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Abstract. We prove functional inequalities on vector fields u : Rd → Rd when Rd is equipped with a
bounded measure e−φ dx that satisfies a Poincaré inequality, and study associated self-adjoint operators.

The weighted Korn inequality compares the differential matrix Du, once projected orthogonally to certain

finite-dimensional spaces, with its symmetric part Dsu and, in an improved form of the inequality, an
additional term ∇φ ·u. We also consider Poincaré-Korn inequalities for estimating a projection of u by Dsu

and zeroth-order versions of these inequalities obtained using the Witten-Laplace operator. The constants

depend on geometric properties of the potential φ and the estimates are quantitative and constructive.
These inequalities are motivated by kinetic theory and related with the Korn inequality (1906) in mechanics,

which compares Du and Dsu on a bounded domain.

1. Introduction and main results

1.1. The problem at hand. Korn’s inequality [28, 29, 30] is a classical tool in continuum mechanics which
asserts the control of the L2 norm of the gradient of a vector field defined on a smooth bounded domain Ω
of Rd by the L2 norm of its symmetric part:

(1) ‖Du‖2L2(Ω) ≤ 2 ‖Dsu‖2L2(Ω), ∀u ∈ C2(Ω;Rd) such that u = 0 on ∂Ω .

If M (resp. Ms) is the set of d × d real (resp. symmetric) matrices, Du (resp. Dsu) is the differential of
u (resp. its symmetric part) and takes values in M (resp. Ms). Written with cartesian coordinates, this
means

(Dsu)ij =
1

2
(∂jui + ∂iuj) and (Dau)ij =

1

2
(∂jui − ∂iuj) .

We denote by Aa ∈Ma the skew-symmetric part of A ∈M and by As = A− Aa its symmetric part. The
original proof of (1) in [28] is instructive: it is enough to integrate over Ω the pointwise identities

(2) |Dau|2 − |Dsu|2 + (∇ · u)2 −∇ ·
[
u (∇ · u)− (u · ∇)u

]
= 0 and |Du|2 = |Dsu|2 + |Dau|2

and use the boundary condition to get 2 ‖Dsu‖2L2(Ω) = ‖Du‖2L2(Ω) + ‖∇ · u‖2L2(Ω), where ∇ · u denotes the

divergence of u and L2(Ω) is the L2 norm for matrix-valued, vector-valued or real-valued functions.
The boundary condition u = 0 is a severe restriction. In view of applications in kinetic theory, Desvillettes

and Villani in [12] enlarge the set of possible vector fields to those satisfying only u ·n = 0 on the boundary,
where n denotes the outward normal unit vector to ∂Ω. The set of infinitesimal rotations

R :=
{
R : x ∈ Rd 7→ Ax ∈ Rd with A ∈Ma

}
is a family of vector fields which plays a key role. If Ω has some rotational invariance, then some infinitesimal
rotations satisfy the boundary condition while their symmetric differential is zero. Being invariant under
the action of a group of rotations t→ etA for a given A ∈Ma means that

∀ t ∈ R , etA Ω = Ω

(here we suppose that Ω is invariant under rotations centred at 0 without loss of generality). Taking the
derivative with respect to t shows that the set of infinitesimal rotations preserving Ω is

RΩ :=
{
R ∈ R : ∀x ∈ ∂Ω , n(x) ·R(x) = 0

}
,
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where we implicitly use the fact that skew-symmetric matrices generate the tangent space of the orthogonal
group. In [12, Inequality (38)], Desvillettes and Villani state the following Korn inequality

(3) inf
R∈RΩ

‖D(u−R)‖2L2(Ω) ≤ CΩ ‖Dsu‖2L2(Ω) , ∀u ∈ C2(Ω;Rd) such that u · n = 0 on ∂Ω ,

which takes into account invariances by rotation. They obtain quantitative estimates on the constant CΩ.
Inequality (3) is an important ingredient in [13] to prove hypocoercivity for the Boltzmann equation in Ω.

In this article, our aim is to establish similar Korn and related inequalities, with constructive constants,
in the whole Euclidean space Rd in presence of a confining potential φ : Rd → R, i.e., in the L2 space with
reference measure e−φ(x) dx. Our motivation comes from the hypocoercivity theory of kinetic operators
with more than one microscopic invariant studied in [7], but the inequalities are of independent interest.

1.2. Assumptions and notations. We consider a potential φ : Rd → R, d ≥ 2 satisfying the conditions:

1 the measure e−φ(x) dx is a centred probability measure

(H1)

∫
Rd
e−φ(x) dx = 1 and

∫
Rd
x e−φ(x) dx = 0 ,

2 the potential φ is of class C2(Rd;R) and, for all ε > 0, there exist a constant Cε such that

(H2) ∀x ∈ Rd, |D2φ(x)| ≤ ε |∇φ(x)|2 + Cε ,

3 the measure e−φ dx satisfies the Poincaré inequality with constant CP : for all scalar functions f in the
space C∞c (Rd;R) of smooth functions with compact support, we have

(H3)

∫
Rd
|f(x)− 〈f〉|2 e−φ(x) dx ≤ CP

∫
Rd
|∇f(x)|2 e−φ(x) dx , where 〈f〉 :=

∫
Rd
f(x) e−φ(x) dx .

Assumption (H1) is a classical integrability condition on φ. The fact that the center of mass
∫
Rd x e

−φ(x) dx
is finite is a consequence of (H3) applied with f(x) = xi, i = 1, . . . , d. There is no loss of generality in
choosing

∫
Rd x e

−φ(x) dx = 0. Assumption (H2) is a regularity assumption at infinity which, in the language

of operator theory and in a suitable functional framework, says that the multiplication operator by |D2φ(x)|
is infinitesimally bounded by the multiplication operator by |∇φ(x)|2 (see [37, Chapter X]). Here no growth
assumption is made on |∇φ|. Assumption (H2) is satisfied for instance if

sup
x∈Rd

D2φ(x)√
1 + |∇φ(x)|2

<∞ or lim
|x|→∞

D2φ(x)

1 + |∇φ(x)|2
= 0 .

Assumption (H3) can be interpreted as a measure concentration property: it implies that

(4)

∫
Rd
|∇φ(x)|2 e−φ(x) dx <∞ and ∀ k ∈ N ,

∫
Rd
|x|2k e−φ(x) dx <∞

by (H2) for the first estimate and by an easy induction (see Remark 11 in Appendix A.1) for the second one.
Assumptions (H1), (H2) and (H3) are satisfied, for instance, if φ ∈ C2(Rd;R) and either φ(x) = α |x|γ + β

with γ ≥ 1 or φ(x) = α e|x|
2

+ β, for large values of |x|, where α > 0 and β are two parameters. The three
assumptions are also satisfied by the normalized Gaussian defined by

(5) ∀x ∈ Rd, φ(x) =
1

2
|x|2 +

d

2
ln(2π) .

Associated with φ and thanks to (H2), there exists two constants Cφ > 8 and C ′φ > Cφ such that

(6) ∀x ∈ Rd, 4
√
d |D2φ(x)| ≤ |∇φ(x)|2 + Cφ − 1 and 4 |D2φ(x)| ≤ C−1/2

φ

(
|∇φ(x)|2 + C ′φ

)
.

As in the case of a bounded domain, the set R of infinitesimal rotations plays a key role in the study of
Korn inequalities in the whole space. The symmetric differential applied to an infinitesimal rotation is zero.
In our setting, the invariance under the action of a group of rotations t→ etA for a given A ∈Ma means

∀ t ∈ R , ∀x ∈ Rd, φ
(
etAx

)
= φ(x) ,

where, again, we implicitly use the assumption that the measure is centred. Differentiating the above
identity with respect to t yields that the set of infinitesimal rotations preserving φ is

Rφ :=
{
R ∈ R : ∀x ∈ Rd, ∇φ(x) ·R(x) = 0

}
.
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This set is a central geometric objet in our analysis. In the inequalities, the addition of a term involving
∇φ ·R allows us to control the infinitesimal rotations for which φ is not invariant, as we shall se later.

In this article, we adopt the following conventions. We denote by | · | the Euclidean norm in R, Rd and M,
by a · b the scalar product of two vectors in Rd and by A : B the scalar product of two matrices A and B

seen as vectors in Rd2

. We denote by ‖ · ‖ the L2 norm corresponding to | · | and weight e−φ dx, and by (·, ·)
the corresponding scalar product, that is,

(f, f) = ‖f‖2 =

∫
Rd
|f(x)|2 e−φ dx

and we will refer to L2 indifferently for functions with values in R, Rd and M. We shall use 〈·〉 for the average
(component by component) according to the measure e−φ dx of functions with values in R, Rd and M. We
use the notation ∇ for the gradient of scalar functions (with values in Rd) and D for the gradient of vector
fields (with values in M). We denote by H1 the space of functions f or (when there is no ambiguity) vector
fields u such that respectively f and ∇f or u and Du are in L2. The space H−1 is the dual of H1 with
respect to the L2 scalar product. The weight function b∇φe is defined by

b∇φe :=
√

1 + |∇φ|2 .

Let P be the orthogonal projection of vector-valued functions in L2 onto R, and Pφ the orthogonal
projection onto Rφ. We denote by R⊥φ the orthogonal vector space to Rφ in L2 and Rcφ = R ∩ R⊥φ the

restriction of the orthogonal space to Rφ in R or, in other words, Rcφ = PR⊥φ . For instance if φ has no

invariance by any rotation etA then Rφ = {0}, and if φ is radially symmetric then Rφ = R. Let P be
the orthogonal projection of matrix-valued functions in L2 onto the set of constant antisymmetric matrices
Ma = DR. For all vector field u ∈ H1, we have

(7) P(Du) = 〈Dau〉 .

We also denote by Pφ the L2 orthogonal projector onto Mφ := DRφ and by Mc
φ the orthogonal of Mφ

in Ma, i.e., Mc
φ = PM⊥φ . The projections are summarised in Figure 1.2. Note that DRcφ and Mc

φ generically
differ since the inner products underlying the two orthogonal decomposition are different.

L2(Rd;Rd)

R

Rφ

L2(Rd;M)

Ma

Mφ

D

D

D

P

Pφ

P

Pφ

Figure 1. Representation of the orthogonal decompositions.

One additional notation will be used throughout this paper: if x and y are two vectors in Rd, we denote
by x⊗ y the matrix (xi yj)1≤i,j≤d. Further details on DRcφ and Mc

φ are collected in Appendix B.1.

1.3. Main results. All inequalities in this paper are quantitative with explicit estimates on the constants.
The first result is the counterpart of (3) in the whole Euclidean space, with some additional consequences
based on Poincaré inequalities. The statement involves the whole set of infinitesimal rotations R.

