v(r)) ,



NODAL SOLUTIONS AND WEIGHTED p-LAPLACE OPERATOR 15

thus showing that H ′ = h′ (F ◦v). Thus we have

H(t1,n)−H(r1,n) =

∫ t1,n

r1,n

h′ (F ◦v) dr =

∫ r2,n

r1,n

h′ (F ◦v) dr +

∫ t1,n

r2,n

h′ (F ◦v) dr

=

∫ r2,n

r1,n

h′ (F ◦v) dr −
∫ t1,n

r2,n

h′ |F ◦v| dr

≤
∫ r2,n

r1,n

h′ (F ◦v) dr −
∫ s1,n

r2,n

h′ |F ◦v| dr −
∫ t1,n

s2,n

h′ |F ◦v| dr

≤
∫ r2,n

r1,n

h′ (F ◦v) dr − k0

∫ s1,n

r2,n

h′ dr − k0

∫ t1,n

s2,n

h′ dr

≤
∫ r2,n

r1,n

h′ (F ◦v) dr − 2 k0 k1 h
′(r2,n) .

According to Proposition 3.4, limn→+∞ F (v(rMn )) = 0. Let us choose n0 large enough so that

2φp(Cλ)

f
F (v(rMn ))− 2 k0 k1 < − k0 k1

for all n ≥ n0, and hence ∫ t1,n

r1,n

h′ (F ◦v) dr ≤ − k0 k1 h
′(r2,n) .

Clearly, we can repeat the above argument in the interval (t1,n, r1,n+1), thus proving that

H(r1,n0+j)−H(r1,n0) ≤ − k0 k1

j−1∑
i=0

(
h′(r2,n0+i) + h′(t2,n0+i)

)
where t2,n ∈ (rmn+1, z

+
n+1) is uniquely defined by the condition u(t2,n) = b2. Hence

lim
j→+∞

H(r1,n0+j) = −∞ ,

implying the contradiction that E(r1,n0+j) < 0 for some j large enough. �

Remark 4. A solution v to problem (2) cannot be oscillatory, that is, it can only have
a finite number of nodes. Indeed, with the notation used in the proof of the above result,
limn→+∞ v(rMn ) = β+ and limn→+∞ v(rmn ) = β−, hence v cannot tend to 0 as r →∞.

4. On the number of zeros of solutions to (11)

In this section, we reformulate the problem in the phase space. We start by computing a
lower bound on the angular velocity around the origin.
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Let v = vλ be any solution of (11). Setting w = φp(v
′), or equivalently v′ = φp′(w),

Problem (11) is equivalent to the following first order system.
v′ = φp′(w) ,

w′ = − q
′

q
w − f(v) ,

v(0) = λ , w(0) = 0 .

(14)

We recall that p′ stands for the Hölder conjugate of p. To the (v, w) coordinates of the phase
plane, we assign generalized polar coordinates (ρ, θ) by writing{

v = ρ
1
p cosp′(θ)

w = ρ
1
p′ sinp′(θ)

where

ρ = p
[
Φp(v) + Φp′(w)

]
, with Φp(s) :=

1

p
|s|p ,

and (cosp′(θ), sinp′(θ)) is the solution to

dx

dθ
= −φp′(y) ,

dy

dθ
= φp(x) , x(0) = 1 , y(0) = 0 .

It is well known, see [13], that solutions to this last system are 2πp = 2πp′ periodic and

Φp

(
cosp′(θ)

)
+ Φp′

(
sinp′(θ)

)
=

1

p
for all θ ∈ R .

Notice that in case p = p′ = 2, (
√
ρ, θ) are the usual polar coordinates of (v, w), and cosp′

and sinp′ are the usual cos and sin functions. The reader is invited to check that

sup
θ∈[0,2πp′)

sinp′(θ) cosp′(θ) =
1

p
.

Now, if (v, w) denotes a solution to (14) and if we define the corresponding polar functions
r 7→ ρ(r) and r 7→ θ(r), then (ρ, θ) satisfies the following system of equations:

ρ′ = p φp′(w)

[
φp(v)− f(v)− q′

q
w

]
,

θ′ = −1
ρ

[
pΦp′(w) + v f(v) +

q′

q
v w

]
,

ρ(0) = λp , θ(0) = 0 .

To emphasize the dependance in λ, we will denote the solution by (ρλ, θλ).

The following lemma is crucial for the proof of our main result. A similar result was
proven in [14] for the case of an increasing and superlinear f . It establishes a lower bound
on the angular velocity |θ′| around the origin, which will be used to estimate the number of
sign changes of v by counting the number of rotations of the solutions around the origin in
the phase plane.
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Lemma 4.1 (Rotation Lemma). Let q and f satisfy (Q1)-(Q4) and (f1)-(f2) respectively.
For any c0 > 0, there exist positive constants ω, c1 and r such that if

1

2
c1 ≤ E(r) ≤ c1 and r ≥ r ,

then
− θ′λ(r) > ω − c0 g(v(r), v′(r))

where g(v, v′) = |v f(v) v′| if β− ≤ v ≤ β+ and 0 otherwise.

