Hypocoercivity without confinement: mode-by-mode analysis and decay rates in the Euclidean space

JEAN DOLBEAULT

(joint work with Emeric Bouin, Stéphane Mischler, Clément Mouhot, Christian Schmeiser)

Abstract. – L² hypocoercivity results for scattering and Fokker-Planck type collision operators are obtained using decoupled Fourier modes. The rates are measured in a space with exponential weights and then extended to larger function spaces by a factorization method. Without confinement, sharp rates of decay are obtained.

Let us consider the evolution equation

(1)
$$\frac{dF}{dt} + \mathsf{T}F = \mathsf{L}F$$

and assume that T and L are respectively anti-Hermitian and Hermitian operators on a complex Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ with norm $\|\cdot\|$. As in the hypocoercivity method of [4] for real valued operators, we consider the Lyapunov functional

$$\mathsf{H}[F] := \frac{1}{2} \|F\|^2 + \delta \operatorname{Re}\langle \mathsf{A}F, F \rangle$$

for some $\delta > 0$, with $A := (1 + (T\Pi)^*T\Pi)^{-1}(T\Pi)^*$. Here * denotes the adjoint with respect to $\langle \cdot, \cdot \rangle$ and Π is the orthogonal projection onto the null space of L. We assume that positive constants λ_m , λ_M , and C_M exist, such that, for any $F \in \mathcal{H}$, the following properties hold:

(H1) microscopic coercivity: $-\langle \mathsf{L}F, F \rangle \geq \lambda_m ||(1-\Pi)F||^2$, (H2) macroscopic coercivity: $||\mathsf{T}\Pi F||^2 \geq \lambda_M ||\Pi F||^2$,

(H3) parabolic macroscopic dynamics: $\Pi T \Pi F = 0$,

(H4) bounded auxiliary operators: $\|\mathsf{AT}(1-\mathsf{\Pi})F\| + \|\mathsf{AL}F\| \le C_M \|(1-\mathsf{\Pi})F\|$. Then for any $t \ge 0$, if F solves (1) with initial datum F_0 , we have

$$\mathsf{H}[F(t,\cdot)] \le \mathsf{H}[F_0] e^{-\lambda_{\star}}$$

where λ_{\star} is characterized as the smallest $\lambda > 0$ for which there exists some $\delta > 0$ such that $(\delta C_M)^2 - 4 \left(\lambda_m - \delta - \frac{2+\delta}{4}\lambda\right) \left(\frac{\delta \lambda_M}{1+\lambda_M} - \frac{2+\delta}{4}\lambda\right) = 0$ under the additional condition that $\lambda_m - \delta - \frac{1}{4}(2+\delta)\lambda > 0$.

This abstract hypocoercivity result applies to kinetic equations with various collision operators L whose null space is spanned by an admissible local equilibrium M, that is, a radially symmetric continuous function such that, additionally, M^{-1} has a growth faster than any polynomial as $|v| \to +\infty$, $\int_{\mathbb{R}^d} M \, \mathrm{d}v = 1$.

Here are two important examples:

 \triangleright Fokker-Planck operators with general equilibria: $LF = \nabla_v \cdot [M \nabla_v (M^{-1} F)]$ where M is such that $v \mapsto |\nabla_v \sqrt{M}|^2$ is integrable and a Poincaré inequality holds with respect to the measure $M \, \mathrm{d}v$.

 \triangleright Scattering collision operators: $\bot F = \int_{\mathbb{R}^d} \sigma(\cdot, v') \left(F(v') M(\cdot) - F(\cdot) M(v')\right) dv'$. We assume that the symmetry condition

$$\int_{\mathbb{R}^d} \left(\sigma(v, v') - \sigma(v', v) \right) M(v') \, \mathrm{d}v' = 0$$

holds and that the scattering rate σ is such that $1 \leq \sigma(v, v') \leq \overline{\sigma}$ for some positive, finite $\overline{\sigma}$. The microscopic coercivity property follows from [3].