Theorem 1 (Korn, Poincaré-Korn and strong Poincaré-Korn inequalities). Suppose (H1)–(H2)–(H3). Then
there are a Korn constant CK, a Poincaré-Korn constant CPK and a strong Poincaré-Korn constant CSPK
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with explicit bounds involving only CP, Cφ and C ′φ such that, for all u ∈ H1,

inf
R∈R
‖D(u−R)‖2 = ‖Du−P(Du)‖2 ≤ CK ‖Dsu‖2,(8)

inf
R∈R
‖u− 〈u〉 −R‖2 = ‖u− 〈u〉 − P(u)‖2 ≤ CPK ‖Dsu‖2,(9) ∥∥b∇φe (u− 〈u〉 − P(u)

)∥∥2 ≤ CSPK ‖Dsu‖2.(10)

Moreover in the Gaussian case (5), optimal constants are CK = 4, and CPK = 2.

The terminology “Korn constant” refers to Korn’s original results [28, 29, 30] whereas “Poincaré-Korn”
and “strong Poincaré-Korn” respectively refer to usual Poincaré inequalities and to strong Poincaré in-
equalities (see Proposition 5). For brevity, we shall speak generically of “Korn-type inequalities” or simply
“Korn inequalities”. Explicit bounds for CK, CPK and CSPK will also be given later. The constant CP is the
optimal constant in (H3) while Cφ and C ′φ refer to (6). The minimum in the left-hand side of (8) is explicit:

according to (7), we have

‖Du−P(Du)‖2 = ‖Du− 〈Dau〉 ‖2 ≤ CK ‖Dsu‖2.
In (9) and (10), there is no simple expression for P(u) as for P(Du). Note that the strong Poincaré inequality
(see Proposition 5 below) implies R ⊂ H1, so that the statement of Theorem 1 makes sense.

The defaults of axisymmetry of the boundary of the domain were taken into account in [12], in the
bounded domain case without potential (this case will be called the “flat case” from now on). Here the
eventual non-axisymmetry arises from the potential. Measuring the default of axisymmetry motivates our
introduction of the finite dimensional space Rcφ and of the rigidity of vector fields constant CRV defined by

(11) C−1
RV := min

Ax+b ∈ (Rcφ⊕Rd)\{0}

‖∇φ(x) · (Ax+ b)‖2

‖Ax+ b ‖2

if Rcφ 6= {0}, and of the rigidity of differential constant CRD defined by

(12) C−1
RD = min

(A,b) ∈ (Mc
φ⊗Rd)\{(0,0)}

‖∇φ(x) · (Ax+ b)‖2

|A|2 + |b|2

if Mc
φ 6= {0}. We adopt the convention that CRV = 0 (respectively CRD = 0) if Rcφ = {0} (respectively

Mc
φ = {0}). Let us show that these constants are well-defined in R+. Since R and Mφ have a finite

dimension the minima in (11) and (12) exist. The first (respectively second) minimum is positive when
Rcφ 6= {0} (respectively Mc

φ 6= {0}). Indeed the linear maps Rcφ ⊕ Rd : Ax + b 7→ ∇φ(x) · (Ax + b) ∈ L2

and Mc
φ ⊕ Rd : (A, b) 7→ ∇φ(x) · (Ax + b) ∈ L2 are injective: if ∇φ(x) · (Ax + b) = 0 for all x ∈ Rd, then

by integration by parts

0 =

∫
Rd
∇φ(x) · (Ax+ b) b · x e−φ(x) dx = |b|2

because 〈x〉 = 0, so that b = 0, and as a consequence A = 0 since Rφ ∩ Rcφ = {0} and Mφ ∩Mc
φ = {0}.

We can now state precised Korn and Poincaré-Korn inequalities in which u is also controlled on the space
of infinitesimal rotation that do not leave φ invariant.

Theorem 2 (Precised Poincaré-Korn and Korn inequalities). Suppose (H1)–(H2)–(H3). Then there are a
precised Korn constant C ′K and a precised Poincaré-Korn constant C ′PK such that, for all u ∈ H1,

inf
R∈Rφ

‖u−R‖2 = ‖u− Pφ(u)‖2 ≤ C ′PK ‖Dsu‖2 + 2CRV ‖∇φ · u‖2,(13)

inf
R∈Rφ

‖D(u−R)‖2 = ‖Du−Pφ(Du)‖2 ≤ C ′K ‖Dsu‖2 + 2CRD ‖∇φ · u‖2.(14)

Moreover the constants C ′PK and C ′K have explicit bounds depending only on the structural constants CP,
Cφ, C ′φ, CRD and CRV.

Explicit bounds for C ′K and C ′PK will be given in the proofs. For any u ∈ H1, the strong Poincaré
inequality implies ∇φ · u ∈ L2 thanks to (4), so that the statement makes sense (see Proposition 5 below

and Remarks 11 and 12 in Appendix A.1). The main difference with the flat case is the ‖∇φ · u‖2 term in
the right-hand side of the inequality whereas there is no additional term in (3). This cannot be avoided as
shown by the following example. Let us consider an infinitesimal rotation u = R, with R 6= 0, in the case
without invariance by any rotation etA, that is, Rφ = {0}. Then u ∈ H1 and inequality (14) reduces to
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0 6= ‖R‖2 ≤ 2CRV ‖∇φ ·R‖2 since DsR = 0. This also shows that, compared to (8), an additional term is
needed.

As often, the functional inequalities of Theorems 1 and 2 are linked with spectral properties of nonnegative
differential operators. By a simple integration by parts, the formal adjoint of ∇ in L2 equipped with the
weight e−φ(x) dx is ∇∗u = −∇φ · u for any smooth vector field u, where ∇φ · u := ∇ · u−∇φ · u. The first
operator is the so-called Witten-Laplace operator on functions −∆φ (sometimes also called the Ornstein-
Uhlenbeck operator) which replaces the usual Laplacian in the flat case. It is associated with the quadratic
form f 7→ ‖∇f‖2 =

∫
Rd |∇f |

2 e−φ dx and defined by

(15) −∆φf := −∇φ · ∇f = −∆f +∇φ · ∇f .
The operator −∆φ is nonnegative and symmetric.

For convenience, we shall also denote by −∆φ the operator acting coordinate by coordinate on vector
fields, that is for any smooth vector field u, (∆φu)i = ∆φui, and similarly extend it to matrices. In the same
spirit, we introduce various differential operators. The formal adjoint of Ds is defined by (Ds)∗F = −Ds

φ ·F
for any matrix-valued function F, so that Ds

φ := Ds −Dsφ acts on matrix-valued functions and takes value
in a space of vector fields. Here Dsφ · F := ∇φ · Fs. Let us consider

−∆S u := −Ds
φ ·Dsu and −∆Sφ u := −Ds

φ ·Dsu+ (∇φ⊗∇φ)u ,

acting on a smooth vector field u. The differential operators −∆S and −∆Sφ are associated respectively
with ‖Dsu‖2 and ‖Dsu‖2 + ‖∇φ · u‖2, which appear in the various Korn and Poincaré-Korn inequalities.
Additional details have been collected in Appendix B.2.

Theorem 3 (Associated operators acting on vector fields). Suppose (H1)–(H2)–(H3). Then the opera-
tors −∆φ, −∆S, and −∆Sφ are essentially self-adjoint on L2. They have a common domain D, finite
dimensional kernels

ker(−∆φ) = Rd, ker(−∆S) = Rd ⊕R , ker(−∆Sφ) = Rφ ,
and positive spectral gaps. The spectral gap of −∆φ is the Poincaré constant CP while the spectral gaps of
−∆S and −∆Sφ are estimated respectively in Theorems 1 and 2.

A positive spectral gap means that the infimum of the restriction of the spectrum to (0,+∞) is positive.
Our last main result is devoted to a Korn-type inequality valid for vector fields u ∈ L2 while Theorems 1
and 2 are limited to u ∈ H1. We shall compose by inverse powers of the following positive operator

(16) Λ := −∆φ + Id

acting on functions, vector fields or matrices, coordinate by coordinate. By Theorem 3, Λ is essentially self-
adjoint (we keep the same name for the unique self-adjoint extension), Λ ≥ Id, and Λ−1/2 is one-to-one from
H−1 into L2 (see Propositions 7 and 8 for more details). In order to measure the possible non-axisymmetry
of the potential φ in an L2 setting, we introduce the rigidity of vector fields constant

(17) C−1
RV0 := min

Ax+b ∈ (Rcφ⊕Rd)\{0}

∥∥Λ−1/2∇φ(x) · (Ax+ b)
∥∥2

‖Ax+ b‖2
.

when Rcφ 6= {0} and, by convention, CRV0 := 0 if Rcφ = {0}. The proof that this constant CRV0 is well-defined
in R+ is exactly similar to that for CRV.

Theorem 4 (Zeroth order Korn and Poincaré-Korn inequalities). Suppose (H1)–(H2)–(H3). Then there are
a zeroth order Korn constant CK0 and a zeroth order Poincaré-Korn constant CPK0 with explicitly computable
bounds depending only on φ such that, for all u ∈ L2,

inf
R∈R
‖Λ−1/2D(u−R) ‖2 =

∥∥Λ−1/2
(
Du−P(Du)

)∥∥2 ≤ CK0 ‖Λ−1/2Dsu‖2,(18)

inf
R∈R
‖u− 〈u〉 −R ‖2 = ‖u− 〈u〉 − P(u)‖2 ≤ CPK0 ‖Λ−1/2Dsu ‖2.(19)

As a consequence, there is a zeroth order precised Poincaré-Korn constant C ′PK0 such that, for all u ∈ L2,

inf
R∈Rφ

‖u−R ‖2 = ‖u− Pφ(u)‖2 ≤ C ′PK0 ‖Λ−1/2Dsu ‖2 + 2CRV0 ‖Λ−1/2∇φ · u ‖2.(20)

Inequality (20) is a straightforward consequence of the Poincaré-Korn inequality (19) and the existence
of the rigidity constant CRV0.
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1.4. Main tools and considerations on the optimal cases and optimal constants. The paper relies
on three main tools.

1 Poincaré-Wirtinger and Poincaré-Lions inequalities. The proof of Theorems 1 and 2 for vector fields
relies on Poincaré-Wirtinger inequalities for scalar functions, which go as follows.