Proof. Let us choose c1 such that 0 < c1 < limλ→+∞ F (λ). It can be verified that

ρ1 ≤ ρλ(r) ≤ ρ2 ,

where

ρ1 : = min
{

1
4
p c1,

(
F−1
r (c1/4)

)p
, |F−1

` (c1/4)|p
}
,

ρ2 : = max
{(
F−1
r (c1)

)p
, |F−1

` (c1)|p}+ p (c1 + F )
}
,

F−1
` denotes the inverse of F |(−∞,β−] and F−1

r denotes the inverse of F |[β+,∞). Then we have

− θ′ =
(
p

p′
|w|p′

ρ
+
v f(v)

ρ

)
+
q′

q

v w

ρ
≥
(
p

p′
|w|p′

ρ
+
v f(v)

ρ

)
− C2

p r

where C2 > 0 is as in (Q3).
Now, if v ≤ β− or v ≥ β+, then

− θ′(r) ≥ A

ρ
− C2

p r
≥ A

ρ2

− C2

p r

where A := inf
{
s f(s) | s ∈ [−ρ1/p

2 , β−] ∪ [ β+, ρ
1/p
2 ]
}

.

Assume next that β− ≤ v ≤ β+. As F ◦v ≤ 0, then from E(r) ≥ c1/2 we have that
p
p′
|w|p′ ≥ p c1/2,

− θ′(r) ≥ p c1

2 ρ
+
v f(v)

ρ
− C2

p r
≥ p c1

2 ρ2

−
( 2

p′ c1

)1/p 1

ρ1

|v f(v)| |v′| − C2

p r
.

Hence, the conclusion holds with

ω = min
{ A

2 ρ2

,
p c1

4 ρ2

}
, c0 =

( 2

p′ c1

)1/p 1

ρ1

and r = max
{2C2 ρ2

pA
,
4C2 ρ2

p2 c1

}
.

�

From Proposition 3.4, given c1 as above and λ > β+ such that c1 < F (λ), there exist
points rλ(c1) < rλ(c1/2), where rλ(a) is defined in (10). Now we can state the second main
ingredient of this paper, which strongly relies on the sub-criticality assumption (SC) as was
emphasized in Section 2.

Lemma 4.2 (Energy Dissipation Lemma). Let q and f satisfy (Q1)-(Q3), (f1)-(f2) respec-
tively and let (SC) hold. With the above notations, we get

lim
λ→+∞

rλ(c1) = +∞ and lim
λ→+∞

(rλ(c1/2)− rλ(c1)) = +∞ .
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Proof. Assume that there exists a sequence λn → +∞ and K > 0 such that rλn(c1) ≤ K for
all n. Let α ∈ (0, 1), r0 > 0 and µ be as in (SC) and set rα := inf{r > 0 : vλ(r) = αλ}.
Clearly, we may assume that K > r0 and also K > rα, at least for λ large.

Let us recall that E = |v′|p/p′ + F ◦ v and E ′ = − q′(r) |v′(r)|p/q(r), according to (9)
and (12), q (Q/q)′ = q − Qq′/q and 1/p+ 1/p′ = 1, so that

d

dr

(
QE + µ q vλ φp(v

′
λ)
)

= q |v′λ|p
(
µ+

(Q
q

)′
− 1

p

)
+ q

(
F (vλ)− µ vλ f(vλ)

)
.

Then, for r ≥ r0 we have

Q(r)E(r) + µ q(r) vλ(r)φp(v
′
λ(r))

≥
∫ r0

0

q
(
µ+

(Q
q

)′
− 1

p

)
︸ ︷︷ ︸
≥ 0 by (4) in (SC)

|v′λ|p dt

−1

p

∫ r

r0

q |v′λ|p dt+

∫ r

0

q
(
F (vλ)− µ vλ f(vλ)

)
dt

≥ −1

p

q2(r)

q′(r)

∫ r

r0

q′

q
|v′λ|p dt+

∫ r

0

q
(
F (vλ)− µ vλ f(vλ)

)
dt

=
1

p

q2(r)

q′(r)

(
E(r)− E(r0)

)
+

∫ r

0

q
(
F (vλ)− µ vλ f(vλ)

)
dt .

With h := qp
′

according to (3), since (hE)′ = h′ (F ◦ v) ≥ −h′ F so that

(hE)(r)− (hE)(r0) ≥ −F
(
h(r)− h(r0)

)
,

we have

E(r0) ≤ h(r)

h(r0)
E(r) + F

( h(r)

h(r0)
− 1
)
.

Also recall that wλ = φp(v
′
λ) and so, by Young’s inequality,

vλ φp(v
′
λ) = vλwλ ≤

1

p
|vλ |p +

1

p′
|wλ |p .

Collecting these estimates, we find that

C(r) |E(r)|+ µ

p
q(r) ρλ(r) +D(r)

≥ Q(r)E(r) + µ q(r) vλ(r)φp(v
′
λ(r))−

1

p

q2(r)

q′(r)

(
E(r)− E(r0)

)
≥
∫ r

0

q(t)
(
F (vλ(t))− µ vλ(t)f(vλ(t))

)
dt

with

C(r) := Q(r) +
1

p

q2(r)

q′(r)

( h(r)

h(r0)
− 1
)

and D(r) :=
1

p

q2(r)

q′(r)
F
( h(r)

h(r0)
− 1
)
.
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From (SC), there exists M > 0 such that

F (s)− µ s f(s) ≥ −M for all s ∈ R .

Let us choose some R > K and define C and D as the maxima of C and D on [0, R]
respectively. For any r ∈ [0, R] = [0, rα] ∪ [rα, R], we have

C |E(r)|+ µ

p
q(R) ρλ(r) +D

≥
∫ rα

0

q(t)
(
F (vλ(t))− µ vλ(t) f(vλ(t))

)
dt− M

(
Q(R)−Q(rα)

)
and thus

C |E(r)|+ µ

p
q(R) ρλ(r) +D ≥

(
F (s2)− µ s2 f(s2)

)
Q(rα)− M Q(R) ,

where we have set s2 := Argmin{F (s)− µ s f(s) : s ∈ [αλ, λ]}. If s1 ∈ [αλ, λ] is such that
f(s1) = max

s∈[αλ,λ]
f(s). From (11) we get

− q(r)φp(v′λ(r)) =

∫ r

0

q(t)f(vλ(t)) dt ≤ f(s1)Q(r)

as long as 0 < r < rα, hence

− v′λ(r) ≤ φp′(f(s1))φp′
(Q(r)

q(r)

)
for any r ∈ [0, rα] .

