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Long time behavior of QFP 2Assuming that the time evolution of the system is Markovian, G. Lindblad [Li]gave the most general form of a bounded operator L, such that the semigrouppreserves the positivity, hermiticity and the normalization (unit trace) of thedensity operator R. However, for unbounded operators L, which is the casein our work, the so-called Lindblad condition is necessary but not su�cient toguarantee the conservation of these properties (see, e.g., [CF] and the referencestherein).Using the Wigner transform [Wi], dissipative quantum models can be equiva-lently represented in phase space, resulting in a kinetic transport equation withinteraction terms for the quasiprobability distribution of the particles. In thispaper we assume that the mechanism coupling particles and environment canbe described by a linear scattering operator Lq of Fokker-Planck type. TheLindblad condition therefore reduces to the assumption of a positive de�nitedi�usion matrix D.Up to now, a mathematically rigorous derivation of such a Quantum Fokker-Planck equation (QFP) from many-body quantum mechanics is still missing. Tothe authors knowledge, the only result in this direction is given in [CEFM], whichhowever justi�es only a particular case of the class of models considered in thiswork. Nevertheless there exists a huge amount of a somewhat phenomenologicalphysical literature on this type of equations, which play a relevant role withinthe areas of quantum optics (laser physics) [Da], [De], [Ri], microelectronics[St], quantum brownian motion [CaLe], [Di], [HuMa], and the description ofdecoherence and di�usion of quantum states [AnHa], [DGHP].Rigorous well-posedness and existence of local in time solutions of the frictionlessQFP equation, with self-consistent Coulomb interaction, have been studied ina precedent paper of one of the authors [ALMS]. The present work investigatesthe long time behavior of the linear QFP equation in the presence of friction andan exterior time-independent potential V . The phase space formalism providedby the Wigner transform proves to be particularly helpful for this task, since itallows the use of certain entropy techniques established for classical dissipativeequations (for an overview on these techniques, see, e.g., [MaVi], [AMTU]). Theword "entropy" is used here in a mathematically technical sense and can be seenas a generalization of the classical entropy concept of L. Boltzmann. It shouldnot be confused with the physical correct von Neumann entropy of quantumstates.By comparison with the classical Fokker-Planck equation (FP), we expect thesolution of the QFP equation to approach a thermal equilibrium state in thelong time limit, provided the friction term appearing in Lq is positive and theexterior potential V is con�ning, i.e. V (x) ! 1 as jxj ! 1, fast enough.In our work we shall specify the potential V to be harmonic. This particularchoice allows explicit calculations and is maybe the most fundamental one, froma physical point of view [CEFM]. Using the entropy approach, we will prove theconvergence of the solution towards the steady state with a precise exponentialrate, under the assumption that the initial data w0 has bounded "entropy,"relatively to the equilibrium state.This paper is organized as follows. In section 2 we set up the model and collectsome preliminaries. In section 3 we specify the potential V to be of harmonicoscillator type and explicitly calculate the corresponding equilibrium state. Ex-ponential decay towards it will be proved in section 4, where we also give precisedispersion estimates in the uncon�ned cases.



Long time behavior of QFP 32 The model: preliminariesWe consider a linear dissipative equation modeling the motion of particles, sayelectrons, under the in
uence of an electric scalar potential V and a thermalbath of harmonic oscillators in thermal equilibrium. In the following we denoteby �(t; �) 2 L2(R2d ) the N-particle density matrix function of the electrons,which is the kernel of the self-adjoint trace-class density (matrix) operator R(t) :L2(Rd ) ! L2(Rd ), i.e.(R(t)f)(x) := ZRd �(x; y; t)f(y)dy: (2.1)The evolution equation of the electrons is given as a PDE for the density matrix@t� =� i�h(Hx �Hy)�� 
(x� y) � (rx �ry) �+�Dqq jrx +ry j2 � Dpp�h2 jx� yj2 + 2iDpq�h (x� y) � (rx +ry)� �;(2.2)subject to the initial condition�(t = 0; x; y) = �0(x; y); x; y 2 Rd : (2.3)Here Hx (resp. Hy) denotes the electron HamiltonianHx := � �h22m�x + V (x); (2.4)acting on the x (resp. y) variable. The constant m stands for the mass of theindividual particles. Equation (2.2) is a generalization of the Caldeira-Leggettmaster equation for medium temperatures, see [Di], [De].On a kinetic level this model reads (QFP equation)@tw + � � rxw + �[V ]w = Lqw x; � 2 Rd ; t 2 R+ (2.5)w(t = 0; x; �) = w0(x; �); (2.6)where the scattering operator Lq is de�ned byLqw := Dppm2 ��w + 2
 div�(�w) +Dqq�xw + 2Dpqm divx(r�w): (2.7)Here w(t; �) 2 L2(Rdx � Rd� ) is the Wigner transform [Wi] of the correspondingdensity matrix �(t; �) 2 L2(Rdx � Rdy ), i.e.w(x; �; t) := 1(2�)d�h ZRd ��x+ �h2m y; x� �h2m y; t� ei��ydy: (2.8)In the literature w(t; �) is often referred to as a quasiprobability distributionbecause it generally assumes negative values too [Fo], [Hu].The (non-local) pseudo-di�erential operator �[V ] is de�ned by�[V ]f(x; �) := i(2�)d�h Z ZRd�Rd �V �x+ �h2m y�� V �x� �h2m y��f(x; �0) eiy�(���0)d�0dy:(2.9)