Proposition 5. Assume that (H1), (H2) and (H3) hold, for some Poincaré constant CP. Then there exists
a strong Poincaré constant CSP > 0 such that

(21) ∀ f ∈ H1, ‖b∇φe(f − 〈f〉)‖2 ≤ CSP ‖∇f‖2

with CSP ≤ Cφ (1 + CP). With Λ as in (16), there exists also a Poincaré-Lions constant CPL > 0 such that

(22) ∀ f ∈ L2, ‖f − 〈f〉‖2 ≤ CPL ‖Λ−1/2∇f‖2 ≤ CPL ‖f − 〈f〉‖2 .

Under the sole assumptions (H1)–(H2)–(H3), inequalities (21) and (22) are not completely standard.
These inequalities are linked to the spectral properties of −∆φ, studied in Section 3, where elements of
proofs of (21) and (22) are also collected. An estimate of CPL is given in (41).

2 The Schwarz Theorem allows us to write all components of the second-order differential of a vector field u
thanks to its symmetric components using the identity

(23) ∀ i, j, k ∈ {1, · · · , d} , ∂k (Dau)ij = ∂j (Dsu)ik − ∂i (Dsu)jk .

This algebraic property is at the core of all Korn-type inequalities, it means that derivatives of Dau are in
the span of the derivatives of Dsu. Note that the Schwarz Theorem also implies Da∇ = 0 which is central
in the construction of the De Rham complex.

3 The rigidity constants, as defined in (11), (12) and (17), measure the defects of axisymmetry of the
potential φ. See Appendix A.2 for a discussion.

Our method of proof can be summarised as follows: (i) we take care of the finite-dimensional parts Rcφ
and Mc

φ thanks to the rigidity constants in 3 , (ii) we apply twice the Poincaré inequality in 1 , first in the

form (21) and second in the form (22), so that we access second-order derivatives but remain at first order
thanks to Λ−1/2, (iii) we use the algebraic property in 2 to get rid of the derivatives of Dau.

The infima in (8), (9), (13), (14), (19) and (20) are achieved respectively at P(Du) = 〈Dau〉 (see
Section 4.1), 〈u〉 + P(u), Pφ(u), Pφ(Du), 〈u〉 + P(u) and Pφ(u) as a consequence of the definitions of the
various orthogonal projections. In the Gaussian case (5), we have DP(u) = P(Du), but this relation is not
true otherwise. The constants are estimated explicitely and a summary is provided in Appendix B.5.

1.5. A brief review of the literature and a conjecture. We refer to [19, Eq. (13)], [16, Chapter 3,
Section 3.3], [8, page 291], and [24] for statements of the original Korn inequality which goes back to [28, 29,
30] in a bounded domain with Dirichlet conditions, and to [32, 6, 5] for considerations on the best constant.
There is a huge literature on applications to the Navier-Stokes equations and elasticity models, which is out
of the scope of the present paper: see [34] for an introduction to Korn’s inequality applied to these topics.

The case of Korn inequalities in bounded domains with Neumann boundary conditions was carried out
in [12], driven by applications in kinetic theory in [13]. The proof relates the Korn constant to the so-called
Grad number, which is further studied in [18] and related to other geometric bounds. The notion of Grad’s
number goes back to [20] in a bounded domain and was used in [12]. We refer to Appendix A.2 for a more
detailed discussion and how it relates to our rigidity constants.

In bounded domains, inequalities of type (9) are usually called Poincaré-Korn estimates (see for in-
stance [34, Section 1.3.1]), and inequality (14) is reminiscent of what is sometimes called the second Korn
inequality: see [35, Inequality (7)] and [27, Theorem 2].

To our knowledge, the only result in the whole space with a confinement potential is [15, Section 5]
where the Korn inequality (9) is proved by compactness, under an additional growth condition on ∇φ. The
original contributions of this paper are

(i) a proof of weighted Poincaré-Korn and Korn inequalities, under rather general conditions,
(ii) a constructive method which provides us with quantitative estimates on the constants,
(iii) some optimal constants in the Gaussian case.

Our method is likely adaptable to bounded domains and also to fractional inequalities in the spirit of [33].
Inspired by the properties of the Gaussian Poincaré inequality, e.g., in [10], we finally make the following
conjecture.
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Conjecture (Optimal constants). For a given φ satisfying (H1)–(H2)–(H3) with
∫
Rd xi xj e

−φ(x) dx = δij
for all i, j ∈ {1, · · · , d} and D2φ ≥ Id, one has CPK ≥ 2 and CK ≥ 4, with equality in the normalized centred
Gaussian case (5) and only in that case.

1.6. Outline of the paper. In Section 2 we prove Theorem 1 in the simple case of Gaussian potentials.
This has a pedagogical interest but also an interest per se as the method captures some (conjectured) optimal
constants. Section 3 is devoted to classical results on the Witten-Laplace operator on functions and a sketch
of the proof of Poincaré inequalities under assumptions (H1)–(H2)–(H3) with some short quantitative proofs
for which we lack of references. In Section 4 we prove Theorems 1 and 2 in the general case. Section 5 is
devoted to the functional analysis of operators (Theorem 3) associated with various quadratic forms under
consideration. We prove Theorem 4 on zeroth order Korn inequalities in Section 6. Appendix A is devoted
to generalizations, a discussion of the measure of the defects of axisymmetry by rigidity constants, and an
elementary application of our main results to a simple kinetic equation with multiple conservations laws.
For the convenience of the reader, some computational details are collected in Appendix B.

2. Proof of the Korn inequalities of Theorem 1 in the Gaussian case

Inspired by the proof of (1), we first prove inequalities (8) and (9) of Theorem 1 for the normalized
Gaussian measure, and establish the optimality of the constants in that case. We begin with two useful
identities valid for a general function φ ∈W2,∞

loc (Rd) and any u ∈ C1
c (Rd;Rd),

‖Dau‖2 + ‖(∇−∇φ) · u ‖2 = ‖Dsu‖2 +

∫
Rd
D2φ : u⊗ u e−φ dx ,(24)

‖Du‖2 ≤ 2 ‖Dsu‖2 +

∫
Rd
D2φ : u⊗ u e−φ dx .(25)

Identity (24) is obtained by a simple integration by parts, a commutation and the Schwarz Theorem (or (2)
integrated against e−φ), while (25) follows from |Du|2 = |Dsu|2 + |Dau|2.

In the remainder of this section, let us focus on the Gaussian case (5) such that

e−φ(x) = (2π)−d/2 e−
1
2 |x|

2

is the standard centred normalized Gaussian. This is the only Gaussian function satisfying hypotheses (H1)
with the additional normalization

〈
D2φ

〉
= Id, and it satisfies (H2) with ε = 0 and Cε = C0 = d and it

satisfies (H3) with CP = 1. We first recall the following improved version of the Poincaré inequality.

Lemma 6 (Improved Poincaré inequality). Assume (5). Then for any u ∈ H1 such that 〈ui xj〉 = 〈ui〉 = 0
with i, j = 1, . . . , d, there holds

(26) 2 ‖u‖2 ≤ ‖Du‖2 .

This result is standard: the operator −∆φ reduces after conjugation by e−φ/2 to the harmonic oscillator
Pφ = −∆ + |x|2/4 − d/2 which has a discrete spectrum made of all nonnegative integers (see Section 3
for the definition of the operator). The lowest eigenvalue is 0 with multiplicity 1 and the first positive
eigenvalue is 1 with multiplicity d and eigenfunctions xj , j = 1, 2, . . . , d. Conditions on u amount to the
orthogonality condition to these two eigenspaces, so that 2 corresponds to the next eigenvalue. The result
follows from the spectral theorem (see for instance to [37, Lemma 2 of Chapter V and Chapter 8] or [11]).

Proof of Theorem 1 in the Gaussian case. Since Ds(〈Dau〉x) = Ds(〈u〉) = D(〈u〉) = 0 and P(〈Dau〉x) =
〈Dau〉x, it is enough to prove the inequalities for a vector field u ∈ H1 such that 〈Dau〉 = 0 and 〈u〉 = 0.
We have to show that

(27) ‖u‖2 ≤ 2 ‖Dsu‖2 and ‖Du‖2 ≤ 4 ‖Dsu‖2 .

Let us define the corrected vector field v ∈ H1 by

v(x) := u(x)−B x where Bij := 〈ui xj 〉 ,

and note the elementary property (using that e−φ dx is Gaussian)

Bij = 〈ui xj〉 =

∫
Rd
ui xj e

−φ dx =

∫
Rd
∂jui e

−φ dx = 〈Du〉ij .
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This implies that the matrix B is symmetric since 〈Dau〉 = 0 and that v satisfies 〈vi xj〉 = 〈vi〉 = 0 for all
i, j = 1, . . . , d. We can then apply the improved Poincaré inequality (26) in Lemma 6 to v and get

2 ‖v‖2 ≤ ‖Dv‖2 .

Using this together with (25) and D2φ = Id, we obtain 2 ‖v‖2 ≤ ‖Dv‖2 ≤ 2 ‖Dsv‖2 + ‖v‖2 which implies
‖v‖2 ≤ 2 ‖Dsv‖2 and ‖Dv‖2 ≤ 4 ‖Dsv‖2, i.e., (27) written for v. Next we compute

‖Du‖2 = ‖Dv +B‖2 = ‖Dsv +B‖2 + ‖Dav‖2 = ‖Dv‖2 + |B|2 + 2

∫
Rd

(Dsv : B) e−φ dx ,

‖Dsu‖2 = ‖Dsv +B‖2 = ‖Dsv‖2 + |B|2 + 2

∫
Rd

(Dsv : B) e−φ dx ,

‖u‖2 = ‖v +B x‖2 = ‖v‖2 + |B|2 + 2

∫
Rd

(v ·B x) e−φ dx = ‖v‖2 + |B|2,

where we used the fact that (Dsu + B) and Dau are orthogonal in L2 and 〈vi xj〉 = 0. By an integration
by parts, we obtain∫

Rd
(Dsv : B) e−φ dx =

1

2

∑
i,j

Bij

∫
Rd

(∂ivj + ∂jvi) e
−φ dx =

1

2

∑
i,j

Bij

∫
Rd

(xi vj + xj vi) e
−φ dx = 0

using again 〈vi xj〉 = 0. Altogether, we deduce that

‖Du‖2 = ‖Dv‖2 + |B|2, ‖Dsu‖2 = ‖Dsv‖2 + |B|2, ‖u‖2 = ‖v‖2 + |B|2.