Integrating now this last inequality over [0, rα] we obtain

(1− α)λ ≤ φp′(f(s1))

∫ rα

0

φp′
(Q(r)

q(r)

)
dr .

From assumption (Q3), it follows that

1

C2

(r q(r)−Q(r)) =
1

C2

∫ r

0

t q′(t) dt =
1

C2

∫ r

0

t q′(t)

q(t)
q(t) dt ≤ Q(r)

=

∫ r

0

q(t)

q′(t)
q′(t) dt ≤ 1

C1

∫ r

0

t q′(t) dt =
1

C1

(r q(r)−Q(r)) ,

so that there exist positive constants D1 and D2 such that

D1 ≤
r q(r)

Q(r)
≤ D2 for all r > 0 , (15)

and hence t 7→ t1−p
′
φp′
(
Q(t)
q(t)

)
is bounded away from 0 and from above by two positive

constants. This implies that there exists a positive constant C0 = C0(D1, D2) such that

rα ≥ C0

( (1− α)λ

φp′(f(s1))

)1/p′

.
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Therefore, using (15) we get, for yet another constant C0, that

C |E(r)|+ µ

p
q(R) ρλ(r) +D

≥ C0 inf
s1,s2∈[αλ,λ]

(
F (s2)− µ s2 f(s2)

)
Q
(( (1− α)λ

φp′(f(s1))

)1/p′)
− M Q(R) ,

implying by (5) in (SC) that

lim
n→+∞

( ∣∣∣∣ 1

p′
|v′λn(r)|p + (F ◦ vλn)(r)

∣∣∣∣+
µ

p
q(R) ρλn(r)

)
= +∞

uniformly in [0, R]. Therefore, limn→+∞ ρλn(r) = +∞ uniformly in [K,R], a contradiction.
The second assertion follows from the first, by noting that from the mean value theorem

applied to E in [rλ(c1), rλ(c1/2)] and (Q3),

1

2
c1 ≤ p′

C2 (c1 + F )

rλ(c1)

(
rλ(c1/2)− rλ(c1)

)
.

�

Now we start to make use of the variables introduced in the beginning of this section in
order to estimate the number of sign changes of the solutions. Here [x] denotes the integer
part of x.

Lemma 4.3. For any R > 0, the number of nodes of vλ in (0, R) is greater or equal than

lim
r→R−

[
|θλ(r)|
πp

− 3

2

]
and larger or equal than

lim
r→R+

[
|θλ(r)|
πp

− 1

2

]
.

Proof. These estimates follow directly from the change of variables (v, w) 7→ (ρ, θ). Some
care is required in case a zero corresponds to the boundary of the support of the solution.
Here we assume that the support of the solution is simply connected otherwise the lower
bound on the number of nodes has to be decreased by one unit. �

We are now in a position to prove a result concerning the number N(λ) of nodes of
the solution to (11) with initial value λ. This result is the core argument of the proof of
Theorem 1.1.

Proposition 4.4. Let q and f satisfy (Q1)-(Q3), (f1)-(f2) respectively and let (SC) hold.
Then

lim
λ→+∞

N(λ) = +∞ .

Proof. By Lemma 4.1,

− θ(rλ(c1/2)) + θ(rλ(c1)) ≥ ω
(
rλ(c1/2)− rλ(c1)

)
− c0

∫ rλ(c1/2)

rλ(c1)

g(v(t), v′(t)) dt

≥ ω
(
rλ(c1/2)− rλ(c1)

)
− c0

(
Nλ

[rλ(c1),rλ(c1/2)] + 2
)
G
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where G =
∫ β+

β−
|s f(s)| ds and Nλ

[rλ(c1),rλ(c1/2)] is the number of zeros of v in [rλ(c1), rλ(c1/2)].

Since limλ→+∞
(
rλ(c1/2)− rλ(c1)

)
= +∞ by Lemma 4.2 and since

πpN
λ
[rλ(c1),rλ(c1/2)] ≥ − θ(rλ(c1/2)) + θ(rλ(c1))

according to Lemma 4.3, we have shown that N(λ) ≥ Nλ
[rλ(c1),rλ(c1/2)] → +∞ as λ→ +∞. �

5. Proof of Theorem 1.1

For k ∈ N0 := N ∪ {0} we define the sets

Ak := {λ ≥ β+ : (vλ(r), wλ(r)) 6= (0, 0) for all r ≥ 0 , and N(λ) = k} ,

Ik := {λ ≥ β+ : (vλ(rλ(0)), wλ(rλ(0))) = (0, 0) and N[0,rλ(0))(λ) = k} .
Recall that rλ(a) := inf{r ≥ 0 : E(r) = a}, and E has been defined by (9). Notice that
rλ(0) can be finite or infinite. We have

[β+,∞) =
(
∪k∈N0 Ik

)
∪
(
∪k∈N0 Ak

)
∪ A∞ ,

where we have denoted by A∞ := {λ ≥ β+ | vλ is oscillatory}. Notice that A∞ = ∅ if (H)
holds. Indeed, let λ ≥ β+, λ 6∈ A∞. Then N(λ) = j for some j ∈ N0. If vλ(rλ(0)) 6= 0, then
vλ does not have any double zero in [0,∞). Indeed, assume by contradiction that r1 > rλ(0)
is a double zero of vλ. Then by the monotonicity of E, E(r) ≡ 0 in [rλ(0), r1]. But then also
E ′(r) ≡ 0 in (rλ(0), r1) implying that v′λ(r) ≡ 0 in (rλ(0), r1) and thus vλ(rλ(0)) = vλ(r1) = 0,
a contradiction. Hence λ ∈ Aj. If vλ(rλ(0)) = 0, then by the definition of rλ(0) we also have
v′λ(rλ(0)) = 0 hence λ ∈ Ij. Also, observe that the sets Ai, Ij are disjoint for any i, j, and
for i 6= j, Ai ∩ Aj = ∅ and Ii ∩ Ij = ∅.

