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Chapter 1. Introduction

1 QED and relativistic models in Quantum Chemistry

It is now well known, following many experimental and theoretical results,
that the use of ab initio relativistic calculations are mandatory if one is to
obtain an accurate description of heavy atoms and ions. This is true whether
one is considering highly charged ions, inner shells of neutral or quasi neutral
atoms or outer shells of very heavy atoms.

From a physics point of view, the natural formalism to treat such a system is
Quantum Electrodynamics (QED), the prototype of field theories. For recent
reviews of different aspects of QED in few electron ions see, e.g., [16,42,2].
Yet a direct calculation using only QED is impractical for atoms with more
than one electron because of the complexity of the calculation. This is due
to the slow rate of convergence of the so-called Ladder approximation (1/7),
that in non-relativistic theory amounts to a perturbation expansion using the
electron-electron interaction as a perturbation. The only known method to do
an accurate calculation is to attempt to treat to all orders the electron-electron
interaction, and reserve QED for radiative corrections (interaction of the elec-
tron with its own radiation field, creation of virtual electron-positron pairs).
The use of a naive approach however, taking a non-relativistic Hamiltonian
and replacing one-electron Schrodinger Hamiltonian by Dirac Hamiltonian
fails. This approach does not take into account one of the two main features
of relativity: the possibility of particle creation, and leads to severe problems
as noted already in Ref. [3] and studied in [52]. This theory, for example, does
not preserve charge conservation in intermediate states and leads to diver-
gence already in the second-order of perturbation expansion. The only way to
derive a proper relativistic many-electron Hamiltonian is to start from QED.
The Hamiltonian of a N electron system can be written formally

H = Hy[Ne™,0e] + Hi[(N + 1)e”, 1e] + Ho[(N + 2)e™,2e] + -+ (1.1)

Keeping only the first term, the so-called “no-pair” Hamiltonian reads

H" = Jg: hD (TZ) + ZZ/{U , (12)

i=1 i<j

where (in atomic units) hp (r;) = ca - p + fmc* + Vy (r;) is a one-electron
Dirac Hamiltonian in a suitable classical central potential Vy, that represents
the interaction of the electron with the atomic nucleus. The speed of light is



denoted by ¢, a, 3 are the Dirac matrices, with

I 0 0 o;
ﬁ = y QG = ) (1 3)
0 -1 o; 0
01 0 —1 10
g1 = , Og9 = , 03 = ) (14)
10 1 0 0 -1
p=—1V,;and
U= A;’A;’V (|ri —7j) A;’A;r (1.5)

where A is the positive spectral projection operator of a one-particle Hamil-
tonian similar to hp(r;) [i.e. Aj ¢ = ¢ for all eigenfunctions ¢ of hp(r;) cor-
responding to positive eigenvalues]. Usually the potential used in this Hamil-
tonian is the direct Dirac-Fock potential (see Sec. 3). Moreover,

1 (S TR

V(=)= - S (L 99 (o) -

ij Tij Tij Tij
cos (wj;j rij/c) — 1
+c (o Vy) (o - V) (w“;”/c) (1.6)

is the electron-electron interaction of order 1 in o = 1/¢ ~ 1/137, the fine
structure constant. This expression is in Coulomb gauge, and is derived di-
rectly from QED. Here r;; = |r; — ;| is the inter-electronic distance, w;; is the
energy of the photon exchanged between the electron ¢ and 7, which usually
reduces to €; — €; where the ¢; are the one-electron energies in the problem
under consideration (for exemple diagonal Lagrange multipliers in the case
of Dirac-Fock). Note that in (1.6) gradient operators act only on the 7;; and
not on the following wave functions. The presence of the w;; in this expres-
sion originates from the multi-time nature of the relativistic problem due to
the finiteness of the speed of light. From this interaction, one can deduce the
Breit operator, that contains retardation only to second order in 1/¢, in which
the w;; can be eliminated by use of commutation relations between r and the
one-particle Dirac Hamiltonian. This operator can then be readily used in the
evaluation of correlation, while the higher-order in 1/c¢ in the interaction (1.6)
can only be evaluated perturbatively.

Finding bound states of (1.2) is difficult and requires approximations. The dif-
ferent methods of solution are inspired from the non-relativistic problem. The
three main categories of methods are the Relativistic Many-Body perturbation



theory (RMBPT, see, e.g., [41] for the non-relativistic case), the Relativistic
Random Phase Approximation (RRPA, see, e.g., [33]), which has been heavily
used for evaluation of photoionization cross-sections, and Multiconfiguration
Dirac-Fock (MCDF). The RMBPT method requires the use of basis sets to
sum over intermediate states. The MCDF method is a variational method.

2 Relativistic Many-Body perturbation theory and RRPA

In its most general version, the RMBPT method starts from a multidimen-
tional model space and uses Rayleigh-Schrodinger perturbation theory. The
concept of model space is mandatory if there are several levels of quasi-
degenerate energy as in the ground state of Be-like ions (152252 1Sy and 1522p* 1S
are very close in energy, leading to very strong intra-shell correlation). In that
case one gets would get very bad convergence of the perturbation expansion,
because of the near-zero energy denominators, if building the perturbation
theory on a single level.

Following [41] we separate the Hamiltonian in a sum

We assume that we know a set of N eigenfunctions W0 of eigenenergies E°
which are all the solutions obtained by diagonalizing H, on a subspace P
(these solutions can be obtained with the Dirac-Fock method in a suitable
average potential). The unperturbed Hamiltonian is then chosen as

N
HY = PyHyPy = 3" ED | 5) (W) (2.2)
a=1
where and P is the projector on P, defined by

Py = 2 00) (w5 (2.3)

We define the perturbation potential by
V = Hp — PyHyPy = Hr — HY', (2.4)
We also define Qg = 1— P, as the projector on the orthogonal space Q. We now

define the wave operator, which build the exact solution of the Hamiltonian
equation (2.1) from the ¥?

U, = QU (2.5)



so that
Hr¥, = E ¥y, (2.6)
with the property
PQPy =P, (2.7)

The ezact eigenenergies can be obtained by the application of the Model-space
wave functions on the effective Hamiltonian

Heff :P()HTQPO :P()HUP[]—'—PUVQPO :HéV+POVQPU7 (28)

using Eqs. (2.2) and (2.7), P} = P, and the fact that H}' and P, com-
mute. This operator, acting on the unperturbed wave functions give the exact
eigenenergies:

HgV? = E,0° (2.9)

The wave operator obeys the generalized Bloch equation

[Q, HU] PU - VQPU - QPUVQPU (210)
using Eq. (2.7). This can be expanded in a series
Q=1+00 40 ... (2.11)

Equations (2.10) and (2.11) leads to the sequence of equations

[Q(l), H0j| PO = QOVPO (212)
(@, By Bi=QuVQW R, — QW RV R, (2.13)

The RRPA method is based on the solution of the Hamiltonian (1.2) subjected
to a time-dependant perturbation (like a classical electromagnetic radiation of
known frequency). This time-dependant Dirac-Fock equation is solved over a
set, of solutions of the unperturbed problem, leading to a set of time-dependant
mixing coefficients in the usual fashion of time-dependant perturbation theory.
The phases of those coefficients are approximated (leading to the name “Ran-
dom Phase”), leading to differential equations very similar to the Dirac-Fock
ones. This method include to all orders some classes of correlation contribution
that can be easily also evaluated in the framework of RMBPT. It is mostly
used for the ground state of atoms and ions to study photoionization. It is
more difficult to use for excited states.