We deduce (27) on u from (27) on v and the last equations, which proves (8) with CK ≤ 4 and (9) with
CPK ≤ 2. To saturate (27) it is enough to search for u = v with B = 0. With u(x) = (1−x2

2, x1 x2, 0, . . . , 0)⊥,
an elementary computation (see details in Appendix B.3) shows that

〈u〉 = 0, ‖u‖2 = 3 , P(u) = 0, P(Du) = 0 = 〈Dau〉 , ‖Dsu‖2 =
3

2
, ‖Dau‖2 =

9

2
, ‖Du‖2 = 6 .

This completes the proof of (8) with CK = 4 and (9) with CPK = 2.
It remains to establish (10). By expanding the square

∫
Rd |D(u e−φ/2)|2 dx as in [14, ineq. (4)], we obtain

after one integration by parts that∫
Rd
|x|2 |u(x)|2 e−φ(x) dx ≤ 4

∫
Rd
|Du|2 e−φ dx+ 2 d

∫
Rd
|u|2 e−φ dx .

Combined with (8) and (9), this completes the proof with CPK ≤ CSPK ≤ 2 (2 d+ 9). �

3. The Witten-Laplace operator on scalar functions and Poincaré inequalities

Here we consider the Poincaré inequalities of Proposition 5 and some related properties of the Witten-
Laplace operator ∆φ, as defined in (15), in the case of a general probability measure e−φ dx with a potential φ
such that assumptions (H1)–(H2)–(H3) are fulfilled. Some results of this section are classical and we claim
no originality. For a general theory of self-adjoint operators, we refer for instance to [38, 37] and we refer
to [40, 22, 39, 25] or [21] for more details on Witten-Laplace operators. Proofs are given when we are not
aware of any precise reference or when we look for explicit estimates.

3.1. Two toolboxes and the proof of the strong Poincaré inequality (Proposition 5). For all
functions f , g ∈ C∞c (Rd;R), we have by integration by parts

(−∆φf, g) = − (∇φ · ∇f, g) = (∇f,∇g) ,

so that −∇φ = −∇ + ∇φ is the formal adjoint of ∇, −∆φ is nonnegative and symmetric, and Λ, as
defined by (16), is symmetric. The Lax-Milgram theorem allows us to solve in H1, equipped with the norm

f 7→ (‖f‖2 + ‖∇f‖2)1/2, the problem Λf = ξ for any given ξ ∈ H−1, and to build a self-adjoint extension of
Λ associated to the coercive bilinear form (f, g) 7→ (∇f,∇g) + (f, g). On the other hand, by the well-known
change of function f 7→ e−φ/2f , Λ is conjugated to

Pφ := e−φ/2 Λ e−φ/2 = −∆ + 1
4 |∇φ|

2 − 1
2 ∆φ+ 1

acting on the usual space L2( dx). From (H2), we get that |∇φ|2/4−∆φ/2 is bounded from below. From
Kato’s result [26] (also see, e.g., [37, Theorem X-28]), this implies that Λ has a unique Friedrichs self-adjoint
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extension such that C∞c (Rd;R) is dense in its domain w.r.t. the graph norm, that is, Λ is essentially self-
adjoint. For notational simplicity, we use the same name for the operator and for its extension. We denote
by D(Λ) the domain of Λ.

Hence C∞c (Rd;R) is a core for the self-adjoint operator Λ ≥ Id, which has a one-to-one operator extension
from H1 to H−1. Tools of functional calculus and spectral analysis apply. This gives sense to Λσ with
domain D(Λσ) for all σ ∈ R. For instance, D(Λ1/2) = H1 and Λ1/2 has a bounded one-to-one operator
extension from L2 to H−1 by duality. Recall that no specific growth, apart from the general condition (H2),
is assumed on |∇φ| at infinity in the computations of this section (see [23, 21, 17] for other results without
growth condition). Let us show that (H2) implies that b∇φe f is square integrable whenever f ∈ H1, which
allows to make sense of ‖∇φ · u‖ in inequalities (13) and (14).

Proposition 7 (H1 toolbox). Assume (H2). Then the space H1 is

H1 =
{
f ∈ L2 : ∇f ∈ L2 and b∇φe f ∈ L2

}
and for any f ∈ L2, we have the inequalities

(28)
∥∥∇Λ−1/2 f

∥∥2 ≤ ‖f‖2,
∥∥b∇φeΛ−1/2 f

∥∥2 ≤ Cφ ‖f‖2,

(29)
∥∥Λ−1/2∇f

∥∥2 ≤ ‖f‖2,
∥∥Λ−1/2 b∇φe f

∥∥2 ≤ Cφ ‖f‖2.

Proof. For all f ∈ D(Λ) we have ‖∇f‖2 ≤ (Λf, f) = ‖Λ1/2 f‖2. By density of D(Λ) in H1 we get

‖∇f‖2 ≤ ‖Λ1/2 f‖2 for all f ∈ H1 and applying this inequality to Λ−1/2 f ∈ H1 proves the first inequality
in (28).

Let us note that 0 ≤ |∇φ|2 − 4
√
d |D2φ|+Cφ − 1 ≤ |∇φ|2 − 4 ∆φ+Cφ − 1 because ∆φ ≤

√
d |D2φ| and

according to (6), so that
b∇φe2 ≤ 8

(
1
4 |∇φ|

2 − 1
2 ∆φ

)
+ Cφ .

As a consequence, we get the operator inequality b∇φe2 ≤ − 8 ∆φ + Cφ Id ≤ Cφ Λ using the fact that the
usual Laplacian −∆ is nonnegative on L2( dx) and Cφ ≥ 8. This implies that, for all f ∈ D(Λ), we have

that b∇φe f is in L2 and ‖b∇φe f‖2 ≤ Cφ (Λf, f) = Cφ ‖Λ1/2 f‖2. By density of D(Λ) in H1, we get

(30) ∀ f ∈ H1,
∥∥b∇φe f∥∥2 ≤ Cφ

∥∥Λ1/2 f
∥∥2
.

For any f ∈ L2, applying (30) to Λ−1/2 f ∈ H1 gives the second inequality in (28). Inequalities in (29) are
obtained from (28) by considering the adjoint operators. �

Proof of the strong Poincaré inequality (21). So far we did not use (H3) and its spectral consequences.
Using the density of C∞c (Rd,R) in D(Λ) and (H3), we get that 0 is an isolated eigenvalue of −∆φ = Λ− 1
with associated eigenspace R. Inequality (21) follows from (30) applied to f − 〈f〉 and (H3), with CSP ≤
Cφ (1 + CP). �

The following toolbox is a key step in proof of the Poincaré-Lions inequality (22).

Proposition 8 (D(Λ)-Toolbox). Assume (H1) and (H2). Then

D(Λ) =
{
f ∈ L2 :

∥∥b∇φe2 f∥∥+
∥∥b∇φe∇f∥∥+

∥∥D2f
∥∥ < +∞

}
and there exists a positive constant CB depending only on Cφ, C ′φ and d such that, for any f ∈ L2,

(31)
∥∥D2Λ−1f

∥∥2
+
∥∥b∇φe∇Λ−1f

∥∥2
+
∥∥b∇φe2 Λ−1f

∥∥2 ≤ CB ‖f‖2,

(32)
∥∥Λ−1D2f

∥∥2
+
∥∥Λ−1b∇φe∇f

∥∥2
+
∥∥Λ−1b∇φe2 f

∥∥2 ≤ CB ‖f‖2.

Proof. Inequality (32) follows from (31) by duality using (H2).
Let us denote by S the subspace of L2 such that D2f , b∇φe∇f and b∇φe2 f are square integrable. It is

elementary to check that D(Λ) ⊂ S. In order to prove that, reciprocally, S ⊂ D(Λ), let us argue by density
of C∞c (Rd;R). For any f ∈ C∞c (Rd;R), let us prove that ξ = Λf = −∆φf + f is such that

(33)
∥∥b∇φe2f∥∥2

+
∥∥b∇φe∇f∥∥2

+
∥∥D2f

∥∥2 ≤ CB ‖ξ‖2

for some explicit constant CB, so that D(Λ) = S and (31) directly follow.

It follows from ‖f‖2 ≤ (Λf, f) ≤ ‖Λf‖ ‖f‖ that ‖f‖ ≤ ‖ξ‖. Similarly, using (28), we have

(34) ‖b∇φe f‖ ≤ C1/2
φ ‖Λ1/2f‖ = C

1/2
φ (Λf, f)1/2 ≤ C1/2

φ ‖ξ‖ .
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Next, we estimate
∥∥b∇φe2 f∥∥. Using (28) and the triangular inequality we have

‖b∇φe2 f‖ = ‖b∇φe b∇φe f‖ ≤ C1/2
φ ‖Λ1/2 (b∇φe f)‖ ≤ C1/2

φ ‖∇(b∇φe f)‖+ C
1/2
φ ‖b∇φe f‖ .

With ∇(b∇φe f) = b∇φe∇f + (∇b∇φe) f , we get

‖b∇φe2 f‖ ≤ C1/2
φ ‖b∇φe∇f‖+ C

1/2
φ ‖b∇φe f‖+ C

1/2
φ ‖(∇b∇φe) f‖

≤ C1/2
φ ‖b∇φe∇f‖+ Cφ ‖ξ‖+ C

1/2
φ ‖(∇b∇φe) f‖

by (34). Estimate (6) yields

(35)
∣∣∇b∇φe∣∣ ≤ |D2φ| |∇φ|

b∇φe
≤ 1

4 C
−1/2
φ b∇φe2 + 1

4 C
′
φ C
−1/2
φ

and, as a consequence,∥∥b∇φe2 f∥∥ ≤ C1/2
φ ‖b∇φe∇f‖+ Cφ ‖ξ‖+ 1

4

∥∥b∇φe2 f∥∥+ 1
4 C
′
φ ‖f‖ ,

so that using C ′φ ≥ Cφ and ‖f‖ ≤ ‖ξ‖, we get

(36)
∥∥b∇φe2 f∥∥ ≤ 4

3 C
1/2
φ ‖b∇φe∇f‖+ 5

3 C
′
φ ‖ξ‖ .

Next we estimate
∥∥b∇φe∇f∥∥2

by∥∥b∇φe∇f∥∥2
= (b∇φe2∇f,∇f) = (∇(b∇φe2 f),∇f)− ((∇b∇φe2) f,∇f)

= (b∇φe2 f, ξ − f)− ((∇b∇φe2) f,∇f)

≤ (b∇φe2 f, ξ)− 2
(
(∇b∇φe) f, b∇φe∇f

)
≤
∥∥b∇φe2 f∥∥ ‖ξ‖+ 2 ‖(∇b∇φe) f‖ ‖b∇φe∇f‖ .