Proposition 5.1. Let q and f satisfy (Q1)-(Q4), (f1)-(f2) respectively and let (SC) hold.
With the above notations, we have:

(i) Ak is open in [β+,∞),
(ii) Ak ∪ Ik is bounded,

(iii) if λ0 ∈ Ik, then there exists δ > 0 such that (λ0 − δ, λ0 + δ) ⊂ Ak ∪ Ak+1 ∪ Ik,
(iv) given k ∈ N and λ0 ∈ A∞, there exists δ > 0 such that (λ0 − δ, λ0 + δ) ∩Ak = ∅ and

(λ0 − δ, λ0 + δ) ∩ Ik = ∅,
(v) supAk ∈ Ik−1 ∪ Ik, where we set I−1 = ∅,

(vi) sup Ik ∈ Ik.

Proof. (i) Ak is open in [β+,∞): Indeed, if λ ∈ Ak, then in particular (vλ(r), wλ(r)) 6= (0, 0),
where r = rλ(0). Then there exists ε0 > 0 such that the solution of (11) is unique in
[0, rλ(0) + ε] and Eλ(rλ(0) + ε/2) < 0 for all ε ∈ (0, ε0], and thus there exists δ > 0 such that

Eλ(rλ(0) + ε/2) < 0

for all λ ∈ (λ− δ, λ+ δ) implying that rλ(0) ≤ rλ(0) + ε/2. On the other hand, for the same
reason, there exists δ′ > 0 such that

Eλ(rλ(0)− ε/2) > 0
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for all λ ∈ (λ − δ′, λ + δ′) implying that rλ(0) ≥ rλ(0) − ε/2. We conclude then that
limλ→λ rλ(0) = rλ(0). Hence the openness of Ak follows from the continuous dependence of
the solutions in the initial value λ.

(ii) The boundedness of Ak ∪ Ik is a consequence of Proposition 4.4.

(iii) Let λ0 ∈ Ik, set r0 = rλ0(0) and let

0 < z1,0 < z2,0 < . . . < zk,0 < r0

denote the k zeros of vλ0 in (0, r0).
Assume first that vλ0 is decreasing in (r0 − 2 ε0, r0) for some ε0 > 0, so that it reaches

a last maximum point at some sk,0 ∈ (zk,0, r0). Let us define Hλ := hEλ where h = qp
′
,

Eλ = E defined by (9) when v = vλ is a solution to (11), and recall that H ′λ = h′ (F ◦ vλ).
As limr→r0 vλ0(r) = 0, we have that Hλ is decreasing in a left neighborhood of r0 and thus

limr→r0 Hλ0(r) = L ≥ 0. Then, given ε > 0, there exists r < r0 such that

0 < vλ0(r) <
1

2
β+ and Hλ0(r) < L+ ε .

Hence by continuous dependence of solutions to (11) in the initial data in any compact subset
of [0, r0), there exists δ0 > 0 such that for λ ∈ (λ0 − δ0, λ0 + δ0), the solution vλ satisfies

0 < vλ(r) < β+ , Hλ(r) < L+ 2 ε and vλ has at least k simple zeros in [0, r0) , (16)

that is,
(λ0 − δ0, λ0 + δ0) ⊂

(
∪j≥k Aj

)
∪
(
∪j≥k Ij

)
∪ A∞ .

Now we argue by contradiction and assume that there is a sequence {λn} converging to λ0

as n→ +∞ such that λn 6∈ Ak ∪ Ak+1 ∪ Ik. Hence we have

λn ∈
(
∪j≥k+2 Aj

)
∪
(
∪j≥k+1 Ij

)
∪ A∞ ,

that is, the solution vλn has at least k + 2 zeros and at least the first k + 1 zeros are simple.
Let us denote these zeros by

0 < z1,n < z2,n < . . . < zk,n < zk+1,n < zk+2,n .

By the choice of r and (16), vλn decreases in [r, zk+1,n]. Let us denote by sk+1,n the point in
(zk+1,n, zk+2,n) where vλn reaches its minimum value. As Eλn(zk+2,n) ≥ 0, we must have that

vλn(sk+1,n) < β− .

Let us denote by r1,n < r2,n the unique points in (zk+1,n, sk+1,n) where

vλn(r1,n) =
1

4
β− and vλn(r2,n) =

1

2
β− .