This paper is mostly devoted to the MCDF method for atoms and molecules,
and to preliminary results for the linear Dirac operator.



3 The MCDF wave function

We first start by describing shortly the formalism used to build the Dirac-Fock
solutions for a spherically-symmetric system like an isolated atom.

If we define the angular momentum operators L = r A p, J = L + 7, the
parity Il as GP, then the total wave function is expressed in term of con-
figuration state functions (CSF) as antisymmetric products of one-electron
wave functions so that they are eigenvalues of the parity II, the total angular
momentum J and its projection M. The label v stands for all other values
(angular momentum recoupling scheme, seniority numbers, ...) necessary to
define unambiguously the CSF. For a N-electron system, a CSF is thus a
linear combination of Slater determinants:

Y (ry) - B (r)
WILJM > =Y d! : : : (3.1)
=1 ) .
DY (rn) - R (rw)

all of them with the same II and M values while the d;’s are determined by
the requirement that the CSF is an eigenstate of J2.

The total MCDF wave function is constructed as a superposition of CSF'’s,
ie.
NCF

W(IITM) = > ¢, [VIITM >, (3.2)

v=1

where NC'F' is the number of configurations and the ¢, are called the config-
urations mixing coefficients.

The MCDF method has two variants. In one variant, one uses numerical or
analytic basis sets to construct the CSF. In the other one, direct numerical
solution of the MCDEF equation is used. Both methods have been used in
atomic and molecular physics. The numerical MCDF method is better suited
for small systems, while analytic basis set techniques are better suited for cases
with millions of determinants.

This chapter is organized as follows. In Sec. 2, different choices of basis sets for
the Dirac equation are presented. In Sec. 3, the MCDF equations are presented,
and numerical techniques adapted to the numerical MCDF method in atoms
are described. In Sec. 4, we deal with techniques for the numerical MCDF
method in molecules.



Chapter 2. Linear Dirac equations

4 Properties of the linear Dirac operator

The unboundedness from below of the Dirac operator
Hy=—ica-V +mcj3 (4.1)

creates important difficulties when trying to find its eigenvalues. The so-called
variational collapse is indeed related to this unboundedness property. On the
other hand, finite dimensional approximations to this problem may lead to
finding spurious solutions: some eigenvalues of the finite dimensional prob-
lem do not approach the eigenvalues of the Dirac operator and destroy the
monotonicity of the approximated eigenvalues with respect to the basis di-
mension. These problems seem to be much more acute in molecular than in
atomic computations, but they are already present in one-electron systems. In
this section we address this difficulty for one-electron systems by describing
various methods used to deal with this problem. Well-behaved approximation
methods should also provide good nonrelativistic limits, that is, variational
problems whose eigenvalues and eigenfunctions converge well to those of the
corresponding nonrelativistic Schrodinger Hamiltonian.

A way often used to find good numerical approximations of eigenvalues of an
operator A consists in projecting the eigenvalue equation

Ax =z (4.2)

over a well chosen finite dimensional space Xy of dimension N, in order to
find an approximation (Ay,zy) satisfying

ANJIN:ANIL'N, (43)

such that (Ay,zx) converges to (A, z) as N — oo. Then one looks for the
eigenvalues of the NV x N matrix Ay and these eigenvalues will converge either
to eigenvalues of A or to points in the essential spectrum of A. As N increases,
the limit set of the eigenvalues of Ay is the spectrum of A.

The difficulty with the Dirac operator is that for most physically interest-
ing potentials V', the spectrum of Hy + V is made of its essential spectrum
(—o0, —mc?] U [mc?, +00) and a discrete set of eigenvalues lying in the gap
(—mc?, mc?). Hence, the choice of the finite dimensional space, or equiva-
lently, of the finite basis set, is fundamental if we want to ensure that for
some N large, the eigenvalues of (Hy + V')y, or at least some of them, will
be approximations of the eigenvalues of Hy + V in the gap (—mc?, mc?). The



question of how to choose a good basis set has been addressed in many pa-
pers, among which [11,12,22,21,32,35,38], that we will describe with further
details in Sections 5 and 6 below. In particular, Section 6 is devoted to the
description of numerical techniques based either on discretization or on B-
Splines, and shows that with appropriate boundary conditions one can avoid
the variational collapse.

When the operator A is bounded from below, it is often possible to characterize
its spectrum by variational methods, for instance by looking for critical values
of the Rayleigh quotient

Q(x) := (4.4)

over the domain of A. More concretely, when A is bounded from below, under
appropriate assumptions, its ground state energy can be found by minimizing
the above Rayleigh quotient. However, this cannot be done directly in the
context of the Dirac operator, since it is unbounded from below (and also
from above). A large number of works have been devoted to the variational
resolution of this problem in view of the Dirac operator. Most of them use
the approximation of an effective Hamiltonian which is bounded from below.
The idea hidden behind this kind of techniques is that there is no explicit
way of diagonalizing the Dirac Hamiltonian H + V', but this can be done at
an abstract level. The diagonalized operator is then approximated via a finite
expansion or an iterative procedure. These methods are therefore perturbative
and contain an approximation at the operator level. They will be referred to as
perturbation theories and effective Hamiltonian methods and will be described
below (see [11,35,21,32] and Section 7 for more details).

Other variational techniques are based on a correspondence between the eigen-
values of A and those of T'(A), for some operator function 7', like the inverse
function Tz = 27" (see [29]) or the function Tz = z? (see [56,1]). Finally,
some authors solve the variational problem in a subspace of the domain in
which the operator is bounded from below and ’avoids’ the negative contin-
uum. Section 8 will be devoted to these more direct variational approaches,
based on either linear or nonlinear constraints.

Before going into the details of the computational methods, let us start with

some notations and preliminary considerations. For any v with values in C*, if

we write ¢ = (‘p) , with ¢, y taking values in @2, then the eigenvalue equation
X

Ho = (Hy + V)= A (4.5)



is equivalent to the following system:

Rx = A=mc?=V) p,

(4.6)
Rp = A+me*=V) x,

with R=ic (5.6) :Z§:1 icoj %. Here 0}, j = 1,2, 3, are the Pauli matrices.
J
As long as A\+mc?—V #0, the system (4.6) can be written as

R R
H“w:=R<—(’0>+V90=u<p, ng—gp (4.7)
w w

where g, = p+ 2mc* —V and = X — me®. Note that the Hamiltonian
operator H" is eigenvalue dependent. Reducing the 4-component spinor v to
an equation for the 2-spinor ¢ is often called partitioning. Let us immediately
notice that at least formally, the partitioned equation (4.7) converges to its
nonrelativistic counterpart

1
——A = . 4.
5 At Ve=pe (4.8)

(see for instance [58]). For this reason, but also because the principal part of the
second order operator in (4.7) is semibounded for not too large potentials V|
the partitioned equation has been extensively studied for finding eigenvalues
of linear Dirac operators.

