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Let us consider the kinetic equation

(1) ∂tf + Tf = Lf

where Lf is either the Fokker-Planck operator L1f = ∇v ·
(
M∇v(M−1 f)

)
or a

scattering collision operator Lf =
∫
Rd σ(·, v′)

(
f(v′)M(·)− f(·)M(v′)

)
dv′, for in-

stance the simplest possible one, the linear BGK operator L2f = ρM(v)−f where

ρ(t, x) =
∫
Rd f(t, x, v) dv is the spatial density andM(v) = (2π)−d/2 e−|v|

2/2. The
transport operator T on the phase space (with position x and velocity v) can be

rewritten as T = i v · ξ f̂ in the Fourier variable ξ associated to x. With the op-

erators Π and A defined respectively by Πf̂ := M
∫
Rd f̂(ξ, w) dw and Af̂(ξ, v) :=

− i ξ (1+|ξ|2)−1 ·
∫
Rd w f̂(ξ, w) dwM(v), the L2 entropy, or L2 Lyapunov functional

H[f̂ ] := 1
2 ‖f̂‖

2+δRe〈Af̂ , f̂〉 where ‖g‖2 :=
∫∫

Rd |g(w)|2 dγ, dγ(w) :=M(w)−1 dw,
is such that, if f solves (1), then the entropy – entropy production inequality

d

dt
H[f̂(t, ξ, ·)] ≤ −λH[f̂(t, ξ, ·)]

)
holds if

Q(X,Y ) :=
(

1− δ |ξ|2
1+|ξ|2 −

λ
2

)
X2 − δ |ξ|

1+|ξ|2
(
1 +
√

3 |ξ|+ λ
)
X Y +

(
δ |ξ|2
1+|ξ|2 −

λ
2

)
Y 2

is a nonnegative quadratic form of X and Y , where X := ‖(1 − Π)f̂‖ and Y :=

‖Πf̂‖. Here it is clear that ξ ∈ Rd can be considered as a parameter, that is, we

can perform a mode-by-mode analysis. Proving the exponential decay of H[f̂ ] for
some δ = δ(|ξ|) with a rate λ = λ(|ξ|) is reduced to the discriminant condition

which guarantees that Q ≥ 0. It turns out that H[f̂ ] is equivalent to ‖f̂‖2 if δ < 2
and one can prove by the method of [9, 5] that

‖f̂(t, ξ, ·)‖2 ≤ C(|ξ|) ‖f̂0(ξ, ·)‖2 e−λ(|ξ|) t ∀ t ≥ 0 , ξ ∈ Rd ,

where C(|ξ|) = (2 + δ(|ξ|))/(2 − δ(|ξ|)). This has been analysed in [5] in terms
of asymptotic decay rates of ‖f(t, ·, ·)‖2L2(Rd×Rd,dx dγ) for a choice of δ which is

independent of ξ but can be refined by taking a ξ-dependent value of δ.

Theorem 1. [2] If f solves (1) with L = L1 or L = L2 for some nonnegative initial
datum f0 ∈ L2(Rd × Rd, dx dγ) ∩ L2

(
Rd, dγ; L1(Rd, dx)

)
, then

‖f(t, ·, ·)‖2L2(Rd×Rd,dx dγ) ≤ (2π)−d ΨM,Q(t) ∀ t ≥ 0

with M = ‖f0‖L2(Rd,dγ;L1(Rd,dx)), Q = ‖f0‖L2(Rd×Rd,dx dγ), and

ΨM,Q(t) := infR>0

(∫ R
0
C(s) e−λ(s) t sd−1 dsωd dM

2 + sups≥R C(s) e−λ(R) tQ2
)
.

The proof of this result is reminiscent of the proof in [11] of Nash’s inequality

(2) ‖u‖2+
4
d

L2(Rd) ≤ CNash ‖u‖
4
d

L1(Rd) ‖∇u‖
2
L2(Rd)



and the definition of the operator A is inspired by the diffusion limit: see [9, 2]. It
is well known that a solution to the heat equation

∂tu = ∆u ∀ (t, x) ∈ R+ × Rd

decays according to

‖u(t, ·)‖2L2(Rd,dx) ≤ C ‖u0‖
2
L2(Rd,dx) (1 + t)−

d
2

after computing d
dt‖u(t, ·)‖L2(Rd,dx) = −2 ‖∇u(t, ·)‖L2(Rd,dx) and taking (2) into

account. See [7] for a discussion of the optimality of such an estimate. This decay
rate can be recovered also at the kinetic level for the solution of (1): see [5].

