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Let us consider the kinetic equation
(1) Of+Tf=Lf
where Lf is either the Fokker-Planck operator L, f = V,, - (M V(ML f)) or a
scattering collision operator Lf = [, o(-,v') (f(v') M(:) = f(-) M(v")) dv’, for in-
btance the simplest possible one, the linear BGK operator Ly f = p M(v) — f where
= [ga f(t,z,v) dv is the spatial density and M(v) = (2m)~4/2 e=v*/2. The
transport operator T on the phase space (with position x and velocity v) can be

rewritten as T = v - & f in the Fourier variable { associated to z. With the op-
erators IT and A defined respectively by IIf := M [;, f(§,w) dw and Af(&,v) :=

—i&(1+|€%) f]Rd w f (¢, w) dw M(v), the L? entropy, or L? Lyapunov functional

H[f]:= 5 I fII+0 Re(Af, f) where [[g])* := [ [ lg(w)[? dy, dy(w) := M(w)~" duw,
is such that, if f solves , then the entropy — entropy production inequality

DHlf(t,¢, 9] < ~AHIF(€.)
holds if
QXYY = (1- 28 = ) X2 — s (1+ VBIel+2) XV + (5 - 3) v

is a nonnegative quadratic form of X and Y, where X := ||(1 — II)f|| and Y :=
||Hf|| Here it is clear that ¢ € R? can be considered as a parameter, that is, we
can perform a mode-by-mode analysis. Proving the exponential decay of H| f] for
some § = §(|¢]) with a rate A = A([¢]) is reduced to the discriminant condition
which guarantees that @ > 0. It turns out that H[f] is equivalent to || f||? if § < 2
and one can prove by the method of [9] [5] that

(€17 < CUED fo(&, P e DT e >0, g er?,

where C(I€]) = (24 d(]€]))/(2 — 6(J€|)). This has been analysed in [5] in terms
of asymptotic decay rates of ||f(t,-, ')”iZ(Rded dz dy) for a choice of § which is
independent of £ but can be refined by taking a &-dependent value of §.

Theorem 1. [2] If f solves with L = Ly or L = Ly for some nonnegative initial
datum fo € L>(R? x RY, dz dy) N L*(R?, dy; L' (RY, dz)), then

£t M2 @axme doary < 27) " Warg(t) VE>0
with M = || foll2(re,dy;L1 (R da))s @ = [ follL2 (R xR, da dvy), AN
Ur.0(t) :=infrso (fOR C(s) e Xt si=Ldswyd M? + sup,s p C(s) e” B! QQ) .
The proof of this result is reminiscent of the proof in [I1] of Nash’s inequality

2+ I 2
(2) ||u||L2(Rd) < CNash ”uHLl(Rd) ||VUHL2(]RCL)



and the definition of the operator A is inspired by the diffusion limit: see [9} 2]. It
is well known that a solution to the heat equation

O =Au VY(t,z) € RT x RY
decays according to
(s IF 2 et a0y < C lluollF2ma g (1 +1)

after computing ||u(t, )|z ar) = —2|Vu(t, )|z (®e,ar) and taking into
account. See [7] for a discussion of the optimality of such an estimate. This decay
rate can be recovered also at the kinetic level for the solution of (T)): see [A].
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The next question is of course to understand what happens in presence of an
external potential. Let us start at diffusive level with the Fokker-Planck equation

(3) Ou=Au+V-(uVV) VY(t,z)c Rt x R?
where V is a given external potential. To fix ideas, we shall assume that V(z) =
|z|* for some « > 0 and discuss the cases depending on the value of a.

> For a > 1, we have the Poincaré inequality

/ |v—17|2d,ua§C/ |Vol? dite,
R R

with 0 1= [p, vdpe and dpg = Us(2) dz, Ua(z) i= Z ' e 1¥1" ) Zy = [o, U da.
It is then standard to prove that a solution wu(t,-) of is such that v := u/U,
satisfies

/ lu(t,-) — 0|2 dpta g/ [0(0,) — B dpge™  Vt>0.
Rd Rd

> The case a € (0, 1) has been studied in [10] using the weak Poincaré inequality.
This approach requires the existence of a uniform bound. Alternatively, we can
consider the weighted Poincaré inequality

(1) [ wePdnnzc [ o o) du,
R4 R4

with 8 = 2(1 — «) and the same notations as above for ¥ and du,. Here we use
the notation (z) = /1 + |z|? and notice that § vanishes as « — 1_. In order to
compensate for the additional weight in the right hand side in 7 it is convenient

to introduce a weighted L? norm with a weight (z)*.