To end these preliminary considerations on linear Dirac equations, note that
in the case of rotationally invariant potentials, the solutions can be put in the
form

sl .PH(T)xm(G,w) ‘ (49)
"\ Qu(r) X—rm (0, )

The dependence on the angular coordinates is contained in the 2-spinors
X+rm (0, @), which are eigenfunctions of the angular momentum operators .J,
its third component J, (with eigenvalues j(j + 1) and m respectively) and of
parity. On the other hand, the radial dependence is contained in the functions
f and g which are called the upper and lower radial components of 1.

In the ansatz defined in (4.9), for a given k = £(j + 3), with j = ¢ F 3,
[=0,1,..., the eigenvalue equation (4.5) is equivalent to

(HF +V)® =\, (4.10)



S L o el (4.11)
" " c (d% + lij) —mc? ’ .

o

(S"‘) being a 2-vector with two scalar real components.

5 Finite basis set approaches

The choice of finite dimensional spaces is essential for the discretization of
the operator and the approximation of its eigenvalues. The presence of the
negative continuum makes this task difficult in the case of the Dirac operator.
The basic criterium to decide whether a particular space, or a generating basis
set, is good, is to check that the approximated eigenvalues found are either
negative and lying in the negative continuum or positive. In this case, if they
are below the positive continuum, they are approximations of the discrete
exact (positive) eigenvalues. Many attempts to construct finite basis sets can
be found in the litterature.

In [11], Drake and Goldman introduced the so-called Slater type orbitals

(STO):
d(r)=r""le " f;r [ai (é) + b; (?)] , (5.1)

with a particular choice of v and v which depends on x and V. They showed
numerical evidence that such a finite basis satisfies the above properties in the
case of hydrogen-like atoms. Note that the STOs exhibit the same behavior
near 0 and at oo as the exact eigenfunctions. The properties of STO basis
sets are made more explicit in [21], where STO basis sets are replaced by
orthonormal sets of Laguerre polynomials. The main drawback of this approach
is that some of the eigenvalues of the approximated matrix are spurious roots
which do not approximate any of the exact eigenvalues.

Another way to construct basis sets with good properties consists in imposing
the so-called kinetic balance condition relating the upper and lower compo-
nents of the functions in the basis set. See for instance [35].

Other types of basis sets proposed in the litterature include those generated by
B-splines (see [32]), which have very good properties since, in this approach,
the matrices are very sparse: only a finite number (depending on the degree
of the splines) of diagonal lines are nonzero. This kind of basis sets has been
widely used in atomic and molecular computations (see Sec. 6).

10



The choice of a good basis set can be quite effective in some computations,
but as it appears clearly in the litterature that we quote, there is very often a
risk of finding spurious roots or of variational collapse. In the next subsection
we give some more precise exemples of how to use particular basis sets in the
context of Dirac operators.

6 Numerical basis sets

This section is devoted to the special case of basis sets whose elements are
computed numerically.

Discretisation method

The Goéteborg group has developed an efficient technique to obtain basis sets
for the Dirac equation [47]. The Dirac equation is discretized and solved on a
grid. The atom is placed in a spherical box, large enough not to disturb the
bound state wave function considered. The method provides a finite number of
orbitals which is complete over the discretized space [48], and resemble lattice
gauge field calculation [57]. The method enables to eliminate spurious states
and preserves the Hermiticity of the discretized Hamiltonian. The appearance
of spurious states in a discretized method, is traced back to the “fermion
doubling”, first encoutered in gauge-field lattice calculations [34]. On a lat-
tice of dimension (D + 1) (D spatial and one time dimensions), an equation
for a massless fermion will describe not one but 22 ones if no precaution is
taken [51].

As an example, let us consider a one-dimensional Dirac equation for a free
fermion

mes —C g, /(@) = (e +mc?) /@) : (6.1)
c% —mc? 9(x) 9(x)

The derivatives are approximated over the latice points using

" fi+1 - fi—l
fi = o (6.2)

where h is the space between adjacent lattice sites. Eliminating the large
component in (6.1), one gets the following equation

L (fixa—=2fi + fieo €
—%< e >:f(1+m>f“ (6.3)

in which the left hand side is the kinetic energy operator p2/2m acting on f
at the latice point 7. Yet this second order derivative does not connect even

11



and odd lattice sites. The highest energy solution over the lattice is the one
changing sign at each site so that

Rfiar—fiaRfir—fipnr- (6.4)

Using the expression (6.3) acting on this solution gives the same results as if
it had no nodes. A high-energy eigenvector thus appears as a spurious state in
the low energy part of the spectrum. For low-order derivative two equivalent
ways can be used [51,47]. One is to use forward derivatives for f and backward
derivatives for g,

fi+1 — fi 9i — gi—1
fz h ) gz h ( )

The other consists in defining the large and small components on alternating
sites on the lattice.

o fiisgico fic1 G fi+1 Giv2 -, (6-6)

with h being the separation between g; 5 and g;. In this case the derivative is
expressed as

fir1 = [i 9i — 9j—1
I ) J

withi=2n—1,57=2n,n=1,2,...,N. These methods reduce to the same
second-order equation [51].

Salomonson and Oster use a more accurate six-point formula

fl(z) = ﬁl—gf <x—gh> +125f <x—%h> — 2250 f (m—%h)

1
4 2250f (a: + §h> _125f (a: + ;h>
5)
Lof <x+§h>] +o(n). (6.8)
This six-point formula combined with (6.6) provides a spurious-state-free solu-

tion, while using the same lattice for f and ¢ and a forward-backward deriva-
tive scheme does not work.

In the spherical case, one needs to use a logarithmic lattice to get a good
description of the wave function. The Hermiticity of the Hamiltonian must be
preserved by doing the variable change

y(r) — % y(x), x=log(r). (6.9)

12



The corresponding Dirac equation is

V(r) (G —veve) | (1@ ) _ (7@ 519
(FhvrtEy) Vi) -me 9(x) 9(x)

Since the large and small component are defined on different lattices, one needs
interpolation formulas to express f(x)/+/r and g(z)//r in the k term.