Using (35) and ‖f‖ ≤ ‖ξ‖, we get

(37)
∥∥b∇φe∇f∥∥2 ≤

∥∥b∇φe2 f∥∥ ‖ξ‖+ 1
2 C
−1/2
φ

∥∥b∇φe2 f∥∥ ‖b∇φe∇f‖+ 1
2 C
′
φ C
−1/2
φ ‖ξ‖ ‖b∇φe∇f‖ .

With elementary estimates, we deduce from (36)-(37) that

(38)
∥∥b∇φe∇f∥∥ ≤ 9C ′φ ‖ξ‖ and

∥∥b∇φe2f∥∥ ≤ 14C ′φ ‖ξ‖ .

Integrations by parts show that∥∥D2f
∥∥2

=
∑
i,j(∂ijf, ∂ijf) =

∑
i,j

(
∂jf,− ∂iijf + ∂ijf ∂iφ

)
=
∑
i,j

(
∂jf, ∂j(− ∂iif)

)
+ 1

2

∑
i,j

(
∂i(|∂jf |2), ∂iφ

)
=
(
∇f,∇(−∆f)

)
+ 1

2

(
|∇f |2, |∇φ|2 −∆φ

)
.

Using the elementary estimates(
∇f,∇(−∆f)

)
= (∆φf,∆f) = (f − ξ,∆f) ≤ (f,∆f) + ‖ξ‖ ‖∆f‖ ,

(f,∆f) = (f,∆φf) + (f,∇φ · ∇f) = −‖∇f‖2 + 1
2 (∇f2,∇φ) ≤ − 1

2 (f2,∆φφ) = 1
2

(
|f |2, |∇φ|2 −∆φ

)
,

and using (6) and b∇φe ≥ 1 and the fact that

|∇φ|2−∆φ ≤ |∇φ|2 +
√
d |D2φ| ≤ |∇φ|2 + 1

4

(
|∇φ|2 + Cφ − 1

)
≤ 1

4

(
5 b∇φe2 + Cφ − 6

)
≤ 1

4 (Cφ − 1) b∇φe ,

we obtain, using also (38), the estimate

1

d
‖∆f‖2 ≤

∥∥D2f
∥∥2 ≤ ‖ξ‖ ‖∆f‖+ 1

2

(
|f |2 + |∇f |2, |∇φ|2 −∆φ

)
≤ ‖ξ‖ ‖∆f‖+ 1

8 (Cφ − 1)
(∥∥b∇φe2f∥∥2

+
∥∥b∇φe∇f∥∥2

)
≤ ‖ξ‖ ‖∆f‖+ C ‖ξ‖2

with C = 1
8 277 (Cφ − 1)C ′φ

2
because 277 = 92 + 142. As a straightforward consequence, we obtain

‖∆f‖ ≤ 1
2

(
d+

√
d2 + 4C

)
‖ξ‖ and

∥∥D2f
∥∥2 ≤ C

d + 1
2

(
d+

√
d2 + 4C

)
‖ξ‖2.

With (38), this completes the proof of (33). A detailed computation of CB is given in Appendix B.4. �
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3.2. The Poincaré-Lions inequality (Proposition 5). We now focus on (22). As a preliminary remark,
note that this inequality is the counterpart in the whole space of the so-called Lions lemma in the smooth
bounded domain case Ω ⊂ Rd, which amounts to the existence of some cΩ > 0 such that

∀ f ∈ L2(Ω) , cΩ ‖f − 〈f〉 ‖2L2(Ω) ≤ ‖∇f‖
2
H−1(Ω) ≤ d ‖f − 〈f〉 ‖

2
L2(Ω)

(see for instance [16] and [9, Theorem 6.11.4]). This inequality belongs to the folklore in Hodge theory, see
for instance [22] or [25], with variants involving the so-called Witten-Laplacian on one-forms.

Proof of the Poincaré-Lions inequality (22). First note that the right inequality directly follows from (29)
applied to f − 〈f〉. We focus on the left one. The spectral theorem implies for all f ∈ D(Λ) with 〈f〉 = 0

(39) (1 + CP)−1 ‖f‖2 ≤
(
(−∆φ) Λ−1f, f

)
=
(

Λ1/2∇Λ−1f,Λ−1/2∇f
)
≤ ‖Λ1/2∇Λ−1f‖ ‖Λ−1/2∇f‖

because 1/(1 +CP) ≤ s/(s+ 1) for any s ∈ [1/CP,∞). Let us prove that Λ1/2∇Λ−1 is a bounded operator.
Using the commutator [Λ,∇] = −D2φ∇, we compute

Λ1/2∇Λ−1 = Λ−1/2 Λ∇Λ−1 = Λ−1/2∇+ Λ−1/2 [Λ,∇] Λ−1

= Λ−1/2∇− Λ−1/2D2φ∇Λ−1 = Λ−1/2∇+ Λ−1/2 b∇φe
(
b∇φe−1D2φ b∇φe−1

)
b∇φe∇Λ−1 .

From (29), we know that Λ−1/2∇ and Λ−1/2 b∇φe are bounded respectively by 1 and
√
Cφ, from (31) the

operator b∇φe∇Λ−1 is bounded by
√
CB, and we have

b∇φe−1D2φ b∇φe−1 ≤
C ′φ

4
√
Cφ

as a consequence of (6). Altogether, Λ1/2∇Λ−1 is bounded and

(40) ‖Λ1/2∇Λ−1f‖ ≤
(

1 + 1
4 C
′
φ

√
CB

)
‖f‖ ,

which completes the proof with

(41) CPL = (1 + CP)2
(
1 + 1

4 C
′
φ

√
CB

)2
.

�

4. Proof of the Korn inequalities of Theorems 1 and 2 for general potentials

In this section, we assume that the potential satisfies (H1), (H2) and (H3).

4.1. Proof of Theorem 1. As a preliminary remark, we recall that

∀u ∈ H1, P(Du) = 〈Dau〉 .

Indeed Du = (Du− 〈Dau〉) + 〈Dau〉 is an orthogonal decomposition because

(Du− 〈Dau〉 , 〈Dau〉) = (Dau− 〈Dau〉 , 〈Dau〉) + (Dsu, 〈Dau〉) = 〈Dsu〉 : 〈Dau〉 = 0

and the uniqueness of this decomposition shows the result.

B Proof of (8). Let us take u ∈ H1 such that 〈u〉 = 0 and 〈Dau〉 = 0. Using the Poincaré-Lions
inequality (22), we have

(42) ‖Du‖2 = ‖Dsu‖2 + ‖Dau‖2 = ‖Dsu‖2 +

d∑
i,j=1

‖(Dau)ij‖2 ≤ ‖Dsu‖2 + CPL ‖Λ−1/2∇(Dau)‖2

with ‖Λ−1/2∇(Dau)‖2 =
∑d
i,j=1 ‖Λ−1/2∇(Dau)ij‖2. The Schwarz Theorem as stated in (23) gives

(43)

‖Λ−1/2∇(Dau)‖2 ≤ 2

d∑
i,j,k=1

(
‖Λ−1/2 ∂i(D

su)jk‖2 + ‖Λ−1/2 ∂j(D
su)ik‖2

)
= 4

d∑
j,k=1

‖Λ−1/2∇(Dsu)jk‖2.

The right-hand side of the Poincaré-Lions inequality (22) yields

d∑
j,k=1

‖Λ−1/2∇(Dsu)jk‖2 ≤
d∑

j,k=1

‖(Dsu)jk‖2 = ‖Dsu‖2.
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Together with (42) and (43), this gives ‖Du‖2 ≤ (1 + 4CPL) ‖Dsu‖2 so that we can take CK ≤ 1 + 4CPL.
This proves (8) since DsR = {0}.
B Proof of (9). Let us take u ∈ H1 such that 〈u〉 = 0 and P(u) = 0. By definition of P, we have

‖u‖2 ≤ ‖u−P(Du)x‖ since x 7→ P(Du)x is in R. Applying (H3) and (8) gives

‖u‖2 ≤ CP ‖Du−P(Du)‖2 ≤ CP CK ‖Dsu‖2

This proves (9) with CPK ≤ CP CK.

B Proof of (10). Let us take u ∈ H1 such that 〈u〉 = 0 and P(u) = 0. Applying the strong Poincaré
inequality (21) and the Korn inequality (8) gives

(44) ‖b∇φeu‖2 ≤ CSP ‖Du‖2 = CSP

(
‖Du−P(Du)‖2 + ‖P(Du)‖2

)
≤ CSP CK ‖Dsu‖2 + CSP ‖P(Du)‖2 .

An integration by parts, Jensen’s inequality and the Cauchy-Schwarz inequality show that

(45) ‖P(Du)‖2 = | 〈Dau〉 |2 = 1
4

d∑
i,j=1

∣∣∣∣∫
Rd

(
∂jφui − ∂iφuj

)
e−φ dx

∣∣∣∣2 ≤ ‖∇φ‖2 ‖u‖2 .
An integration by parts, ∆φ ≤

√
d |D2φ| and (6) provide us with∫

Rd
|∇φ|2 e−φ dx =

∫
Rd

∆φ e−φ dx ≤ 1
4

∫
Rd
|∇φ|2 e−φ dx+ 1

4 (Cφ − 1)

so that ‖∇φ‖2 ≤ 3Cφ and we conclude that ‖P(Du)‖2 ≤ 3Cφ ‖u‖2 ≤ 3Cφ CPK ‖Dsu‖2 by (9). Inserting
this estimate in (44) completes the proof of (10) with CSPK ≤ CSP(CK + 3Cφ CPK). �

4.2. Proof of Theorem 2.

B Proof of (13). Since for any R ∈ Rφ, DsR = 0 and ∇φ · R = 0, we can consider u ∈ H1 such that
Pφ(u) = 0 without loss of generality, so that P(u) ∈ Rcφ. According to (9) and by definition of the rigidity

constant CRV in (11), we have

‖u‖2 = ‖u− P(u)− 〈u〉‖2 + ‖P(u) + 〈u〉‖2 ≤ CPK ‖Dsu‖2 + CRV ‖∇φ · (P(u) + 〈u〉)‖2

≤ CPK ‖Dsu‖2 + 2CRV ‖∇φ · u‖2 + 2CRV ‖∇φ · (u− P(u)− 〈u〉)‖2 .

Applying then the strong Poincaré-Korn inequality (10) gives

‖u‖2 ≤ CPK ‖Dsu‖2 + 2CRV ‖∇φ · u‖2 + 2CRV CSPK ‖Dsu‖2.

This completes the proof of (13) with C ′PK ≤ CPK + 2CRV CSPK.