Next we consider a distribution function f(t, x, v), where x denotes the position variable, $v \in \mathbb{R}^d$ is the velocity variable, and $t \ge 0$ is the time. We shall consider either $x \in \mathbb{T}^d \approx [0, 2\pi)^d$ or $x \in \mathbb{R}^d$. In order to perform a *mode-by-mode hypocoercivity* analysis, we introduce the Fourier representation with respect to x

$$f(t, x, v) = \int_{\mathbb{R}^d} \hat{f}(t, \xi, v) e^{-i x \cdot \xi} d\mu(\xi)$$

where the measure $d\mu$ is such that $d\mu(\xi) = (2\pi)^{-d} d\xi$ and $d\xi$ is the Lesbesgue measure if $x \in \mathbb{R}^d$, and $d\mu(\xi) = (2\pi)^{-d} \sum_{z \in \mathbb{Z}^d} \delta(\xi - z)$ is discrete for $x \in \mathbb{T}^d$. Since the collision operator L does not depend on x, the kinetic equation

(2)
$$\partial_t f + v \cdot \nabla_x f = \mathsf{L} f$$

is reduced to (1) applied to $F(t, v) = \hat{f}(t, \xi, v)$ for each mode ξ , where ξ is now considered as a parameter, and the transport operator $v \cdot \nabla_x$ is, in Fourier variables, the simple multiplication operator

$$\mathsf{T}F := i \left(v \cdot \xi \right) F.$$

With $\Theta = \int_{\mathbb{R}^d} |v \cdot \xi|^2 M(v) \, \mathrm{d}v$, the operator A is now given by

$$\mathsf{A}F = \frac{-i\,\xi \cdot \int_{\mathbb{R}^d} v'\,F(v')\,\mathrm{d}v'}{1+\Theta\,|\xi|^2}\,M\,,$$

Under the above assumptions, for any $t \ge 0$, for any fixed ξ , with we have

$$\|F(t,\cdot)\|_{\mathrm{L}^{2}(\mathrm{d}\gamma)}^{2} \leq 3 e^{-\mu_{\xi} t} \|F_{0}\|_{\mathrm{L}^{2}(\mathrm{d}\gamma)}^{2}$$

where $d\gamma = M^{-1} dv$, $\mu_{\xi} := \frac{\Lambda |\xi|^2}{1+|\xi|^2}$, $\Lambda = \frac{\Theta}{3 \max\{1,\Theta\}} \min\{1, \frac{\lambda_m \Theta}{\kappa^2 + \Theta}\}$ with $\kappa = 2 \overline{\sigma} \sqrt{\Theta}$ for scattering operators and $\kappa = 2 \|\nabla_v \sqrt{M}\|_{L^2(dv)}/\sqrt{d}$ for Fokker-Planck operators. By the factorization result of [5], the same decay rate is obtained if we replace the measure $d\gamma$ by

$$\mathrm{d}\gamma_k := \gamma_k(v) \,\mathrm{d}v$$
 where $\gamma_k(v) = \pi^{d/2} \frac{\Gamma((k-d)/2)}{\Gamma(k/2)} \left(1 + |v|^2\right)^{k/2}$

for an arbitrary $k \in (d, +\infty)$. Using Parseval's identity, we obtain that the solution f of (2) on $\mathbb{T}^d \times \mathbb{R}^d$ with initial datum $f_0 \in \mathrm{L}^2(\mathrm{d}x \,\mathrm{d}\gamma_k)$ such that $\iint_{\mathbb{T}^d \times \mathbb{R}^d} f_0 \,\mathrm{d}x \,\mathrm{d}v = 1$ satisfies, for any $t \ge 0$,

$$\left\| f(t,\cdot,\cdot) - |\mathbb{T}^d|^{-1}M \right\|_{\mathrm{L}^2(\mathrm{d}x\,\mathrm{d}\gamma_k)} \le C_k \|f_0 - f_\infty\|_{\mathrm{L}^2(\mathrm{d}x\,\mathrm{d}\gamma_k)} e^{-\Lambda t/4}$$

for some positive constant C_k .