The discretization finally provides a 2N x 2N symmetric eigenvalue problem

A D+ 'K F F
= ¢ , (6.11)
D+K B G G
with (F,G) = (f1, f3,---» fan—1, 92, G4, - - - , gan)- For a point nucleus, the sub-

matrices are A; = —Z/r; and Bj; = —2mc® — Z/rj, i = 2n— 1, j = 2n,
n = 1,2,...,N. With the 6 points interpollation and derivation formulas
used in [47], one obtains

2250 2250 125 9
VT2r1  \/TaT3 VT2Ts  \/T2r7
125 2250 2250 _ 125 9 0
VTary V/Tars V/Tars VTrart V/Targ
__ ¢ 9 125 2250 2250 125 9 |, (612
1920h VTETT  \/T6T3 VT6Ts  /TeTT VTeT9  /TeT11
0 __29 125 2250 2250 125 .
VT8T3  \/T8T5 \T8T7T  \/T8T9 V8T
and
150 150 25 3 0
r2ry r2r3 r2rs rary
25 150 150 25 3 0
VTar1  \/rars \/Tars Vrarr  \/Targ
__k 3 925 150 150 25 3 (6.13)
256h VT6T1 VT6rs  \/TeTs \VTer7 VT6T9  \/T6T11
0 3 925 150 150 25
T8T3 T8T5 T8T7 T8T9 T8T11

Equation (6.11) is symmetric even though K and D are not. In the upper left
corner of D, use has been made of the approximation

[7+F5—2(Za)2] y+3/2
2+ 1) r32 (6.14)

2y + K — (ZQ)Q]T7+3/2

o 7 F1/2
fr)~r + Za?(2y+1)

with v = /k? — (Z«)?, and the equivalent expression for g. To avoid non-
linear terms in the eigensystem (6.11), only the contribution independent of

13



€ has been kept. This is a good approximation for bound states for which
€ K mc?.

Numerical basis sets based on B-splines

B-splines have been used [32] to provide numerically efficient basis sets. A
knot sequence t; is used for the radial coordinate, on which B-spline of order &
provide a complete basis for piecewise polynomials of order £ — 1. This radial
coordinate extends to a distance R from the origin. The solutions of the Dirac
equation are expressed as linear combinations of B-splines. A Galerkin method
is employed to obtain the solution. The Dirac equation is derived from an
action principle 6.5 = 0, with

—%6 OR [PH(T)2 + QH(T)Z] dr (6.15)

using the notations of (4.9) (note that in this representation the gap lies be-
tween —2mc? and 0), to which suitable boundary conditions are added through

2

[Pu(R)? — Qu(R)?] + £P,(0)? — £ P, (0)Qu(0) for s < 0,
[Pu(R)? — Qu(R)?] + 2P4(0)% — $Px(0)Qx(0) for s > 0 .

S = (6.16)

L (eI (e}

From the point of view of the variational principle, € is a Lagrange multiplier
introduced to ensure that the solutions of the Dirac equation are normalized.
The boundary constraint (6.16) is designed to avoid a hard boundary at the
box radius R, following the idea behind the MIT bag model for quark con-
finement, and provides P,(R) = Q.(R). Forcing P.(R) = Q.(R) = 0 would
amount to introduce an infinite potential at the boundary and possibly leads
to the Klein paradox. Other choices of boundary conditions are possible. This
particular choice avoids the appearance of spurious solutions. Expanding the
radial wave function as

PK,(T) = ZpiBi,k(T) ) QK,(T) = ZQiBi,k(T) ) (6-17)
i=1 i=1
the variational principle reduces to
d(S+ 95 0 d(S+ 95

=0 =1,2,...,n. 6.18
b, dg T (0:15)

This leads to a 2n x 2n symmetric, generalized eigenvalue equation

14



Av =¢€Bv, (6.19)

where v = (p1,P2, .-+ s Pn, @1, Q25 - - - 1 )5

A= 0 e|(0)= ()] + A (6.20)
—c [(D) + (f)} (V) = 2mc*(C)
and
g [0 (6.21)
0 (C)

The 2n x 2n matrix A" comes from the boundary term. The n x n matrix (C')
is the B-spline overlap matrix defined by

(©) = [ Bua(r)Bis(r) dr (6.22)

(D) comes from the differential operator

dB,
J’ij(r) dr (6.23)

@MZ/&AN g

(V) is the potential term

(V)i = [ BulVaBia(r) dr - and (%) = [ Biu(r) =Bu(r) dr
] (6.24)

Diagonalization of (6.20) provides 2n eigenvalues and eigenfunctions, n of
which have energies below —2mc?, a few correspond to bound states (typically
5 to 6 for £ =7 to 9) and the rest belongs to the positive energy continuum.

7 Perturbation theory and effective Hamiltonians

An alternative way to find the eigenvalues of the unbounded relativistic op-
erator H consists in looking for a so-called effective Hamiltonian H", which
is semi-bounded, such that both Hamiltonians have common eigenvalues on
an interval above the negative continuous spectrum. Such a Hamiltonian H*T
cannot usually be found in an explicit way, but can be viewed as the limit of
an iterative procedure. This leads to families of Hamiltonians which approach
the effective Hamiltonian and yield approximated eigenvalues for H.

15



One of the most popular procedure in this direction is due to Foldy and

Wouthuysen [19], whose main idea was to apply a unitary transformation
Q to Hy + V such that

H™W 0

O(Hy+V)Q=H"" =
O HIW

(7.1)

so that electronic and positronic states are decoupled: electrons (resp. posi-
trons) would be described by the eigenfunctions of HE" (resp. HEW)). More-
over, the Hamiltonians H{" — me? (resp. HY + mc?) are bounded from
below (resp. above) and have correct nonrelativistic limits. Although this pro-
cedure looks very promising, the problem is that €2 is unknown in closed form,
and so there is no way of diagonalizing Hy + V' in an explicit way. However,
approximations of €2, and therefore of HW, can be constructed either by

writing a formal series expansion for H{" in the perturbation parameter ¢=2:

+00
H{Y =% ¢ HS | (7.2)
k=0

and cutting it at level £ > 0, or by approaching it by an iterative procedure.

In general one identifies the effective Hamiltonian H°T as a solution to a
nonlinear equation H®T = f(H®T)  which can be solved approximately in an
iterative way. By instance, one can produce an equation like the above one
by “eliminating” the lower component x of the spinor as in (4.7), that is, by
partitioning.

