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Abstract

The flashing rachet is the simplest example of diffusion mediated transport as well as the
suggested mechanism for a class of protein motors. Here we briefly explain these concepts and
give an entropy based argument for existence and uniqueness of a model problem. We also
examine the features of the system that lead to transport.

1 Introduction

Diffusion mediated transport is involved in many mechanisms at molecular level. These include
some liquid crystal and lipid bilayer systems, and, especially, the motor proteins responsible
for eukaryotic cellular traffic. All of these systems are extremely complex and involve subtle
interactions on various scales. In devices based on shape memory or magnetostriction, energy
transduction is very close to equilibrium in order to minimize the energy budget — TV remotes
are good examples. The chemical/mechanical transduction in motor proteins is, by contrast,
quite distant from equilibrium. These systems function in a dynamically metastable range.
The flashing rachet is, perhaps, the simplest and most transparent example of this phe-
nomenon. It consists of apparently competing processes: a transport, which attracts mass to
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specific sites, and a diffusion, which spreads mass, in alternation. To give a simple and general-
ized formulation of this model, consider the following variation of the Fokker-Planck Equation:

pt = (0ps +Yup)z,  (x,t) € Q2 x (0,00),
(1)
Pz + Pep =0, (z,t) € 9Q x (0, 00),

with initial data
p(mao) :PO(-r)a .1‘697

where pg is nonnegative and normalized: fQ po dx = 1. Here the diffusion coefficient o is a
positive number, the potential ¥ = ¥ (z,t) is a periodic function of ¢t and = (0,1). Notice
that if p(z,0) = po > 0 then p(z,t) > 0 for all t > 0, and that [, po dz = 1 implies that
fQ p(x,t) de = 1. Thus (1) in general can be thought of an evolution equation for a probability
density p.

The simplest example is given by

Y(x) 05t STy,
P(z,t) = (2)
0 ithréthdiff'i_Ttr:Ta

which constitutes flashing between a diffusion with drift ¢'(z) and a pure diffusion. We will
refer to the time intervals (kT,kT + T%,), k € N as the transport phase: if o is small, the
dynamics is dominated by the drift force, and to the time intervals (kT + Tt,, (k+1)T), k € N
as the diffusion phase. Of course, there is no stationary state for this type of equation, but
there is a periodic state. The problem is interesting because the periodic state is not simply
some convex combination of Gibbs states, but represents a redistribution of the mass to one
side of the interval €, that is usually called mass transport (be aware that this notion has
nothing to do with Monge-Kantorovich mass transport). Here our attention will focus on the
existence, uniqueness, and stability of the periodic solution by employing entropy methods. We
also discuss the approximation of the periodic state in terms of a (discrete) Markov Chain using
Monge-Kantorovich mass transport ideas.

2 Existence and stability

We outline a simple existence and stability result. Uniqueness is a consequence of the stability.
Let us assume that

) bounded and periodic of period T in Q and 1 € C*(Q x [0,T]).
Then there is a unique nonnegative T-periodic probability density p = p* which solves (1).

The proof is an exercise in the use of the Schauder Fixed Point Theorem employing the free
energy, a convex functional, to define the convex stable set. Let

E(p) = / ) < ) p . (z.1) e~ V(z:t)/o
P p log x where py(2,t) = V——pv—— ,
P v [y e~ vED/ode

forany pec HY(Q), p=0, / pdx =1.
Q
Assume that p(x,t) is a solution of the Fokker-Planck Equation (1). Then
d o \|? o
E(p 1 dr — | — pdz.
Bt ==a [ o] oe (L) ar- [ 5y as
According to the Log-Sobolev Inequality, for a constant C'y, which depends on 7 and o,

2
/plog( >das<C’ p‘210g<£)
Q Py o |0z P
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dzx.




Hence, since v, is bounded and p is a probability density for each ¢,

d

S E(p) S —0Cy Blp) + Ky

and
E(p)li=r < B(p)li=o e 7T + Ky (1 —e 7T,

This means that the mapping
T:HY(Q) — HY(Q)
T(po)(x) = p(x,T)

where p(z,t) is the solution of (1) with initial value py maps the set

K
K= {p e H'(Q): E(p) < C—Z} N {probability densities}

into itself. The mapping T is compact by standard H! regularity theory for parabolic equations.
Hence we obtain a fixed point p* of T', which is a periodic solution of (1).

We now address the stability and uniqueness of the periodic solution. We establish a decay
rate for the relative entropy of two solutions of the Fokker-Planck Equation. The familiar
Csiszar-Kullback Inequality or the less familiar Talagrand Inequality may then be applied. For
the moment, let p; and ps be two solutions of (1). Their relative entropy at time ¢ is

Ewmmmémm4%>mﬁfmfmm,f%

Now compute

d
—E{l) = %/ﬂflogf pe dx
B dp1 _ &8@ dp2
= /Q {(logf +1) <—8t ot + flog 5t dx

_ /Qlo /fapz

Using (1) for p; and p2, we have that

Opr , _ 9 (, % N iy Fa
/Qlogf ot dx’/glogf ox (" oz TV pl) = U/Q 7 (Pw) Py
;0 )
- [ /f—( 92+wm> dza/fx< )Pwdﬂﬂ
sz Q P

Combining these identities and usmg = f —= glves that
P

d . _ 12 _ o, (m\|
%E(t)ffa/Q 7 pgdsza/ﬂ 8x10g<p2)

Now again from the Log-Sobolev Inequality, if there exists an € > 0 such that

and

p1 dx.

e<pe<e! V(tx) eRT xQ, (3)

and if fQ p1 dx = fQ p2 dx, then

/p1 10g<&) dx§071/ 9
Q P2 olo

3
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Figure 1: Two unit Dirac masses located in well basins at x = 1/8 and x = 5/8 diffuse. At the end of the
diffusion period, more mass has moved to the left well from the right well than vice versa. In the ensuing
transport step, more mass is collected to the well at x = 1/8 than to x = 5/8.

where C depends on py. This can be proved by the entropy-entropy production method and a
perturbation lemma (see for instance [2]). Hence,

E(t) S E0)e 72 > 0.