The next question is of course to understand what happens in presence of an
external potential. Let us start at diffusive level with the Fokker-Planck equation

(3) ∂tu = ∆u+∇ · (u∇V ) ∀ (t, x) ∈ R+ × Rd

where V is a given external potential. To fix ideas, we shall assume that V (x) =
|x|α for some α > 0 and discuss the cases depending on the value of α.

B For α ≥ 1, we have the Poincaré inequality∫
Rd
|v − v̄|2 dµα ≤ C

∫
Rd
|∇v|2 dµα

with v̄ :=
∫
Rd v dµα and dµα := Uα(x) dx, Uα(x) := Z−1α e−|x|

α

, Zα :=
∫
Rd Uα dx.

It is then standard to prove that a solution u(t, ·) of (3) is such that v := u/Uα
satisfies ∫

Rd
|v(t, ·)− v̄|2 dµα ≤

∫
Rd
|v(0, ·)− v̄|2 dµα e−

2 t
C ∀ t ≥ 0 .

B The case α ∈ (0, 1) has been studied in [10] using the weak Poincaré inequality.
This approach requires the existence of a uniform bound. Alternatively, we can
consider the weighted Poincaré inequality

(4)

∫
Rd
|∇v|2 dµα ≥ C

∫
Rd
|v − v̄|2〈x〉−β dµα

with β = 2 (1 − α) and the same notations as above for v̄ and dµα. Here we use

the notation 〈x〉 =
√

1 + |x|2 and notice that β vanishes as α → 1−. In order to
compensate for the additional weight in the right hand side in (4), it is convenient
to introduce a weighted L2 norm with a weight 〈x〉k.

Theorem 2. [4] Assume that α ∈ (0, 1). If u solves (3) with initial datum u0 ∈
L1
+(Rd, dµα) ∩ L2(Rd, 〈x〉k dµα) for some k > 0, v = u/Uα and v0 = u0/Uα, then∫

Rd
|v(t, ·)− v̄|2 dµα ≤

((∫
Rd
|v0 − v̄|2 dµα

)−β/k
+K t

)−k/β
∀ t ≥ 0 ,

for some constant K depending on k and u0.
2



B In the limit case as α→ 0+, it makes sense to consider V (x) = γ log |x|. In the
range γ ∈ (0, d), (3) admits no stationary solution in L1(Rd). In that case, we can
again introduce weights and consider the Caffarelli-Kohn-Nirenberg inequality∫

Rd |x|
γ u2 dx ≤ C

(∫
Rd |x|

−γ |∇ (|x|γu)|2 dx
)a (∫

Rd |x|
k |u| dx

)2 (1−a)

which generalizes Nash’s inequality (2). A decay result goes as follows.

Theorem 3. [6] Let d ≥ 1 and γ ∈ (0, d), k ≥ max{2, γ/2}. If u solves (3) with
initial datum u0 ∈ L1

+(Rd, 〈x〉k dµα) ∩ L2(Rd, dµα), then there is a constant c > 0
depending on u0 such that

‖u(t, ·)‖2L2(Rd,|x|γ dx) ≤ ‖u0‖
2
L2(Rd,|x|γ dx) (1 + c t)−

d−γ
2 ∀ t ≥ 0 .

Similar results can be obtained at kinetic level when the transport operator is
defined by Tf = v · ∇xf − ∇xV · ∇vf . With L = L1 or L = L2, and appropriate
estimates involving 〈x〉k, results are obtained which are all consistent with a dif-
fusion limit given by (3) and rely on the same functional inequalities. So far we
have considered only Maxwellian local equilibria, but a similar discussion can be
done when M(v) = Z−1β exp(−|v|β) for some β > 0, depending whether β ≥ 1 or

not, and the case F (v) = 〈v〉−γ has also been studied. Notice that a fractional
diffusion limit has to be considered when

∫
Rd |v|

2 F (v) dv is infinite. The method
also adapts to equations with a Poisson coupling. See [6, 4, 8, 3, 1] for detailed
statements.
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