Many proposals of effective Hamiltonians for the Dirac operator can be found
in the litterature. Some are Hermitian, some are not, some act on 4 component
spinors, others on 2-spinors. A good review about various approaches to this
problem and the corresponding difficulties has been written by W. Kutzelnigg
[37] (see also [36,45,46]). An important difficulty arising in this context is
that most of the proposed effective Hamiltonians are quite nice when the
potential V' is regular, but in the case of the Coulomb potential they contain
very singular terms, which are not even well defined near the nucleus. These
serious singularities are avoided by a method used by Chang, Pélissier and
Durand [4] (see also [13,14]), where it is proposed to use (2mc?*—V)~! as an
expansion parameter in the formal series defining H*", instead of ¢~2. They
obtain a 2-component Pauli-like Hamiltonian which is bounded from below,
contains only well defined terms and approaches H. Similar ideas have been
used by Heully et al. [28] and by Van Lenthe et al. [39,40]. The latter have
also made a systematic numerical analysis of this method in self-consistent
calculations for the uranium atom.
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8 Direct variational approaches

To begin with, let us mention two variational methods based on nonlinear
transformations of the Hamiltonian. Wallmeier and Kutzelnigg in [56] look
for eigenvalues of the squared Hamiltonian (Hy + V)?. The practical diffi-
culty arises from the need to compute complicated matrix representations.
Hill and Krautkauser [29] use the Rayleigh-Ritz variational principle applied
to the inverse of the Dirac Hamiltonian, 1/H. A difficulty arises here in the
computation of the matrix elements for the inverse operator. This is avoided
by working in the special set of test functions defined by those which are in
the image by H of a regular set of spinors. The use of these two methods can
be useful in some cases, but not when the eigenvalues become close to 0.

As already noticed, the eigenvalues of the operator Hy+ V' are critical points
of the Rayleigh quotient

(Ho + V)9, ¢)
(¥, )

in the domain of Hy + V. We are now going to describe other more so-
phisticated variational approaches yielding exact eigenvalues of Hy+ V . The
particular structure of the spectrum of Hj clearly shows that eigenvalues of
Hy +V lying in the gap of the essential spectrum should be given by some
kind of min-maz approach. This had been mentioned in several papers dealing
with numerical computations of Dirac eigenvalues, before it was proved in a
series of papers: [18,26,8,25,9]). Basically, in all those papers, it was shown
that under appropriate assumptions on the potential V', the eigenvalues are
indeed characterized as a sequence of min-max values defined for )y on well
chosen sets. A theorem in [9] proves that for a large class of potentials V,
the ground state energy of Hy + V is given by the smallest A in the gap
[—mc?, mc?] such that there exists ¢ satisfying

)‘/]Rg lo|? dx:/]Rg (% +(1+V) |<,0|2> dx (8.2)

Qv(Y) == (8.1)

and the corresponding eigenfunction is the spinor function

) = (_Z, h) (8.3)

1-V4+A

Note that the idea to build a semibounded energy functional had already been
introduced by Bayliss and Peel [1] in another context. It is closely related to
previous works of Datta and Deviah [5], and Talman [54], where a particular
min-max procedure for the Rayleigh quotient )y is proposed without proof.
We will not give here further details on these theoretical aspects (for tractable
numerical applications, see below).
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An alternative variational method has been proposed by Dolbeault, Esteban
and Séré in [8]. It is based on rigorous results proving that for a very large
class of potentials (including all those relevant in atomic models), the ground
state of Hy+ V' can be found by a minimization problem posed in a class of
functions defined by a nonlinear constraint. The main idea is to eliminate the
lower component of the spinor and solve a minimization problem for the upper
one. With the notations of the introduction, ¢ = (i) is an eigenfunction of
Hy,+V if and only if (4.7) takes place. The first equation in (4.7) is an elliptic
second order equation for the upper component ¢, while the second part of
(4.7) gives the lower component x as a function of ¢ and the eigenvalue A. The
dependence of H* on A = p + mc? makes this problem nonlinear, since \ is
still to be found, but the difficulty of finding the unitary transformation 2 in
the Foldy-Wouthuysen approach is now replaced by a much simpler problem.

We may reformulate the question as follows. Let A(\) be the operator defined
by the quadratic form acting on 2-spinors:

O /]R3 (% +(1=A+V) |g0|2> dz =: (p, A(N)p) (8.4)

and consider its lowest eigenvalue, (). Because of the monotonicity with
respect to A, there exists at most one A for which p;(A) = 0. This A is the
ground state level.

An algorithm to numerically solve the above problem has been proposed in
[10]. The idea consists in discretizing Eq. (8.2) in a finite dimensional space
E,, of dimension n of 2-spinor functions. The discretized version of (8.4) is

ANz -y =0, (8.5)

where z,, € E,, and A™(\) is a A\-dependent n x n matrix. If E, is generated
by a basis set {¢;,...pn}, the entries of the matrix A"()\) are the numbers

/]R3 (((U V)i, (0-V) SOJ') F(1=A+V) (g Spj)) dzx . (8.6)

1-V+2A

The ground state energy will then be approached from above by the unique A
for which the first eigenvalue of A™()\) is zero. This method has been tested
on a basis of Hermite polynomials (see [10] for some numerical results). More
efficient computations have been made recently on radially symmetric config-
urations with B-splines basis sets, involving very sparse matrices. Approxi-
mations from above of the excited levels can also be computed by requiring
successively that the second, third,... eigenvalues of A™(\) are equal to zero.
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Chapter 3. The MCDF method for atoms

9 The Muticonfiguration Dirac-Fock (MCDF) method

The MCDF equations are obtained from (1.2) by a variational principle. The
energy functional is written

< VILJM|H™|yILJM >

Byt =
T < WILIM||WILIM >

(9.1)

A Hamiltonian matrix which provides the mixing coefficients by diagonaliza-
tion is obtained from (9.1) with the help of

0
a—CVEtOt - 0 ) (92)

and a set of integro-differential equations for the radial wave functions Py (r)
and .(r) is obtained from the functional derivatives

0 _
5p,;(,«)Etot =0 ) (93)
3Qn(r) Etot =0.

One assumes the orthogonality condition (restricted Dirac-Fock)

| Pa)Po(r) + Qa(r) @ ()] dr = b (94)

in order to make the angular calculations possible. Equation (9.3) then leads
to the inhomogeneous Dirac equation for a given orbital A

d%+“7A —%—i—aVA(T) Pu(r) Qp(r) N Xo,(r)

—aVa(r) 4 _ k4 Qa(r) B \—Pg(r) —Xp,(r)
(9.5)

where V) is the sum of the nuclear potential and the direct Coulomb potential,
while the exchange terms Xp, and Xg, include all the two-electron interac-
tions except for the direct Coulomb instantaneous repulsion. The constants
€a,p are Lagrange parameters used to enforce the orthogonality constraints of
(9.4) and thus the summation over B runs only for orbitals with kg = k4.
The exchange terms can be very large if the orbital A has a small effective
occupation (the exchange term is a sum of exchange potentials divided by the
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effective occupation of the orbitals). This effective occupation is the sum

NCF
04 = Z ciqff‘) (9.6)
i=1

where ¢{4) is the number of electrons in the orbital A in the vth configuration.