B Proof of (14). Since for any R ∈ Rφ, DsR = 0 and ∇φ ·R = 0, we can again consider u ∈ H1 such that
Pφ(Du) = 0 without loss of generality, so that P(Du) ∈ Mc

φ. According to (8) and by definition of the

rigidity constant CRD in (12), we have

‖Du‖2 = ‖Du−P(Du)‖2 + ‖P(Du)‖2 ≤ CK ‖Dsu‖2 + CRD ‖∇φ · (P(Du)x+ 〈u〉)‖2

≤ CK ‖Dsu‖2 + 2CRD ‖∇φ · u‖2 + 2CRD ‖∇φ · (u−P(Du)x− 〈u〉)‖2 .

Applying the strong Poincaré inequality (21) gives

‖Du‖2 ≤ CK ‖Dsu‖2 + 2CRD ‖∇φ · u‖2 + 2CRD CSP‖Du−P(Du)‖2,

and by the Korn inequality (8) again,

‖Du‖2 ≤ CK ‖Dsu‖2 + 2CRD ‖∇φ · u‖2 + 2CRD CSP CK ‖Dsu‖2,

This gives (13) with C ′K ≤ CK(1 + 2CRD CSP), with CSP ≤ Cφ (1 + CP) according to Proposition 5. �
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5. Operators on vector fields: proof of Theorem 3

In this section we develop the functional analysis and the spectral theory of operators on vector fields,
and prove Theorem 3. All results on the tensorized operator −∆φ on vector fields are direct consequences of
the study of the corresponding scalar operator: from Section 3, we learn that −∆φ is essentially self-adjoint
and admits C∞c (Rd;Rd) as a core, the domain of its unique self-adjoint extension is

D(−∆φ) =
{
u ∈ L2 : ∀ j ∈ {1, · · · , d} , ‖b∇φe2 uj‖2 +

∥∥b∇φe∇uj∥∥2
+
∥∥D2uj

∥∥2
<∞

}
,

and its kernel is ker(−∆φ) = Rd.
Let us deal with the other operators of Theorem 3. Recall that the operator −∆S is defined on C∞c (Rd;Rd)

vector fields by −∆S = −Ds
φ · Ds. It is nonnegative and Id − ∆S has therefore a Friedrichs extension

with domain included in H1
S defined as the completion of C∞c (Rd;Rd) with respect to the norm given by

u 7→ ‖u‖2 +‖Dsu‖2. On the other hand, a maximal self-adjoint extension of Id−∆S can be built according
to the Lax-Milgram Theorem and its domain is included in H1. The Korn inequality (8) implies that
H1
S = H1 so that the two extensions coincide, since there is a unique extension for which the domain is

contained in H1
S ([37, Theorem X.23]), which is the case for the maximal one. We have proven that −∆S

is essentially self-adjoint. From the Poincaré-Korn inequality (9), we learn that ker(−∆S) = R ⊕ Rd and
that inf

(
Sp(−∆S) ∩ (0,+∞)

)
≥ C−1

PK > 0. This concludes the proof of Theorem 3 for −∆S .
The same argument applies to −∆Sφ = −∆S −∇φ⊗∇φ using (8)–(10) as we know from Proposition 8

that ∇φ⊗∇φu ∈ L2 for all u ∈ D. This completes the proof of of Theorem 3.

Remark 9. Note also that the alternative operator defined on smooth vector fields by u 7→ −Ds
φ · Dsu −

∇(∇φ ·u) has exactly the same properties as −∆S because ‖Dsu‖2 + ‖∇φ ·u‖2 ∼ ‖Dsu‖2 + ‖∇φ ·u‖2 where
∇φu := ∇ · u−∇φ · u and ∇ · u = Tr(Dsu).

6. Zeroth order Korn inequalities: proof of Theorem 4

In order to prove (18), we use a new Poincaré-Lions-type inequality of order −1 and the Schwarz Lemma.

6.1. A Poincaré-Lions inequality of order −1.

Lemma 10. There exists two positive constants CLPL and CRPL such that, for all f ∈ H−1, we have

(46) C−1
LPL ‖Λ−1/2(f − 〈f〉)‖2 ≤ ‖Λ−1∇f‖2 ≤ CRPL ‖Λ−1/2 (f − 〈f〉)‖2.

Proof. We rely on the same strategy as for the proof of the Poincaré-Lions inequality (22). For any f ∈ H−1,
the mean makes sense because 〈f〉 = Λ−1/2 〈f〉 =

〈
Λ−1/2 f

〉
as Λ = Id when restricted on constants. We

can therefore take 〈f〉 = 0 w.l.o.g. and apply the spectral theorem as in (39), for any f ∈ D(Λ), to get

(47) (1 + CP)−1 ‖Λ−1/2 f‖2 ≤
(

(−∆φ) Λ−1Λ−1/2 f,Λ−1/2 f
)

=
(

Λ∇Λ−3/2(Λ−1/2 f),Λ−1∇f
)
,

where we used that −∆φ = −∇φ · ∇ and Λ commute. In order to prove the left inequality in (46), it is

sufficient to prove that Λ∇Λ−3/2 is a bounded operator. We work in C∞c (Rd;R), which is a core for Λ, and
the conclusion follows by density in L2. Let us write

Λ∇Λ−3/2 = ∇Λ−1/2 + [Λ,∇] Λ−3/2 = ∇Λ−1/2 −D2φ∇Λ−3/2 = ∇Λ−1/2 −D2φΛ−1
(
Λ∇Λ−3/2

)
.

By assumption (H2), for all ε > 0 and for all g ∈ C∞(Rd;R), we know that

‖Λ∇Λ−3/2g‖ ≤ ‖∇Λ−1/2 g‖+ ε ‖b∇φe2∇Λ−3/2g‖+ Cε ‖∇Λ−3/2g‖

≤ ‖∇Λ−1/2 g‖+ ε
∥∥b∇φe2 Λ−1

(
Λ∇Λ−3/2g

)∥∥+ Cε ‖∇Λ−1/2 (Λ−1g)‖ .

The operators ∇Λ−1/2 and b∇φe2 Λ−1 are bounded respectively by 1 and
√
CB according to (28) and (31),

and Λ−1 ≤ 1, so that

‖Λ∇Λ−3/2g‖ ≤ (1 + Cε) ‖g‖+ ε
√
CB ‖Λ∇Λ−3/2g‖ .

With the choice ε = 1/(2
√
CB) and C ′′φ := Cε = C1/(2

√
CB) in (H2), we obtain

‖Λ∇Λ−3/2g‖ ≤ 2 (1 + C ′′φ) ‖g‖ .

Coming back to (47) with g = Λ−1/2 f , we obtain

‖Λ−1/2 f‖ ≤ 2 (1 + CP) (1 + C ′′φ) ‖Λ−1∇f‖ ,

so that CLPL ≤ 4 (1 + CP)2 (1 + C ′′φ)2 and the left inequality is proven.
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In order to prove the right inequality in (46), we notice that Λ−1∇f = Λ−1∇Λ1/2 (Λ−1/2 f) and it is
therefore sufficient to prove that Λ−1∇Λ1/2 is a bounded operator. This is done as in (40) by writing

Λ−1∇Λ1/2 = Λ−1∇Λ Λ−1/2 = ∇Λ−1/2 + Λ−1[∇,Λ] Λ−1/2 = ∇Λ−1/2 + Λ−1D2φ
(
∇Λ−1/2

)
.

As in the proof of (40), we obtain for any f ∈ C∞c (Rd;R) and g = Λ−1/2 f the estimate

‖Λ−1∇f‖ = ‖Λ−1∇Λ1/2g‖ ≤
(

1 + 1
4 C
′
φ

√
CB/Cφ

)
‖∇Λ−1/2g‖ ≤

(
1 + 1

4 C
′
φ

√
CB/Cφ

)
‖g‖ ,

using (6), (28) and (32). This concludes the proof with CRPL =
(
1 + 1

4 C
′
φ

√
CB/Cφ

)2
. �

6.2. Proof of the Korn inequalities in Theorem 4. As a consequence of (45) the projection u 7→
P(Du) = 〈Dau〉 has a unique extension as a bounded operator on L2 with norm bounded by ‖∇φ‖ since H1

is dense in L2. We keep the same name for the extension and notice that

Λ−1/2 P(Du) = Λ−1/2 〈Dau〉 = 〈Λ−1/2Dau〉 = P(Λ−1/2Du) .

B Proof of (18). Let us take u ∈ L2 such that 〈u〉 = 0 and P(Du) = 〈Dau〉 = 0. Using (46), we have

‖Λ−1/2Du‖2 = ‖Λ−1/2Dsu‖2 + ‖Λ−1/2Dau‖2 ≤ ‖Λ−1/2Dsu‖2 + CLPL ‖Λ−1∇(Dau)‖2

where ‖Λ−1∇(Dau)‖2 =
∑d
i,j=1 ‖Λ−1∇(Dau)ij‖2. By the Schwarz Theorem (23),

‖Λ−1∇(Dau)‖2 ≤ 2

d∑
i,j,k=1

(
‖Λ−1∂i(D

su)jk‖2 + ‖Λ−1∂j(D
su)ik‖2

)
= 4

d∑
j,k=1

‖Λ−1∇(Dsu)jk‖2,

and (46) yields

d∑
i,j=1

‖Λ−1∇(Dsu)ij‖2 ≤ CRPL

d∑
j,k=1

‖Λ−1/2 (Dsu)jk‖2 = CRPL ‖Λ−1/2Dsu‖2.

Altogether, this proves

‖Λ−1/2
(
Du−P(Du)

)
‖2 ≤ (1 + 4CLPL CRPL) ‖Λ−1/2Dsu‖2

and (18) follows with CK0 = 1 + 4CLPL CRPL.

B Proof of (19). Let us take u ∈ L2 such that 〈u〉 = 0 and P(u) = 0. By definition of P, (22) and (18) we
get

‖u‖2 ≤ ‖u−P(Du)x‖ ≤ CPL

∥∥∥Λ−1/2 (Du−P(Du))
∥∥∥2

≤ CPL (1 + 4CLPL CRPL) ‖Λ−1/2Dsu‖2.

This proves (19) with CPK0 ≤ CPL (1 + 4CLPL CRPL).

B Proof of (20). Let us consider u ∈ L2 such that Pφ(u) = 0 so that P(u) ∈ Rcφ. By (19) and by

definition (17), we have

‖u‖2 = ‖u− P(u)− 〈u〉‖2 + ‖P(u) + 〈u〉‖2

≤ CPK0 ‖Λ−1/2Dsu‖2 + CRV0 ‖Λ−1/2∇φ · (P(u) + 〈u〉)‖2

≤ CPK0 ‖Λ−1/2Dsu‖2 + 2CRV0 ‖Λ−1/2 (∇φ · u)‖2 + 2CRV0 ‖Λ−1/2 [∇φ · (u− P(u)− 〈u〉)]‖2.