From the mean value theorem we have that
1

4
|β−| = |vλn(r2,n)− vλn(r1,n)| ≤ (Cλ0 + 1) (r2,n − r1,n) (17)

for n large enough, where Cλ0 has been defined in Proposition 3.2 (ii), and

λ0

2
≤ λn = |vλn(0)− vλn(z1,n)| ≤ (Cλ0 + 1) z1,n ≤ (Cλ0 + 1) r1,n ,

hence r1,n is bounded below uniformly by a positive constant c0 := 1
2
λ0/(Cλ0 + 1).
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From H ′λ = h′ (F ◦ vλ), and using the first estimate in (16), we have that for n large
enough, H ′λn(r) < 0 for r ∈ [r, zk+1,n] and thus by the second estimate in (16), we know that
Hλn(zk+1,n) < L + 2 ε. Integrating now H ′λ = h′ (F ◦ vλ) over [zk+1,n, r2,n], and using that
F ◦ vλn < 0 in this range we find that

Hλn(r2,n)−Hλn(zk+1,n) = −
∫ r2,n

zk+1,n

h′ |F ◦ vλn| dt ≤ −C
(
h(r2,n)− h(r1,n)

)
where C := infs∈[ 1

2
β−, 1

4
β−] |F (s)|. Hence, using the monotonicity of q and (17), we obtain

Hλn(r2,n) ≤ L+ 2 ε− C
[
h(r1,n + c0)− h(r1,n)

]
where c0 := 1

4
|β−|/(Cλ0 + 1).

Now we need to distinguish the cases r0 = +∞ and r0 < +∞. In the first case, it
must be that r1,n → +∞ as n → +∞. Indeed, if some subsequence {r1,kn} is bounded,
say if r1,kn ≤ K for any n ∈ N, then by the continuous dependence of solutions in [0, 2K]
we obtain a contradiction. Therefore, from (Q4) we obtain that limn→+∞

[
h(r1,n + c0) −

h(r1,n)
]

= +∞ and thus, for n large enough, Hλn(r2,n) < 0, contradicting the fact that
Eλn(r2,n) ≥ Eλn(zk+2,n) ≥ 0.

To analyze the second case, i.e. the case r0 < +∞, we first observe that from (Q1)
and (Q4), there exists a positive constant a0 such that

h(y + c0)− h(y) ≥ a0 for all y ∈ [c0,∞) .

Since it holds that L = 0, by choosing ε < C a0/2 we again obtain that Hλn(r2,n) < 0, a
contradiction.

The case in which vλ0 is increasing in a left neighborhood of r0 can be handled with similar
arguments. Altogether (iii) is established.

(iv) Let k ∈ N and λ0 ∈ A∞. Then there exists R > 0 such that vλ0 has at least k + 2 zeros
in [0, R]. By continuous dependence, there exists δ > 0 such that for λ ∈ (λ0− δ, λ0 + δ), vλ
has at least k + 1 zeros in [0, R], thus the result follows.

(v) Assume next that Ak 6= ∅, let λ0 = supAk and set r0 = rλ0(0). By (iv) and using that
Aj is open for every j ∈ N0, λ0 6∈ Aj for any j hence λ0 ∈ Ij for some j, and by continuous
dependence of the solutions in the initial data in [0, r0 − ε] for ε > 0 small enough, j ≤ k.
By (iii), there is δ > 0 such that (λ0− δ, λ0] ⊂ Aj ∪Aj+1∪ Ij, and since Ak∩ (λ0− δ, λ0] 6= ∅,
it must be that

Ak ∩ (Aj ∪ Aj+1 ∪ Ij) 6= ∅ ,
hence j = k or j = k − 1.

(vi) sup Ik ∈ Ik: It follows directly from (iii) and (iv). �

Proof of Theorem 1.1. With the notation of the previous lemma one shows by induction that
there exists an increasing sequence {λk}, such that λk ∈ Ik.

As β+ ∈ A0, by (ii) we can set λ0 = supA0, and by (v) and (vi), λ0 ∈ I0 and λ0 ≤ sup I0 ∈
I0. We use now (iii) and find δ > 0 such that

(sup I0 − δ , sup I0 + δ) ⊂ A0 ∪ A1 ∪ I0 .
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Since (sup I0, sup I0 + δ) ∩A0 = ∅ by the definition of λ0 and (sup I0, sup I0 + δ) ∩ I0 = ∅ by
the definition of sup I0, it must be that

(sup I0 , sup I0 + δ) ⊂ A1

implying that

A1 6= ∅ and λ0 ≤ sup I0 < λ1 := supA1 .

By (v), λ1 ∈ I0 ∪ I1, but as sup I0 < λ1, it must be that supA1 ∈ I1. Then

I1 is not empty and λ1 ≤ sup I1 .

We use again (iii) to find δ > 0 such that

(sup I1 − δ, sup I1 + δ) ⊂ A1 ∪ A2 ∪ I1 ,

and again deduce that

(sup I1, sup I1 + δ) ⊂ A2 ,

hence A2 6= ∅ and thanks to (ii) we can set λ2 = supA2, λ0 < λ1 ≤ sup I1 < λ2 and λ2 ∈ I2.
We continue this procedure to obtain the infinite strictly increasing sequence {λk}, defined
by λk = supAk with λk ∈ Ik. �

Remark 5. Note that by Theorem 3.5, λk → +∞ if (H) is satisfied. Indeed, if λk → λ̄ <∞,
then, as f(λ̄) > 0, it must be that vλ̄ is oscillatory.

6. Examples and concluding remarks

We start this section with the analysis of the examples of Section 2.

Analysis of examples 1, 2 and 3. Following some of the ideas in [5, 27], we consider the
following problem, which includes as special cases those three examples:

div
(
|x|k |∇u|p−2∇u

)
+ |x|`

(
|x|s

1 + |x|s

)σ
s

f(u) = 0 in Rd ,

lim
|x|→+∞

u(x) = 0 ,

where d ≥ 1, k, ` ∈ R, and s, σ > 0. Here

a(r) = rd+k−1 , b(r) = rd+`−1

(
rs

1 + rs

)σ
s

.