The numerical MCDF methods are based on a fixed-point method, or to be
precise on an iteration scheme which provides a self-consistent field (SCF)
state in a way very similar to the method which is used to solve the Hartree-
Fock model. Initial wave functions must be chosen, e.g., hydrogenic wave func-
tions, wave functions in a Thomas-Fermi potential or wave functions already
optimized with a smaller set of configurations. One then builds the Hamilto-
nian matrix (9.2) and obtains the mixing coefficients. Those coefficients and
the initial wave functions enter the direct and exchange potential in (9.5),
which become normal differential equations, and are solved numerically for
each orbital. A new set of potential terms is then evaluated until all the wave
functions are stable to a given accuracy (~ 1072 in the first cycle of diagonal-
ization to ~ 1076 at the last cycle, at the point where the largest variation
occurs). A new Hamiltonian matrix is then built and new mixing coefficients
are calculated. This process is repeated until convergence is reached. As it is
a highly nonlinear process, this can be very tricky, and trial and error on the
initial conditions is often required when many configuration and correlation
orbitals (i.e. orbitals with very small effective occupations) are involved. All
those calculations are done using direct numerical solutions of the MCDF dif-
ferential equations (9.5), which has the advantage of providing very accurate
results with relatively limited set of configurations, while MCDF methods us-
ing basis set require orders of magnitude more configurations to achieve similar
accuracies.

Explicit expressions for V4, Xp, and X, can be found in [23,24,6]. All po-
tentials can be expressed in term of the functions

1 T
k _ k
Zi;(@) = ﬁ/o dr pij(r)r*, (9.7)
V() = [ dr pylr) o i [ ar 290 93)
AS A Pij . RS :

where p;;(r) = P;(r)P;(r)+Q;(r)Q;(r) for the Coulomb part of the interaction,
to which are added terms with p;;(r) = P;(r)Q;(r) or p;;(r) = Qi(r)P;(r) when
Breit retardation is included in the self-consistent field process. These potential
terms can be obtained very efficiently numerically by solving a second-order
differential equation (Poisson equation), as a set of two first-order differential
equations, with the predictor-corrector method prensented in Sec. 10.
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10 Numerical solution of the inhomogeneous Dirac-Fock radial equa-
tions

In order to increase the numerical stability, the direct numerical computation
of (9.5) is done by shooting techniques. First one chooses a change of variables
to make the method more efficient because bound orbitals exhibit a rapid
variation near the origin and exponential decay at large distances. One can
choose either

t =r1o log(r) or t =1y log(r)+br. (10.1)

The first choice leads to a pure exponential grid, while the second leads to
an exponential grid at short distances and to a linear grid at infinity, and is
better suited to represent, e.g., Rydberg states. One then takes a linear grid
in the new variable ¢, ¢, = nh with h ranging from 0.02 to 0.05. In order to
provide the few values needed to start the numerical integration at r = 0, and
to have accurate integrals (for evaluation of the norm for exemple) the wave
function is represented by its series expansion at the origin, which is of the
form

P.r)y=1rMpy+pir+...),

(10.2)
QH(T) = 7”/\((]0 +qr+.. ) R

where A\ = /k? — (Za)? if Vin(r) = —Z/r is a pure Coulomb potential and

A = |k| if Vx(r) represents the potential of a finite charge distribution. In
this case if Kk > 0, pg =p2 =...=0and ¢t = ¢3 = ... =0, and if K < 0,
pr=p3=...=0, g=q=...=0.

Predictor-Corrector Methods.

In the case of the atomic problem, the use of fancy techniques like adapta-
tive grids is not recommended, as it is much more efficient to tabulate all
wave functions over the same grid, particularly if other properties like transi-
tion probabilities are calculated as well. One then uses well proven differential
equation solving techniques like predictor-corrector methods and finite differ-
ence schemes. The expansion (10.2) is substituted into the differential equation
(9.5) to obtain the coefficients p; and ¢;, for i > 0 . These coefficients are used
to generate values for the wave function at the few first n points of the grid,
with an arbitrary value of py. Then the value of the function at the next
grid point is obtained using the differential equation solver. At infinity the
same procedure is used. An exponential approximation of the wave function
is made, and the same differential equation solver is used downward to some
matching point r,,, usually chosen close to the classical turning point in the
potential V4 (7). In the predictor-corrector technique, an approximate value of
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the function at the mesh point n 4+ 1 is predicted from the known values at
the preceding n points. This estimate is inserted in the differential equation
to obtain the derivative that in turn is used to correct the first estimate, then
the final value may be taken as a linear combination of the predicted and
corrected values to increase the accuracy. As an example we consider the five
points Adams’ method that has been widely selected because of its stability
properties [43]. The predicted, corrected and final values are given respectively
by:

Dot =y + (19014, — 27744/ + 2616y, _, — 1274y, _, + 2514/,_,)/720
Cny1 = Yn + (251p),,, + 646y, — 264y, | + 106y, , — 19y, 3)/720,(10.3)
Ynt1 = (475¢n4 + 2Tppy1) /502,

where p’ and 3 stand for the derivatives with respect to the tabulation variable.
The linear combination for the final value is defined as to cancel the term
of order h®, h being the constant interval step of the mesh. In the above
equations, y represents either the large or small component of the radial wave
function.

Since one starts with a somewhat arbitrary energy and slope at the origin,
the components of the wave function obtained by the preceding method are
not continuous. A strategy must be devised to obtain the real eigenenergy and
slope at the origin from the numerical solution. In the case of an homogeneous
equation, one can simply make the large component continuous by multiplying
the wave function by the ratio of the inward and outward values of the large
component at the matching point and then change the energy until the small
component is continuous, using the default in the norm. To first order the
correction to the eigenvalue is

_ cP(rm) [Q(ry) — Q(ry)]
Jo© [P?(u) + Q*(u)] du

(10.4)

where Q(r) are the solutions from each side of the matching point. One then
checks that the solution is the desired one by verifying that it has the right
number of nodes.

In the inhomogeneous case such a strategy cannot work. In order to obtain a
solution which is continuous everywhere, it is possible to proceed in the follow-
ing way. One uses the well known fact that the solution of an inhomogeneous
differential equation can be written as the sum of a particular solution of the
inhomogeneous equation and of the solution of the associated homogeneous
equation (in the present case the equation obtained by neglecting the exchange
potentials). Thus if P° and P! are respectively the outward and inward solu-
tions for the large component, one obtains, with the same labels for the small
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component:

[P+ aPyl =[P+ Py _ . [QF +aQ], ;= [QF +bQk] .

r—r r=Tm

(10.5)

where the subscripts I and H stand for the inhomogeneous and homogeneous
solutions. The coefficients a and b can be obtained from the differential equa-
tion. Obviously this continuous solution will not be normalized for an arbitrary
value of the diagonal parameter €4 4 of Eq.(9.5). The default in the norm is
then used to modify e4 4 until the proper eigenvalue is found. This method is
very accurate but not very efficient since it requires to solve both the inhomo-
geneous and the homogeneous equations to obtain a continuous solution.