On the whole Euclidean space \mathbb{R}^d , we consider the Lyapunov functional

$$f \mapsto \frac{1}{2} \|f\|_{\mathrm{L}^2(\mathrm{d}x\,\mathrm{d}\gamma_k)}^2 + \delta \langle \mathsf{A}f, f \rangle_{\mathrm{L}^2(\mathrm{d}x\,\mathrm{d}\gamma_k)}$$

where the operator $A := (1 + (T\Pi)^*T\Pi)^{-1}(T\Pi)^*$ is now defined in the (x, v) variables using $T := v \cdot \nabla_x$. We can use Plancherel's formula. However, it is clear that without an external potential of confinement, there is no Poincaré inequality to be expected. Replacing the *macroscopic coercivity* condition by *Nash's inequality*

$$\|u\|_{L^{2}(dx)}^{2} \leq \mathcal{C}_{Nash} \|u\|_{L^{1}(dx)}^{\frac{4}{d+2}} \|\nabla u\|_{L^{2}(dx)}^{\frac{2d}{d+2}}$$

allows us to prove that there exists a constant $C_k > 0$ such that, for any $t \ge 0$,

$$\|f(t,\cdot,\cdot)\|_{\mathrm{L}^{2}(\mathrm{d}x\,\mathrm{d}\gamma_{k})}^{2} \leq C_{k}\left(\|f_{0}\|_{\mathrm{L}^{2}(\mathrm{d}x\,\mathrm{d}\gamma_{k})}^{2} + \|f_{0}\|_{\mathrm{L}^{2}(\mathrm{d}\gamma_{k};\,\mathrm{L}^{1}(\mathrm{d}x))}^{2}\right)(1+t)^{-\frac{d}{2}}.$$

So far we did not assume any sign condition on f. Inspired by the properties of the solutions of the heat equation, a more detailed analysis shows that the zero average solutions of (2) have an improved decay rate. Assume that $f_0 \in L^1_{loc}(\mathbb{R}^d \times \mathbb{R}^d)$ with $\iint_{\mathbb{R}^d \times \mathbb{R}^d} f_0(x, v) \, dx \, dv = 0$ and let

$$\mathcal{C} := \|f_0\|_{L^2(d\gamma_{k+2}; L^1(dx))}^2 + \|f_0\|_{L^2(d\gamma_k; L^1(|x| dx))}^2 + \|f_0\|_{L^2(dx d\gamma_k)}^2 < \infty.$$

Then there exists a constant $c_k > 0$ such that, for any $t \ge 0$,

$$\|f(t,\cdot,\cdot)\|_{L^{2}(\mathrm{d} x\,\mathrm{d} \gamma_{k})}^{2} \leq c_{k} \, \mathcal{C} \, (1+t)^{-(1+\frac{a}{2})} \, .$$

For details, see [1]. Further improved estimates will be available in [2].

References

- BOUIN, E., DOLBEAULT, J., MISCHLER, S., MOUHOT, C., AND SCHMEISER, C. Hypocoercivity without confinement. Hal: 01575501 and arXiv: 1708.06180, 2017.
- [2] BOUIN, E., DOLBEAULT, J., MISCHLER, S., MOUHOT, C., AND SCHMEISER, C. Two examples of accurate hypocoercivity estimates based on a mode-by-mode analysis in Fourier space. *In* preparation (2017).
- [3] DEGOND, P., GOUDON, T., AND POUPAUD, F. Diffusion limit for nonhomogeneous and nonmicroreversible processes. *Indiana Univ. Math. J.* 49 (2000), 1175–1198.
- [4] DOLBEAULT, J., MOUHOT, C., AND SCHMEISER, C. Hypocoercivity for linear kinetic equations conserving mass. *Trans. AMS* 367 (2015), 3807–3828.
- [5] GUALDANI, M., MISCHLER, S., AND MOUHOT, C. Factorization of non-symmetric operators and exponential H-theorem. arXiv:1006.5523v3, to appear as a Mémoire de la Société Mathématique de France (118 pages).