We claim that (W1)–(W4) are satisfied if

` > k − p , k

p
+
`− 1

p′
≥ 1− d . (18)

First of all, it can be verified that (W1) is a consequence of the first condition in (18). Next
we compute

ψ(r) =

(
d− 1 +

k

p
+
`

p′
+
σ

p′
1

1 + rs

)(
1 + rs

rs

) σ
p s

r
k−`
p
−1 .
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Since by (18) and the assumption that s and σ are positive, the three factors appearing in
the above expression of ψ are positive and strictly decreasing, thus (W2) holds. In order to
check that (W3) holds, we observe that

lim
r→0+

ψ(r)

∫ r

0

(
b(t)

a(t)

) 1
p

dt =

(
d− 1 +

k

p
+
`

p′
+
σ

p′

)
lim
r→0+

r
k−`−σ
p
−1

∫ r

0

t
σ−k+`
p dt ,

thus by (18) we have

lim
r→0+

ψ(r)

∫ r

0

( b
a

)1/p

dt =
p (d− 1) + (`+ σ)(p− 1) + k

p+ `+ σ − k
> 0 .

A similar calculation gives

lim
r→+∞

ψ(r)

∫ r

0

( b
a

)1/p

dt =
(
d− 1 +

k

p
+
`

p′

) p

p− k + `
> 0 ,

hence (W3) is satisfied. Finally, as

ap
′−1(r) b(r) =

(
a

1
p (r) b

1
p′ (r)

)p′
= r

p′(d−1+ k
p

+ `
p′ )
( rs

1 + rs

)σ
s
,

by the second condition in (18) we conclude that (W4) holds. Note that (18) implies that
`+ d > 1/p′.

Now we analyze the subcriticality assumption (SCW ). By integration by parts we find
that

B(r) =

∫ r

0

b(t) dt =
r b(r)

d+ `+ σ
+

σ

d+ `+ σ

∫ r

0

ts b(t)

1 + ts
dt .

Set

µ(r) :=
(1

p
− 1
)(B

b

)′
(r) +

d+ k − 1

p

B(r)

r b(r)

where (d+ k − 1)/r = a′/a. As

r b′(r)

b(r)
= d+ `+ σ − 1− σ rs

1 + rs
,

by L’Hôpital’s rule we find that(B
b

)′
(0) = lim

r→0+

B(r)

r b(r)
= lim

r→0+

1
r b′(r)
b(r)

+ 1
=

1

d+ `+ σ
,

hence from (6) we obtain that for d+ k > p,

lim sup
r→0+

µ(r) = µ∗ =
1

p

(d+ k − p
d+ `+ σ

)
.

For these weights, and f(s) = |s|q−1s log |s|, 1 < q + 1 < 1/µ∗, the assumptions in (SCW )
are satisfied for any α ∈ (0, 1), and µ > µ∗ such that q + 1 < 1/µ. Thus we conclude that
the equation has nontrivial solutions with any prescribed number of nodes.

Analysis of Example 4. Here we complement the results of Section 2 when f is an odd
function such that f(s) = |s|2∗−2 s when |s| ≥ β and f is defined on (0, β) so that (f1)-(f2)
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hold with − β− = β+ = β. The following result shows that Theorem 1.1 does not apply if
the sub-criticality condition (SC) does not hold.

Proposition 6.1. There exists a function f as above, and λ0 > β such that for any λ ≥ λ0

the solution vλ of (11) is everywhere positive.

Proof. For any ν ∈ (−∞, λ), let us define rλ(ν) := inf{r > 0 : vλ(r) = ν}. It can be directly
verified that

r2
β(λ) =

d (d− 2)

β
2
d−2 λ

4
d−2

(
λ

2
d−2 − β

2
d−2

)
and

1

2
|v′λ(rβ(λ))|2 =

d− 2

2 d
β2 d−1

d−2

(
λ

2
d−2 − β

2
d−2

)
.

Using h as in (3), i.e. h(r) = r2 (d−1), we know that hEλ is decreasing in r, hence

r2 (d−1)Eλ(r) ≤ (rβ(λ))2 (d−1)Eλ(rβ(λ)) ≤ C(β, d)λ−2

as long as r ≥ rβ(λ) and |vλ(r)| ≤ β. Assume now that vλ and vλ0 have at least one zero.
This means that r0(λ) and r0(λ0) are finite. From the separation lemma [7, Lemma 4.2], if
λ > λ0, it follows that

rs(λ) < rs(λ0) and κ0 := rs(λ0)2Eλ0(rs(λ0) < rs(λ)2Eλ(rs(λ))

for all s ∈ [−β, β]. We may assume that κ0 is positive (otherwise replace λ0 by λ, and
then choose a larger λ). This means that r0(λ) < r0(λ0) and r2Eλ(r) > κ0 for any r ∈
[rβ(λ), r0(λ)]. Hence Eλ(r) > κ0/r

2 and so we get

r2 (d−2) ≤ C(β, d)

κ0 λ2
and Eλ(r) ≥ κ0

(
κ0 λ

2

C(β, d)

) 1
d−2

for any r ∈ [rβ(λ), r0(λ)] .

Now let us assume that we can take λ arbitrarily large. In that case we can estimate

β =

∫ r0(λ)

rβ(λ)

|v′λ(r)| dr ∼ λ
1
d−2 (r0(λ)− rβ(λ)) as λ→ +∞ ,

thus proving that rβ(λ)/r0(λ) = θ for some θ ∈ (0, 1).
From (12), we know that E ′λ = − (d− 1) |v′λ|2/r ∼ − 2 (d− 1)Eλ /r, which shows that

Eλ(r) = Eλ(rβ(λ))

(
r

rβ(λ)

)− 2 (d−1)

(1 + o(1))) as λ→ +∞ .