Finite Differences Methods

As seen above, the predictor-corrector method has some disadvantages. In the
non-relativistic case the Numerov method associated with tail correction [20]
provides directly a continuous approximation (the derivative remains discon-
tinuous until the eigenvalue is found). We consider now alternative methods
that easily allow to enforce the continuity of one of the two radial components.
Let us define the solution at point n+1 as:

Ynt1 = Yn + h(Yy, + Yii1) + An (10.6)

where A, is a difference correction given, in terms of central differences, by:

_ g L o
A, = ﬁé Ynvi + mé Ynyls (107)
with:
53yn+E =Yn+2 — 3Ynt+1 T 3Un — Yn—1,
01 = Ynts — Ytz + 10¥ns1 — 10Yn + 51 = Yos - (10.8)

Accurate solutions are required only when self-consistency is reached. Conse-
quently, the difference correction A, can be obtained at each iteration from
the wave functions of the previous iteration as it is done for the potential
terms. One can then design computationally efficient schemes [7]. We define

ay :1+"”~—2h%, un:Aﬁ—F%[T%Xﬁ?‘f‘TéﬂXﬁ?ﬂ] )
b, = —1+ %% , v, = AF +% {T;Xr}: +T;+1X5+1} ) (10.9)
gon:a%[ﬁn—vn]ﬁb, gn:gr;—i_gn’

where ' stands for dr/dt (to take into account the fact that the tabulation
variable ¢ is a function of r) and XP(@ = Xp, 0, + Y psa €a,5Ps(Qp). All
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the functions of r are evaluated using wave functions obtained at the previous
iteration. Then the system of algebraic equations:

an—l—lpn—i—l - gn—l—lQn-H + ann - gnQn =1Up ,
(anranJrl - bn+1Qn+1 + (pnpn - anQn =Up , (1010)

determines P, ; and @, if P, and @,, are known. For the outward integra-
tion, this system is solved step by step from near the origin to the matching
point after getting the solution at the first point by series expansion. For the
inward integration, an elimination process is used by expressing the solution
in the matrix form [M] (PQ) = (uv) with the matrix M given by:

—0m Pm+1 _bm+1
_Hm Qm+1 _9m+1
Omt1 —Umi1 Pmt2 —bmye

bm-i—l _gm-i-l Am4-2 _9m+2 .

cbv—g —On_2 any—1 Oy
PN-1 —AN-1 PN

by_1 —On_1 an

(10.11)
and the two column vectors (PQ) and (uv) defined as:
Qm Um — SOum
Pm+1 Um — mem
Qm+1 Um+1
Pm um
PQ)=| """ (w) = ! . (10.12)
Py UN-—2
QN-1 UN-1 +ONON
I Py | _UN—1+9NQN_

As displayed in Eq. (10.11) each row of the matrix M has at most four non-zero
elements. To solve this system of equations the matrix M is decomposed into
the product of two triangular matrices M = LT in which L is a lower matrix
with only three non-zero elements on each row and 7" an upper matrix with the
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same property. Introducing an intermediate vector (pg) it is possible to solve
L(pq) = (uwv) for m, m+1,..., N and then T(PQ) = (pq) for N, N—1, ..,
m. The last point of tabulation N is determined by the requirement that Py
should be lower than a specified small value when assuming Q5 = 0. Thus the
number of tabulation points of each orbital is determined automatically dur-
ing the self-consistency process. This elimination process produces, as written
here, a large component P that is continuous everywhere. The discontinuity of
the small component at the matching point r,, can then be used to adjust the
eigenvalue €4 4. In practice this method works very well for occupied orbitals
(i.e. orbitals with effective occupations at the Dirac-Fock level qu) =n,n
integer larger or equal to 1). Yet it is not sufficiently accurate for correlation
orbitals and leads to convergence instability. A good strategy [6] is thus to use
the accurate predictor-corrector method for the outward integration and the
finite differences method with the tail correction for the inward integration.
However the accuracy of the inward integration is increased by computing di-
rectly the difference correction (10.7) from the wave function being computed
rather than from the one from the previous iteration.

Diagonal Lagrange multipliers

One can use differential techniques, when the obtention of the eigenenergy €44
is difficult. Their evaluation proceeds as follows. One can obtain the first order
variation of the large component P with respect to a change Aes4 of one of
the off-diagonal Lagrange multipliers by substituting the development

oP
O€an

P (% +Acan) = P () + Acaa (10.13)

eaa=e% 4

(and the equivalent one for the small component @) into the differential equa-
tion (9.5). Defining

oP oQ

= , = , 10.14
pPaA Dean gAA ( )

leads to the new set of differential equations

d% + f4 —% + aVu(r) | [paa(r) ~ aean qaa(r) ‘o QRp(r)
—aVu(r) A qan(r) "~ \=paalr) —Pg(r)
(10.15)

which is very similar to (9.5), with the replacement of Xp, (1) (resp. Xg,) by
Py(r) (resp. @p(r)). This system can be solved in psa(r) and g44(r) by the
above techniques. With this solutions Aes4 can be calculated in first order
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from

1 — Jg" [Pa(r) Pp(r) + Qa(r)Qs(r)] dr
2 [5° [Paa(r)Ps(r) + qaa(r)Qp(r)]dr
Note that such relations could be established to provide the change in the

non-diagonal Lagrange multipliers € 45 as well, if one were to solve for several
orbitals of identical symmetry simultaneously.

AEAA ==

(10.16)

Off-diagonal Lagrange multipliers

The self-consistent process outlined in Section 3 requires the evaluation of
the off-diagonal Lagrange parameters to satisfy the orthonormality constraint
(9.4). As in the non-relativistic case, the off-diagonal Lagrange multiplier be-
tween closed! shells can be set to zero, which only amounts to perform a
unitary transformation in the subspace of the closed shells. If the generalized
occupation numbers o4 and op of two orbitals are different, one can use the
symmetry relation

€ABOA = €BAOR (10.17)

and (9.5) to obtain

€ap (0p — 04)

oB

- /0 S Walr) = V()] [Pa(r)Pa(r) + Qa(r)Qu(r)] dr
_é /0oo [XQA (r@Qp(r) — Xqu(r)Qa(r)
+Xp, (r)Pp(r) — Xp, (r)Pa(r)|dr. (10.18)

This equation shows that many terms will cancel out in the determination
of the Lagrange multipliers [e.g., the closed shell contribution to V4(r) and
Vp(r)] and thus provides an accurate method to calculate them provided one
retains only the non-zero contributions. If (op — 04) < 1, however, one must
use Eqs. (10.15) and (10.16) to evaluate the Lagrange multipliers.