At this point it is convenient to let po = pf, the periodic solution just found. Then (3) holds
and

/ |p1 — p*| dz < Const. e CY2 and  d(p1, p*) < Const. e 7 /2
Q

by Csiszdr-Kullback and Talagrand inequalities respectively, where d(-,-) is the Wasserstein
distance. This shows both the stability and the uniqueness of the periodic solution.

As mentioned before, the extension to piecewise smooth in time potentials 1 (x,t) like (2)
is achieved by concatenating the estimates, e.g., by first solving a Fokker-Planck Equation and
then a diffusion equation. This again proves the existence of a T-periodic solution pf. The
contraction property and the rates of convergence measured in relative entropy are obtained
exactly in the same way as before.

3 The mechanism of transport

The basic mechanism of transport may be explained with a simple picture. For this, consider (2)
where ¢ (z) is periodic in z of period 1/N and between maxima has an asymmetrically located



(and unique) minimum. For example, in Figure 1, two Dirac masses located in well basins
asymmetric in their period intervals diffuse for a time Tgig. Owing to the asymmetry alone,
more mass moves to the left than to the right. In the ensuing transport step, more mass is
collected in the left well than in the right one. When iterated, significant transport can result.
This is misleading, however. It is important to know what to do with the mass when it arrives in
the left-most well. In other words, boundary conditions are also extremely important. Periodic
boundary conditions, for example, do not lead to an accumulation of mass in the most-left well —
the so-called mass transport — in the flashing rachet model. Our analysis of this Brownian motor
renders the figure with boundary conditions rigorous by approximating the periodic solution pf
with a Markov chain defined on convex combinations of Dirac masses.

Suppose that, as a typical situation, ¥ has maxima at z¢ := 0, z; := 1/N,..., ,z; =
i/N,..., zny := 1 and minima at aq,...,ay with 2,1 < a; < x;. For a solution p of (1), set
I == [x;—1,2], i =1,..., N and define

N
ui= Z/ﬁ 0q, where u} :/ pla,t)de, 0S5t < T.

i=1 i
In a moment, p will be the periodic solution p#, but for the present, if

*

px,t) ~ p
then

N
p(a,t+T) =Y i gol@, T,a;) do
=1

where g, (z,t,a) is Green’s Function for the Neumann Problem with singularity et z = a and
diffusion coefficient o. After an evolution over one time period T, we rewrite this as

p(.’L‘,t +T) ~ U= /,L*P, P= (Pij); Pij :/ gg(m,T, ai) dx.

1

P is an ergodic probability matrix. Now choose p = p!, the periodic solution and replace the *
by # above. Then
p*(x,0) ~ p* and p*(x,T) =~ p*P. (4)

Since pf is T-periodic, p(z,0) = p*(z,T) implies that
pt & ptP. (5)

The only way these iterates of a Markov chain can be close to p# corresponds to the case where p,
and hence p*, is close to the unique stationary vector 4> of P. Our strategy is to show that ;>
has most of its mass on one side of ). In summary, we find a Markov chain determined by the
diffusion and the asymmetry in the system which we may attempt to exploit to characterize
its transport properties. For that purpose, we will assume that the ’rachet’ parameters are
appropriately tuned. We also require separate estimates for the transport and the diffusion
phases. The precise distance between p and p will be in weak topology, namely, expressed by
the Wasserstein metric d.

First consider the transport phase. The Wasserstein distance between p(z,t) and p* is nearly

Ao =3 [ (o= a)Po(e.) do. (6)

To determine the rate of decay of (6), differentiate with respect to ¢ and use Equation (1).
Typically this provides an exponential rate of decay by a Gronwall lemma. The estimate we
obtain is

AP Tio). ) £ Ko w,

5
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Figure 2: Snapshots of the periodic solution for a potential 1 of period 1/4 on § at the end of the transport
phase, upper curve, and at the end of the diffusion phase, lower curve.

where w depends on T, Tqig and o: an explicit bound

log Tir
w< % + min (\/Ee/\T“,l)

tr

can be found whenever Ty, = T, Taig = Thig, 27°0 Tair — AN T4 > log2. Here T, Thig, Ko
and A are all constants that depend only on the potential ¢ and its derivatives. The log T, /Tr
term owes to the nonconvexity of the potential ¢). The second term min (\/E e 1) accounts

for diffusion across the maxima of ¢, which is small when AT}, is less than — logo.

During the diffusion phase, we wish to compare the two distributions p(x,t) and w(x,t), the
solution of

Wt = 0 Wy in Qv Ty <t < Tdif‘fv
Wy =0 on 897 T, <t< Tdiffa

N
Wle=r, =32, .Ug' da;

which may be accomplished in several ways. For instance, we may simply use the entropy
estimate we have already proved in the previous section. This requires an estimate on w(z, Tt +
0) for a small ¢ in order assess E(0). There are some additional details to check, but in the end,
we obtain a rigorous version of (4) and (5).

Finally, we address the analysis of transport as exhibited in the Markov chain P. How do
we know that the stationary vector > of P has most of its mass in the left half of {2 when the
well basins a; are in the left halves of their intervals I;? Simulations show that this is clearly
the case, cf. Figure 3 and even numerical calculation of ;4 are emphatic on this point. For the



two-well case, i.e., N = 2, we can verify this. In general, the slow decay of the Green’s function
at infinity makes estimates very difficult.
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