Inequalities (29), Λ−1/2 ≤ 1 and (19) yield

‖u‖2 ≤ CPK0 ‖Λ−1/2Dsu‖2 + 2CRV0 ‖Λ−1/2(∇φ · u)‖2 + 2CRV0 Cφ ‖u− P(u)− 〈u〉 ‖2

≤ CPK0‖Λ−1/2Dsu‖2 + 2CRV0

∥∥∥Λ−1/2(∇φ · u)
∥∥∥2

+ 2CRV0 Cφ CPK0 ‖Λ−1/2Dsu‖2.

This proves (20) with C ′PK0 ≤ CPK0(1 + 2CRV0 Cφ), and also completes the proof of Theorem 4. �



WEIGHTED KORN AND POINCARÉ-KORN INEQUALITIES AND ASSOCIATED OPERATORS 15

Appendix A. Extensions, geometric observations and motivation from kinetic theory

A.1. On the assumptions and some generalizations.

Remark 11. The fact that the Poincaré inequality (H3) implies that e−φ dx has an average 〈x〉 and a
variance 〈|x|2〉 is classical (see, e.g., [31, Corollary 3.2]). Indeed (H3) yields a concentration property of
e−φ(x) dx via a concentration function. A direct application of Fatou’s Lemma allows to extend (H3) to
the set W 1,∞ of uniformly Lipschitz functions, which includes x 7→ xj for all j ∈ {1, · · · , d}. This directly

gives
∫
Rd |x|

2 e−φ(x) dx ≤ dCP and the integrability of x w.r.t. e−φ(x) dx follows by the Cauchy-Schwarz
inequality. By induction, we get under (H3) alone that the set of all polynomial functions R[x] is included
in L2 and even H1.

Remark 12. As a consequence of Remark 11 and of the strong Poincaré inequality (21), we directly get that
for all i, j ∈ {1, · · · d},

∫
Rd |xi ∂jφ(x)| e−φ(x) dx < ∞. It is indeed sufficient to apply the strong Poincaré

inequality to x 7→ xj , which is in H1. Note that this gives sense to all quantities of Theorem 1, e.g., ‖∇φ ·R‖
for any infinitesimal rotation R.

Remark 13. There are many sufficient conditions for the Poincaré inequality of Assumption (H3). When φ
is uniformly convex, it is shown in [3] that CP is greater or equal than the convexity constant, hence leading
to fully explicit estimates in the two main theorems. If we only assume that lim|x|7→∞ |∇φ(x)| = +∞, then Λ
is in fact an operator with compact resolvent, hence with discrete spectrum, and (H3) follows. Another,
less stringent, sufficient condition on φ is lim inf |x|→∞

(
1
2 |∇φ(x)|2 −∆φ(x)

)
> c for some c > 0 (it implies

the Poincaré inequality from the Persson-Agmon formula of [36] or [1, Theorem 3.2]). We note that this
last assumption is satisfied by any regular function which coincides with x 7→ α |x| + β outside of a large
centred ball, where α and β are normalization constants.

Remark 14. Assumptions (H1)–(H2)–(H3) may be satisfied in other geometries than the one of the whole
Euclidean space Rd. In particular, given an open, smooth, bounded and connected subset Ω of Rd, we observe
that these hypotheses are satisfied by the potential φ(x) = exp

(
1/d2(x, ∂Ω)

)
, where d(x, ∂Ω) denotes the

usual Euclidean distance from x to ∂Ω. Here Rd is replaced by Ω equipped with the measure e−φ(x) dx.
It is an open question to understand how our results could be extended to usual boundary problems with
potentials mimicking walls at the boundary of Ω.

A.2. Rigidity constants and defects of axisymmetry. In the proofs of Theorems 1 and 4 (see also
Appendix B.5), we used the two rigidity constants CRV and CRV0 defined by (11) and (17), depending on the
level of regularity in each case, to measure the defects of axisymmetry (note that CRV ≤ CRV0 since Λ ≥ Id).
We used also CRD defined in (12) but remark that CRV and CRD are not directly comparable either, because
Mc
φ 6= DRcφ. Other ways of measuring the default of axisymmetry of the potential φ can be considered.

1 One can consider, again, a rigidity of vector fields constant, but this time defined alternatively by

C−1
RVL = min

Ax∈Rcφ\{0}

‖∇φ ·Ax‖2

‖Ax‖2
when Rcφ 6= {0} and CRVL = 0 otherwise .

This leads to the modified Poincaré-Korn inequality

(48) inf
Ax∈Rφ

‖u− 〈u〉 −Ax‖2 = ‖u− 〈u〉 − Pφ(u)‖2 ≤ C ′PKL ‖Dsu‖2 + 2CRVL ‖∇φ · (u− 〈u〉)‖2

with an explicit bound for the constant C ′PKL using (9) and the method of proof of (13). Once more,
the existence of CRVL follows from the injectivity of Ax 7→ ∇φ · Ax on Rcφ and the fact that Rcφ is of
finite dimension. The main advantage of this approach is to preserve a continuity property with respect
to axisymmetry, which can be stated as follows: a small perturbation of a radial potential φ gives rise to
a small constant CRVL, the limiting case being Rcφ = {0} and CRVL = 0. The main drawback is that the

symmetric operator associated to (48) is neither local nor differential because of the term 〈u〉 which appears
in the right-hand side of (48).

2 In a bounded domain Ω ⊂ Rd, with flat metric (i.e., for a constant potential φ) considered in [12],
the authors use Grad’s number. Let us explain how to adapt this method in our context under, e.g., the
additional condition

lim
|x|→∞

D2φ(x)

b∇φ(x)e2
= 0 .
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This property implies that the multiplication operator by D2φ is relatively compact with respect to −∆φ

acting on vector fields, with essential spectrum in [CP,∞). The spectrum in [0, CP) is then a pure point
spectrum and the kernel is finite dimensional. For any antisymmetric matrix A, there exists an affine space
VA of functions v ∈ H1 solving the Witten-Hodge problem

divφ v = 0 , Dav = A .

The Witten-Hodge inequality asserts that

(49) inf
v∈VA

‖Dsv‖2 ≤ cH |A|2

for some constant cH ∈ (0,∞). The reverse inequality amounts to the existence of Grad’s number such that

C−1
G := inf

A∈Mc
φ, |A|=1, v∈VA

‖Dsv‖2.

The existence of CG as well as a quantitative positive lower bound could be establish using mass transport
theory exactly as in [12]. Of course, CG is well defined only when Rcφ 6= {0}, i.e., under the condition

that φ is not radially symmetric. Inequality (49) is natural in differential geometry and more specifically
in De Rham cohomology theory: we refer to [2, 21] for further developments on this topic. In bounded
domains, how to measure the symmetry defect by Grad’s number in view of Korn type inequalities is at
the core of [12] but has also been studied in [18]. This approach differs from ours. Using CG and (8), the
inequality (13) can be proved along a similar strategy as in [12], although with different constants.

A.3. An elementary application in kinetic theory. The main motivation for this paper comes from
kinetic equations involving a confining potential studied in [7]. Also see [12, Section 2] and [4, 15] for
applications of Korn inequalities to kinetic equations. As an example, let us consider the linear relaxation
model of BGK-type

(50) ∂tf + v · ∇xf −∇xφ · ∇vf = Lf := Gf − f,

where f(t, x, v) is an unknown distribution function for a system of particles depending on time t ≥ 0,
position x ∈ Rd and velocity v ∈ Rd, and where Gf is defined by

Gf := (ρ+ u · v)µ where ρ(t, x) :=

∫
Rd
f(t, x, v) dv , u(t, x) :=

∫
Rd
v f(t, x, v) dv .

Here µ(v) := (2π)−d/2 e−|v|
2/2 while ρ and u are respectively the macroscopic density and the aver-

age velocity associated with f . The collision kernel admits d + 1 conserved moments, in the sense that∫
Rd Lf(t, x, v) dv = 0 =

∫
Rd vi Lf(t, x, v) dv for any i = 1, . . . , d and f ∈ L1((1 + |v|)dv).

A natural question is to look for equilibria of (50). A quick glance at the equation shows thatM(x, v) :=
e−φ(x) µ(v) is one of them. Korn inequalities provide us with a complete answer.

Proposition 15. Under Assumptions (H1)–(H2)–(H3), all equilibria of (50) in L2(M−1 dx dv) take the
form f(x, v) =

(
(R(x) · v) + c

)
M for some R ∈ Rφ and c ∈ R.

Proof. Write f = hM with h ∈ L2(Mdxdv), ρ = r e−φ, u = u e−φ, so that equation (50) reads

(51) ∂th+ v · ∇xh−∇xφ · ∇vh = L(h) := h− r − u · v.

The restriction of L to L2(µdv) is L = −Π⊥ where Π is the orthogonal projection onto Span{1, v1, . . . , vd}.
We compute

d

dt

∫∫
Rd×Rd

|h|2Mdxdv = 2

∫∫
Rd×Rd

(Lh)hM dx dv = − 2

∫∫
Rd×Rd

∣∣Π⊥h∣∣2 Mdx dv

and deduce that any stationary solution of (51) takes the form h(x, v) = r(x) +u(x) · v. Equation (51) then
reads

v · ∇x(r + u · v) = ∇xφ · u.
Integrating the latter equation against respectively 1, vi and vi vj with i 6= j in L2(µdv) yields

i) ∇x · u−∇xφ · u = 0, ii) Dsu = 0, iii) ∇r = 0.