11 Solution of the inhomogeneous Dirac-Fock equation over a basis
set

It has been found however [30,31] that even the enhanced numerical tech-
niques presented in Sec. 10 would not work for correlation orbitals with very

L Closed shells are the shell filled with the maximum number of electrons as allowed
by the Pauli principle, i.e. 2|x]|.
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small effective occupation, particularly when the contribution of the Breit in-
teraction is used in (9.5). This leads to point out that in the numerical MCDF
calculations, the projection operators which should be used according to (1.5)
are absent, as they have no explicit expression. A new method has been pro-
posed that retains the advantages of the numerical MCDF. The idea is to
expand P, Q4, Xp, and Xg, over a finite basis set, e.g., the one based on
the B-spline calculated following the method of Sec. 6, using the full MCDF
direct potential V4(r). Let us thus assume that one has a complete set of solu-
tions {¢§A), cee ¢§ﬁ)}, with eigenvalues {GEA), cee egﬁ)} of the homogeneous
equation associated to (9.5). One then writes

g(()) =S V600) ana f(()) I L IGIRD
A\T 1=1 Qa\T 1=1

Substituting back into (9.5) and using the orthonormality of the basis set
functions, one easily obtains

(A) oY+ D B#A€AB st

s = (11.2)
(0% (GEA) — GAA)
The square of the norm of the solution of (9.5) is then easily obtained as
2
2n 9 2n xz(A) + E €4 SEB)
N(ea) =Y (s =3 i B : (11.3)
i=1 i=1 @ (61 - GAA)

One then can calculate the normalized solution of (9.5) if the off-diagonal La-
grange parameters are known, by solving N (e44) =1 for €44. One can notice
the interesting feature of (11.3) that the norm of the solution of the inhomo-
geneous equation (9.5) has a pole for each eigenenergy of the homogeneous
equation. This method has the advantage over purely numerical techniques
that by restricting the sums in (11.1) to positive energy eigenstates, one can
explicitly implement projection operators, thus solving readily the “no-pair”
Hamiltonian (1.2), rather than an ill-defined equation. More details on this
method and on the evaluation of the off-diagonal Lagrange multipliers can be
found in [31].

Chapter 4. Numerical relativistic methods for
molecules

Most of molecular methods that include relativistic corrections are based on
the expansion of the molecular orbitals in terms of basis sets (most of the time
taken to be Gaussian functions). We shall not review these methods here but
refer the interested reader to a book to be published soon [49]. Let us just point
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out that the sometimes observed lack of convergence to upper bounds in the
total energy (the so-called variational collapse) is not unambigously related
to the Dirac negative energy continuum. Indeed this attractive explanation is
unfortunately unable to explain the appearance of spurious solutions. Both
the existence of spurious solutions and the lack of convergence to expected
levels can be traced back to originate from poor basis sets and bad finite
matrix representations of the operators (in particular the kinetic energy). For
an extensive discussion see [15]. Numerical methods succesfully used are briefly
sketched in the next two paragraphs.

12 Fully numerical two-dimensional method

For diatomic molecules, the one-electron Dirac wave functions may be written
as

i(m+1/2)p 4L

&

. ?2 (12.1)

Z'ez(m—l/Q)Lp ¢§€'(
(

Z'ei(m+1/2)<p st

where L (S) stands for the large (small) component and elliptical coordinates
(&,7, ) are used with:

E=(ri+r)/R, n=(r1—ry)/R, (12.2)

where r; and ry are the distances between the electron and each of the nucleus,
R is the inter-nuclear distance. The third variable ¢ is the azimutal angle
around the axis through the nuclei.

As usual for molecular calculations, the variational collapse is avoided by defin-
ing the small component in terms of the large one [35]. Starting from the Dirac
equation in a local potential V' one possibility is to use:

¢° = co.p d"/ [202 +F - V] ) (12.3)
After this substitution, the large component is given as solution of a second
order differential equation that can be solved using well known relaxation

methods [55].

For efficiency, the distribution of integration points must be chosen as to ac-
cumulate points where the functions are rapidly varying. It was found that
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the transformation,
p = arccosh(§) , v = arccosh(n) , (12.4)

which yields a quadratic distribution of points near the nuclei, is some kind of
optimum to reduce the number of points needed to achieve a given accuracy.
Then the derivatives of the Laplace operator are approximated by n-point
finite differences. In so doing, the differential equations are replaced by a set
of linear equations that can be written in a matrix form as

(A-ES)X =B, (12.5)

where the matrix A, that represents the direct part of the Fock operator, is
diagonal dominant but has non-diagonal elements arising from the discretiza-
tion of the Laplace operator. Here E is the energy eigenvalue, S is the overlap
diagonal matrix and B a vector due to the exchange part of the Fock operator
whose values change during iterations. Then the relaxation method can be
viewed as an iterative method to find the x; component of X such that

(A— ES)z; =b; (12.6)

each iteration n being associated with a linear combination of the initial and
final estimate of x; at iteration n — 1, i.e.

mnitialp 41
T; = (1

— w)ginitialn g lmeb (12.7)
It was found that with overrelaxation (i.e. w > 1), the method may be slow in
convergence but it is quite stable. Applications of the method outlined above
may be found in [53] and in references therein.

13 Numerical integrations with linear combinations of atomic or-
bitals

A widely used approximation in molecular calculations is to expand the molec-
ular orbitals as a linear combination of atomic orbitals. If these atomic orbitals
are chosen as the numerical solutions of some kind of Dirac-Fock atomic cal-
culations, then small basis sets are sufficient to achieve good accuracy. The
main disavantage of this choice is that all multi-dimensional integrals have to
be calculated numerically. This is compensated by two advantages: first the
kinetic energy contribution can be computed by a single integral using the
atomic Dirac equations (thus avoiding numerical differenciation), second, by
including only positive energy atomic wave functions, no “variational collapse”
will occur.
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In this method, the molecular wave functions ¢ are expanded in terms of
symmetry molecular orbitals x as:

v=> X, (13.1)

while the symmetry molecular orbitals y are taken to be linear combinations
of atomic orbitals ¢ :

X = Z d” " . (13.2)

The coefficients d? are given by the symmetry of the molecular orbital and
are obtained from the irreducible representations of the double point groups.
Computing all necessary integrals (overlaps, matrix elements of the Dirac op-
erator, the Coulomb interaction, etc...) the Dirac-Fock equations are reduced
to a generalized matrix eigenvalue problem that determines both the eigen-
values and the ¢ coefficients of equation (13.1).

To compute the various matrix elements in the case of diatomic molecules,
Sepp et al. [50] used Gauss-Laguerre and Gauss-Legendre integration schemes
on a grid of points defined by the same variables as those of Eq. (12.4). Unfor-
tunately this approach is not easy to extend beyond diatomic molecules and
other methods have to be implemented. It has beeen shown, see for example
[44], that the adaptation to molecules of the so-called Discrete Variational
Method (DVM) developped for solid state calculations [17] may be both ef-
ficient and accurate. The DVM may be viewed as performing a multidimen-
sional integral via a weighted sum of sampling points, i.e. to compute a matrix
element < f > by:

N

< f>=> wlr)f(r:) (13.3)

n=1

where the weight function w(r;) can be considered as an integration weight
corresponding to a local volume per point. This function is also constrained
to force the error momenta to vanish on the grid points following the work
of Haselgrove [27]. Furthermore the set of the sampling points [r;] must be
chosen to preserve the symmetries of the system under configuration (this is
accomplished by taking a set of sampling points that includes all points Rr;,
R standing for operations of the symmetry group). A full description of the
DVM can be found in the references given above.
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