Theorem 2. [4] Assume that « € (0,1). If u solves with initial datum uy €
LY (R, dua) NL2(RY, (x)* dpe) for some k> 0, v =u/U, and vo = ug/Us, then

—B/k —k/B
/ lu(t,-) — o) dpa < <(/ lvo — o dua> —HCt) Vt>0,
R R4

for some constant KC depending on k and ug.
2



> In the limit case as & — 0, it makes sense to consider V' (z) = v log|z|. In the
range v € (0,d), (3) admits no stationary solution in L'(R?). In that case, we can
again introduce weights and consider the Caffarelli-Kohn-Nirenberg inequality

fRd |{I}|'y uw? dz <C (f]Rd |$|_'Y |v (|x|’)’u)|2 dﬂ?) (I]Rd |.’L'|k |’U4‘ d$)2(1_a)
which generalizes Nash’s inequality . A decay result goes as follows.

Theorem 3. [6] Let d > 1 and v € (0,d), k > max{2,v/2}. If u solves with
initial datum ug € LY (R, (z)* dpa) NL2(RY, dpy), then there is a constant ¢ > 0
depending on uy such that

_d—ny
lu(t, MF2@a o ae) < NU0lF2@a o am (LHc) ™2 VE>0.

Similar results can be obtained at kinetic level when the transport operator is
defined by Tf =v-V,f =V, V- -V,f. With L =L; or L =Ly, and appropriate
estimates involving (z)*, results are obtained which are all consistent with a dif-
fusion limit given by and rely on the same functional inequalities. So far we
have considered only Maxwellian local equilibria, but a similar discussion can be
done when M(v) = Zgl exp(—|v|?) for some 3 > 0, depending whether 3 > 1 or
not, and the case F'(v) = (v)~7 has also been studied. Notice that a fractional
diffusion limit has to be considered when |5, [v|? F/(v) dv is infinite. The method
also adapts to equations with a Poisson coupling. See [6], [4, [8, B [1] for detailed
statements.

REFERENCES

[1] L. AppaLa, J. DoLBEAULT, X. L1, AND M. L. TAYEB, L2-hypocoercivity and large time
asymptotics of the linearized Viasov-Poisson-Fokker-Planck system. Preprint hal-02299535
& arXiv: 1909.12762, Sep. 2019.

[2] A. ArRNOLD, J. DOLBEAULT, C. SCHMEISER, AND T. WOHRER, Sharpening of decay rates
in Fourier based hypocoercivity methods. Preprint hal-03078698| & arXiv: 2012.09103, Dec.
2020.

[3] E. BoulN, J. DoLBEAULT, L. LAFLECHE, AND C. SCHMEISER, Fractional hypocoercivity.
Preprint hal-02377205| & arXiv: 1911.11020, Nov. 2019.

[4] E. BouiN, J. DOLBEAULT, L. LAFLECHE, AND C. SCHMEISER, Hypocoercivity and sub-
exponential local equilibria, Monatshefte fiir Mathematik, 194 (2020), pp. 41-65.

[5] E. BoulN, J. DOLBEAULT, S. MISCHLER, C. MOUHOT, AND C. SCHMEISER, Hypocoercivity
without confinement, Pure and Applied Analysis, 2 (2020), pp. 203-232.

[6] E. BoulN, J. DOLBEAULT, AND C. SCHMEISER, Diffusion and kinetic transport with very
weak confinement, Kinetic & Related Models, 13 (2020), pp. 345-371.

[7] E. BouiN, J. DOLBEAULT, AND C. SCHMEISER, A wariational proof of Nash’s inequality,
Rendiconti Lincei — Matematica e Applicazioni, 31 (2020), pp. 211-223.

[8] C. Cao, the kinetic Fokker-Planck equation with weak confinement force. Preprint hal-
01697058| & arXiv: [1801.10354, June 2018.

[9] J. DoLBEAULT, C. MOUHOT, AND C. SCHMEISER, Hypocoercivity for linear kinetic equations
conserving mass, Transactions of the American Mathematical Society, 367 (2015), pp. 3807—
3828.

[10] O. KAVIAN, S. MISCHLER, AND M. NDAO, The Fokker-Planck equation with subcritical con-
finement force. Preprint hal-01241680| & arXiv: |1512.07005, Dec. 2016.

[11] J. NasH, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80
(1958), pp. 931-954.


https://hal.archives-ouvertes.fr/hal-02299535
https://arxiv.org/abs/1909.12762
https://hal.archives-ouvertes.fr/hal-03078698
https://arxiv.org/abs/2012.09103
https://hal.archives-ouvertes.fr/hal-02377205
https://arxiv.org/abs/1911.11020
https://hal.archives-ouvertes.fr/hal-01697058
https://hal.archives-ouvertes.fr/hal-01697058
https://arxiv.org/abs/1801.10354
https://hal.archives-ouvertes.fr/hal-01241680
https://arxiv.org/abs/1512.07005

	References