Using |v′λ| =
√

2Eλ (1 + o(1))), we can compute again

β =

∫ r0(λ)

rβ(λ)

|v′λ(r)| dr =
√

2Eλ(rβ(λ))

∫ r0(λ)

rβ(λ)

(
r

rβ(λ)

)− (d−1)

dr (1 + o(1)))

=
√

2Eλ(rβ(λ)) rβ(λ)

∫ 1/θ

1

s1−d ds (1 + o(1))) .

Since limλ→+∞
√

2Eλ(rβ(λ)) rβ(λ) = (d − 2) β, we finally get 1 = 1 − θd−2, which is an
obvious contradiction. �
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Analysis of Example 6. This case is a limit case for which the critical exponent is achieved,
with a nonlinearity which is still slightly sub-critical in some sense, as we shall see below.
Although

γ + 1 = lim sup
|s|→+∞

s f(s)

F (s)
= p∗

and thus usual subcritical assumptions do not hold, f satisfies (SC). As Q(r) ∼ rd for r
small, we can rely on Remark 1 and observe that(

F (s)− 1

p∗
s f(s)

)
Q
(( (1−α) s

φp′ (f(s))

)1/p′
)

=
ζ

p∗
(log s)

d−p
p

ζ−1 → +∞ as s→ +∞ .

Problem (2) has therefore bounded states with any prescribed number of nodes.

Concluding remarks. We conclude this section with some remarks concerning the support
of a solution to (2) and the case µ∗ = 0.

Compactly supported solutions and double zeros. It should be noticed that the proof given
in [20, Proposition 2] can be adapted here to prove that a necessary and sufficient condition
for a solution of (2) to be compactly supported is that s 7→ |F (s)|−1/p is integrable in a
neighborhood of s = 0. In that case, the value of r corresponding to the boundary of the
support, if it is bounded, is a double zero of the solution. For completeness, let us give some
hints on the proof.

If v∞ solves (13), then we can prove that |v′∞|p/p′+F (v∞) = 0 by multiplying the equations
by v′∞ and taking a primitive. This allows to prove that

r − r0 =

∫ v∞(r)

0

|F (s)|−1/p ds

if r is in a left neighborhood of r0 on which v∞(r) > 0 and such that v∞(r0) = 0. By
monotonicity, the above relation can be inverted to provide an expression of v∞(r).

If we consider a solution to (11), it can be proved that it is compactly supported if
s 7→ |F (s)|−1/p is integrable using comparison methods. For detailed results, we primarily
refer to [29], to [3, 6, 1] in case p = 2 and to [32, 31, 29, 28, 18, 22] in the general case.

If s 7→ |F (s)|−1/p is not integrable in a neighborhood of s = 0, solutions cannot be
compactly supported and double zeros appear at +∞, that is,

λ ∈ Ik =⇒ rλ(0) = +∞ .

This is of course consistent with Hopf’s lemma, as established for instance in [32]. Assump-
tion (H) provides a sufficient condition for the solutions to have only a finite number of
nodes. We do not claim that it is optimal.

For completeness, it has to be noted that the behavior of f may differ in right and left
neighborhoods of s = 0. The discussion of the various cases is left to the reader.
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Location of the last node. We have observed that limλ→+∞ r(λ) = +∞, thus showing that
the support of compactly supported solutions becomes larger and larger as λ→ +∞. Such
solutions have been studied in [1, 14].

For solutions which are not compactly supported, this means that the largest zero goes
to ∞ as λ→ +∞. Notice that this does not give a lower bound on the number of zeros in a
fixed interval containing 0, which is consistent with the results of [23]. This means that even
in the sub-critical regime the distance that separates two consecutive zeros or the lowest zero
from the origin, r = 0, may become arbitrarily small as λ→ +∞.

Still, from Lemmata 4.1 and 4.2, it can be deduced that the last nodes become arbitrarily
large when λ→ +∞

The case µ∗ = 0. In this case, we claim that (SC) is always satisfied for f such that f(s) ∼
C sγ as |s| → +∞. Indeed, we can choose any α ∈ (0, 1), and µ ∈ (0,min{1/(γ + 1), 1/p}),
small. From the definition of µ∗, it follows that there exists C0 > 0 such that Q(r) ≥ C0 r

p+ε

for r small, with ε = µ p2/(1− µ p). Hence(
F (s2)− µ s2 f(s2)

)
Q

(( (1− α) s

φp′(f(s1))

)1/p′
)
≥ C

(
1

γ+1
− µ

)
sγ+1Q

(
(1− α) s

[1−(p′−1) γ] 1
p′
)

for some positive constant C and for any s1, s2 ∈ [α s, s]. If 1− (p′−1)γ ≥ 0, then (5) clearly
holds as Q is an increasing function. If 1− (p′ − 1) γ < 0, then for s large enough,

sγ+1 Q
(

(1− α) s
[1−(p′−1) γ] 1

p′
)
≥ C s

γ+1+(p+ε) [1−(p′−1) γ] 1
p′ ,

and since

γ + 1 + (p+ ε) [1− (p′ − 1) γ]
1

p′
= p+

ε

p′
[1− (p′ − 1) γ] > 0

for µ small enough, that is, for ε small, our claim follows.

Appendix A. Existence and uniqueness results

This Appendix is devoted to the proof of Proposition 3.1. By Proposition 3.2, if a solu-
tion v = vλ to (11) exists on some interval [0, r0), then |v′λ| + |vλ| ≤ Cλ in [0, r0) for some
positive constant Cλ. Hence, if vλ can be defined in an interval of the form [0, r0] for r0 > 0,
then this solution can be extended to [0,∞). Such an existence result (and a uniqueness
result conditional to the values of vλ) is proved in [27, Proposition 9.1, 9.2] so we omit it.