From iii) we get that there exists c ∈ R such that r = c. As for i), an integration by parts gives

0 =

∫
Rd

(∇x ·u−∇xφ ·u) 〈u〉·x e−φ(x) dx = −
∫
Rd
u ·∇ (〈u〉 · x) e−φ(x) dx = −

∫
Rd
u ·〈u〉 e−φ(x) dx = − 〈u〉2 ,
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so that 〈u〉 = 0. Note also that taking the trace in ii) yields ∇x · u = 0 so that i) reads ∇xφ · u = 0.
Using this and (19) in Theorem 4 shows that u = R with R = Pφ(u) ∈ Rφ. Hence h = R(x) · v + c and
f(x, v) =

(
(R(x) · v) + c

)
M. The reciprocal is straightforward, which completes the proof. �

Appendix B. Additional details on computations

B.1. Functions, derivatives and projections. We denote by f a generic scalar function on Rd and by
u : Rd → Rd a generic vector field, so that ∇f = (∂if)di=1 is a vector field and Du = (∂jui)

d
i,j=1 takes

values in M. The symmetric and the antisymmetric differentials of u, respectively Dsu =
(
(Dsu)ij

)d
i,j=1

and Dau =
(
(Dau)ij

)d
i,j=1

are defined by

(Dsu)ij := 1
2 (∂jui + ∂iuj) and (Dau)ij := 1

2 (∂jui − ∂iuj)

so that Dsu+Dau = Du.
The orthogonal projection P of vector-valued functions is defined as follows. Let (Aij)1≤i<j≤d be a basis

of Ma whose elements are

Aij =
(
(δij − δji) δki δj`

)d
k,`=1

and (Rij)1≤i<j≤d the orthonormal (in the L2 sense) basis of R given by

Rij(x) = Z−1
ij Aij x

whose coordinates are all 0 except the ith and the jth ones, with respective values −xj/Zij and xi/Zij , i.e.,

Rij(x)⊥ = Z−1
ij

(
0, . . . , 0,−xj , 0, . . . , 0, xi, 0, . . . , 0

)
,

and where the normalization constant is Zij =
(∫

Rd(x2
i + x2

j ) e
−φ(x) dx

)1/2
. With these notations, Pu is the

vector field

x 7→ Pu(x) :=
∑

1≤i<j≤d

cij Rij(x)

where the coefficients are computed, for all integers i, j such that 1 ≤ i < j ≤ d, as

cij =
∫
Rd u(x) ·Rij(x) e−φ(x) dx = 1

Zij

∫
Rd (xi uj(x)− xj ui(x)) e−φ(x) dx .

The orthogonal projection P of a matrix-valued function F is defined as

PF :=
∑

1≤i<j≤d

dij Aij

where the coefficients are computed, for all integers i, j such that 1 ≤ i < j ≤ d, as

dij = 1
2

∫
Rd F(x) : Aij e

−φ(x) dx = 1
2

∫
Rd
(
Fij(x)− Fji(x)

)
e−φ(x) dx .

As a a consequence, we deduce that PF = 〈Fa〉 and P(Du) = 〈Dau〉 for any u ∈ H1.
A matrix A ∈ DRcφ is such that A ∈Ma and for any B ∈ DRφ ⊂Ma,

0 =
∫
Rd Ax ·B xe

−φ(x) dx =
∑d
i,j,k=1Aij Bik

∫
Rd xj xk e

−φ(x) dx .

A matrix A ∈Mc
φ is such that A ∈Ma and for any B ∈ DRφ = Mφ ⊂Ma,

0 =
∫
Rd A : B e−φ(x) dx = A : B =

∑d
i,j Aij Bij .

Based on these two definitions, it is clear that DRcφ and Mc
φ generically differ.

B.2. Operators. Let us give some details on the differential operators −∆φ and −∆S associated respec-
tively with the quadratic forms f 7→ ‖∇f‖2 and u 7→ ‖Dsu‖2.

B Using ∇φu := ∇·u−∇φ·u, the Witten-Laplace operator ∆φ on functions is such that ‖∇f‖2 = (f,−∆φf)
and takes the form

∆φf = eφ∇ ·
(
∇f e−φ

)
= ∇φ · ∇f = ∆f −∇φ · ∇f .
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B By definition of Dsu and using integration by parts, we have

(−∆Su, u) = 2
∫
Rd |D

su|2 e−φ dx = 1
2

∑d
i,j=1

∫
Rd (∂iuj + ∂jui)

2
e−φ dx

= − 1
2

∑d
i,j=1

∫
Rd uj ∂i

(
(∂iuj + ∂jui) e

−φ) dx− 1
2

∑d
i,j=1

∫
Rd ui ∂j

(
(∂iuj + ∂jui) e

−φ) dx

= −
∑d
i,j=1

∫
Rd uj ∂i

(
(∂iuj + ∂jui) e

−φ) dx

= −
∑d
i=1

∫
Rd
(
ui ∆ui + ui ∂ijuj

)
e−φ dx+

∑d
i=1

∫
Rd ui

(
(∇φ · ∇)ui + 2 (Dsu∇φ)i

)
e−φ dx

= −
∫
Rd u ·

(
∆u+∇(∇ · u)− (∇φ · ∇)u− 2Dsu∇φ

)
dx .

so that −∆S is given, for an arbitrary vector field u ∈ C∞c (Rd;Rd), by

−∆S u = −Ds
φ ·Dsu = −

(
∆u+∇(∇ · u)− (∇φ · ∇)u− 2Dsu∇φ

)
.

B.3. Gaussian measure. In the normalized centred Gaussian case φ(x) = 1
2 |x|

2 + d
2 ln(2π) corresponding

to (5), the basic constants are CP = 1 (which is the optimal constant in the Gaussian Poincaré inequality),

either Cφ = 1 + 4 d and C ′φ = 4
√
d (1 + 4 d) if d ≥ 2, or Cφ = 8 and C ′φ = 8

√
2 if d = 1, as a limit case.

Let u(x) = (1− x2
2, x1 x2, 0, . . . 0)⊥. By elementary computations, we find that

Du =

 0 − 2x2

x2 x1
0

0 0

 , Dsu =

 0 − 1
2 x2

− 1
2 x2 x1

0

0 0

 , Dau =

 0 − 3
2 x2

3
2 x2 0

0

0 0


where 0 denotes 2× (d− 2), (d− 2)× 2, and (d− 2)× (d− 2) null matrices. After integration against the
normalized centred Gaussian measure, we have

〈u〉 = 0, ‖u‖2 = 3 , P(u) = 0 , P(Du) = 0 = 〈Dau〉 , ‖Dsu‖2 =
3

2
, ‖Dau‖2 =

9

2
, ‖Du‖2 = 6 .

This proves that CK = 4 in ‖Du−P(Du)‖2 ≤ CK ‖Dsu‖2 and CPK = 2 in ‖u− 〈u〉 − P(u)‖2 ≤ CPK ‖Dsu‖2
are both optimal.

B.4. Estimates for the D(Λ)-Toolbox and consequences. Here we give some details on the computa-
tion of CB in the proof of Proposition 8 in Section 3.1. Let A =

∥∥b∇φe∇f∥∥, B =
∥∥b∇φe2 f∥∥, Z = ‖ξ‖ and

let c′
2

= C ′φ ≥ Cφ = c2. Inequalities (36) and (37) amount to

B ≤ 4
3 cA+ 5

3 c
′2 Z and A2 ≤ B Z + 1

2 c AB + c′2

2 c AZ .

Taking the equality case in the first inequality, we find that

A2 − 4A
(
c+ c′

2
/c
)
Z − 5 c′

2
Z2 ≤ 0

which means that

A ≤
(
2σ +

√
4σ2 + 5

)
c′ Z with σ = c

c′ + c′

c ≥ 2 .

On [2,+∞), the function σ 7→
√

4σ2 + 5/σ is monotone non-increasing, so that
√

4σ2 + 5 ≤ 1
2

√
21σ. Using

the monotonicity of c 7→ c σ and c ≤ c′, we also have c σ ≤ 2 c′. As a consequence, we have

A ≤
(
2 + 1

2

√
21
)
c σ c′

c Z ≤
(
4 +
√

21
)
c′2

c Z ≤ 9 c′2

c Z ,

B ≤ 1
3

(
4 c
(
2σ +

√
4σ2 + 5

)
+ 5 c′

)
c′ Z ≤

(
7 + 4

√
7/3

)
≤ 14 c′

2
Z ,

that is, the bounds (38). Moreover, from
∥∥D2f

∥∥2 ≤ C
d + 1

2

(
d+
√
d2 + 4C

)
‖ξ‖2 with C = 277

8 (Cφ − 1)C ′φ
2
,

we deduce that

(52) CB = 81
C′φ

2

Cφ
+ 196C ′φ

2
+ C

d + 1
2

(
d+

√
d2 + 4C

)
.

B.5. Estimates on various constants. The constants Cφ and C ′φ appear in (6) as a consequence of (H2)

while the Poincaré constant CP follows from Assumption (H3). According to (41), the constant in the

Poincaré-Lions inequality (22) is given with CB as in (52) by CPL = (1 + CP)2
(
1 + C ′φ

√
CB/4

)2
. From

Proposition 5, we know that the strong Poincaré inequality (21) holds for some CSP ≤ Cφ (1 + CP). As for
the other constants in Theorems 1 and 2, we learn from the proofs in Sections 4.1 and 4.2 that

CK ≤ 1 + 4CPL , CPK ≤ CP CK , CSPK ≤ CSP(CK + 3Cφ CPK) ,

C ′PK ≤ CPK + 2CRV CSPK and C ′K ≤ CK(1 + 2CRD CSP) .
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In Section 6.1, Lemma 10, using C ′′φ := Cε as in (H2) with ε = 1/(2
√
CB), the constants in (46) are

CLPL ≤ 4 (1 + CP)2 (1 + C ′′φ)2 and CRPL ≤
(

1 + 1
4 C
′
φ

√
CB/Cφ

)2

.

Finally, the constants in Theorem 4 are given by

CK0 = 1 + 4CLPL , CPK0 ≤ CPL (1 + 4CLPL) and C ′PK0 ≤ CPK0(1 + 2CRV0 Cφ).
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[14] Dolbeault, J., and Volzone, B. Improved poincaré inequalities. Nonlinear Analysis: Theory, Methods & Applications
75, 16 (nov 2012), 5985–6001.

[15] Duan, R. Hypocoercivity of linear degenerately dissipative kinetic equations. Nonlinearity 24, 8 (Jun 2011), 2165–2189.
[16] Duvaut, G., and Lions, J.-L. Inequalities in mechanics and physics. Springer-Verlag, Berlin-New York, 1976. Translated

from the French by C. W. John, Grundlehren der Mathematischen Wissenschaften, 219.

[17] Escobedo, M., and Kavian, O. Variational problems related to self-similar solutions of the heat equation. Nonlinear
Anal. 11, 10 (1987), 1103–1133.

[18] Figalli, A. A geometric lower bound on Grad’s number. ESAIM Control Optim. Calc. Var. 15, 3 (2009), 569–575.

[19] Friedrichs, K. O. On the boundary-value problems of the theory of elasticity and Korn’s inequality. Ann. of Math. (2)
48 (1947), 441–471.

[20] Grad, H. On Boltzmann’s H-theorem. J. Soc. Indust. Appl. Math. 13 (1965), 259–277.

[21] Helffer, B., and Nier, F. Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians,
vol. 1862 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2005.
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