To study the unique extendibility situation at points r0 > 0 we re-write (11) in the form
v′ = φp′(w)

w′ = −q
′

q
w − f(v)

v(r0) = v0 , w(r0) = w0

(19)

and observe that the only delicate situations occur at points (v0, w0) with either v0 = 0 or
w0 = 0. Our approach is based on ideas that can be traced back to [25, 26] (also see [27]).

When p ≤ 2, a solution of (19) can be uniquely extended until it reaches a double zero,
as in this case the right hand side is Lipschitz in a neighborhood of any point (v0, w0) with
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v0 6= 0. When p > 2, the argument does not apply because φp′ is not locally Lipschitz near 0.
Nevertheless unique extendibility still holds if f(v0) 6= 0 and w0 = 0. Let us prove it.

Assume for simplicity that f(v0) < 0. From the second equation in (19) and using the
fact that w(r0) = w0 = 0, we have that

w′(r) = −q
′

q
w − f(v) ≥ 1

2
|f(v0)| if |r − r0| < δ

if δ > 0 is small enough, then implying that

|w(r)| ≥ |f(v0)| |r − r0|
2

for all r ∈ (r0 − δ, r0 + δ) .

Hence, if (v1, w1) and (v2, w2) are two solutions of (19), then for r > r0, from the mean value
theorem, using the fact that p′ − 2 < 0, we have

|(v′1 − v′2)(r)| = |(φp′(w1)− φp′(w2))(r)| = (p′ − 1) |ξ|p′−2 |(w1 − w2)(r)|
≤ C (r − r0)p

′−2 |(w1 − w2)(r)|

for some positive constant C and thus

|(v1 − v2)(r)| ≤ C (r − r0)p
′−1 ‖w1 − w2‖

where ‖ · ‖ represents the usual sup norm in C([r0 − δ, r0 + δ]; R). Also from the second
equation in (19), using that f is locally Lipschitz we find that

|(w1 − w2)(r)| ≤
∫ r

r0

|(w′1 − w′2)(s)| ds ≤ C ‖w1 − w2‖ (r − r0) +K ‖v1 − v2‖ (r − r0)

for some positive constant K. Adding up these two last inequalities we have that

‖v1 − v2‖+ ‖w1 − w2‖ ≤ C (δp
′−1 + δ) ‖w1 − w2‖+K δ ‖v1 − v2‖ ,

or equivalently,

(1−K δ) ‖v1 − v2‖+
(
1− C (δp−1 + δ)

)
‖w1 − w2‖ ≤ 0 .

Hence, choosing δ small enough we deduce v1 = v2 and w1 = w2 and unique extendibility
follows.

Finally, if a solution reaches the value zero with a nonzero slope, (that is, v0 = 0, w0 6= 0),
then this solution can be uniquely continued by considering its inverse, i.e. the function
r = r(s) such that v(r(s)) = s, which satisfies the equation(p− 1) r′′ =

q′

q
r′(s) + f(s) |r′(s)|p ,

r(0) = r0 > 0 , r′(0) = t0 6= 0 ,
(20)

or equivalently,

(p− 1) r′′(s) =
d

ds
log
(
q(r(s))

)
+ f(s) |r′(s)|p .

We recall now that r(0) = r0 > 0, r′(0) 6= 0, so everything that follows is well defined in a
neighborhood of s = 0. Indeed since r and r′ are continuous, there exists δ0 > 0 such that for
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|s| < δ0 it holds that r0/2 < r(s) ≤ 3 r0/2 and |t0|/2 < |r′(s)| < 3 |t0|/2. Let s ∈ (−δ0, δ0).
Then integrating over (0, s) we get

(p− 1)
(
r′(s)− t0

)
= log

(
q(r(s)

q(r0)

)
+

∫ s

0

f(ξ) |r′(ξ)|p dξ .

Let now r1, r2 be two solutions of (20) defined in (−δ0, δ0) where δ0 = min{δ1,0, δ2,0} with
obvious notations. Then, using that∣∣ |r′1(ξ)|p − |r′2(ξ)|p

∣∣ = p φp(|η|) |r′1(ξ)− r′2(ξ)| for some |η| ∈
(
|t0|/2, 3 |t0|/2

)
,

we obtain

|r′1(s)− r′2(s)| ≤ A0 |r1(s)− r2(s)|+B0

∫ s

0

|f(ξ)| |r′1(ξ)− r′2(ξ)| dξ

for some positive constants A0, B0 depending on r0, t0 and δ0, and thus, if |s0| ≤ δ0,

sup
s∈[−s0,s0]

|r′1(s)− r′2(s)| ≤ A0 sup
ξ∈[−s0,s0]

|r′1(ξ)− r′2(ξ)| |s0|+B0 sup
ξ∈[−s0,s0]

|r′1(ξ)− r′2(ξ)| |F (s0)|

that is,

sup
s∈[−s0,s0]

|r′1(s)− r′2(s)|
(

1− A0 |s0| −B0 |F (s0)|
)
≤ 0 .

Since F (0) = 0, by choosing |s0| small enough, we must have r′1(s) ≡ r′2(s) in [−s0, s0] and
hence also r1(s) ≡ r2(s) in [−s0, s0]. �
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[5] P. Clément, R. Manásevich, and E. Mitidieri, Some existence and non-existence results for a
homogeneous quasilinear problem, Asymptot. Anal., 17 (1998), pp. 13–29.
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