Long time behavior of QFP 4In order to be consistent with the usual density matrix formulation of openquantum systems [Da] in the class of Lindblad operators [Li], we assume for thedi�usion constants Dpp > 0 and Dqq ; Dpq � 0. On the other hand, the fric-tion parameter 
 has to be nonnegative. Additionally we impose the followingrelation (for more details see [ALMS], [Li])DppDqq �D2pq � �h2
24 and Dpp > 0 if 
 = 0: (A1)Note that if 
 > 0, condition (A1), the so-called Lindblad condition, impliesthat (2.7) is a uniformly elliptic operator.Using the Wigner transform the charge and 
ux densities associated to thedensity matrix � can be de�ned (formally, since w 62 L1 in general) in the sameway as in classical statistical mechanics. Namely they are given as moments ofthe Wigner transfom, (for details see, e.g., [GaMa], [LiPa]),n(x; t) := ZRdw(x; �; t)d�; (2.10)j(x; t) := ZRd �w(x; �; t)d�: (2.11)Although not obvious from the above de�nition, the necessary positivity of n isguaranteed for physical quasiprobabilities w, i.e. for w's, which are indeed theWigner transformed kernels � of density operators R (see [Ar], [LiPa], [Ta] fora more complete account on this).With the above de�nitions we obtain, after formally integrating the QFP equa-tion (2.5) w.r.t. �, the associated "continuity equation"@tn+ div j = Dqq�xn; (2.12)which obviously implies (again on a formal level) the conservation of mass, i.e.M(t) := Z ZRd�Rdw(x; �; t)dxd� = Z ZRd�Rdw0(x; �)dxd�: (2.13)In view of this property, we assume for simplicity thatM0 = Z ZRd�Rdw0(x; �)dxd� = 1: (A2)This is of course not a restriction as long as the equation is linear. The continuityequation (2.12) suggests that in this dissipative model the usual de�nition ofthe 
ux density (2.11) needs to be replaced byJ(x; t) : = j(x; t) �Dqqrxn(x; t) (2.14)= ZRd(� �Dqqrx) w(x; �; t)d�: (2.15)Thus, instead of (2.12), we obtain the following conservation law@tn+ div J = 0 (2.16)associated to the QFP equation.



Long time behavior of QFP 5Remark. In physical units, the friction and di�usion constants are usuallygiven by (see, e.g., [Di], [De])
 = �2m; Dpp = �kBT; Dqq = ��h212m2kBT ; Dpq = �
�h212�mkBT : (2.17)Here � > 0 is the coupling constant of the heat bath, kB the Boltzmann constant,T the temperature of the bath and 
 the cut-o� frequency of the reservoiroscillators. In terms of these constants the Lindblad condition (A1) reads
 � kBT�h (2.18)which implies the validity of our model at medium/high temperatures.In the classical limit �h! 0: Dqq = Dpq = 0 and (at least formally) the pseudo-di�erential operator simpli�es to�[V ]f ! � 1mrxV � r�f: (2.19)Thus we recover the well known kinetic Fokker-Planck equation for the limitingclassical phase space probability distribution wcl(t; �) 2M+(Rdx �Rd� ) (the coneof positive bounded Borel measures)@twcl + � � rxwcl � 1mrxV � r�wcl = Dppm2 ��wcl + 2
 div�(�wcl): (2.20)Also, the 
ux density J formally simpli�es to the classical one, i.e. J ! j, as�h ! 0. For a rigorous theory of such homogenization limits see, e.g., [LiPa],[GMMP] and for details on the extensively studied FP equation, see for exam-ple [Ri].Furthermore note that the Lindblad condition (A1) disquali�es the classicalFP scattering operator [CEFM] as a relevant quantum mechanical model forthe environment interaction.In this work we are concerned with the following solution concept for our IVP.De�nition 2.1. A function w 2 C(R+0 ;Lp(Rdx � Rd� )), with 1 � p < 1, is amild solution of the IVP (2.5), (2.6) with w0 2 Lp(Rdx � Rd� ), if and only ifw(t; x; �) = Z ZRd�Rdw0(x0; �0) G(t; x; �; x0; �0) dx0d�0; (2.21)where the Green's function G satis�es equation (2.5) for all �xed (x0; �0) 2 R2d ,all t > 0, with an initial conditionlimt&0G(t; x; �; x0; �0) = �(x� x0; � � �0): (2.22)that has to be understood in a weak sense. If additionally w 2 C1(R+ ;C2(Rdx �Rd� )), then w is called a classical solution.Remark. In classical physics the theory of kinetic equations focuses on L1-solutions. This implies mass conservation, since classical phase-space distribu-tions are pointwise positive functions. Having in mind the de�nition of theWigner transform, the L2-norm is more convenient in our quantum mechanicalcontext.



Long time behavior of QFP 63 Harmonic oscillator potentialsIn the next two sections we choose a normalization such that �h = m = 1, forsimplicity. We moreover assume the con�ning potential to be of the followingclass V (x) = !202 jxj2 + ax+ b; a; b 2 R; !0 � 0: (A3)An easy calculation shows that, maybe after an appropriate shift in the x-variable, the pseudo-di�erential operator �[V ] is given by�[V ]w = �!20x � r�w: (3.1)The QFP equation thus simpli�es to@tw + � � rxw � !20x � r�w = Lqw x; � 2 Rd ; t 2 R+ (3.2)w(t = 0; x; �) = w0(x; �); (3.3)which can be equivalently written in the more compact form@tw = div(x;�) �Dr(x;�)w + P (x; �)w� ; (3.4)w(0; x; �) = w0(x; �); (3.5)where the di�usion matrix D and the vector-valued drift P are given byD := �DqqIId DpqIIdDpqIId DppIId� ; P (x; �) := � ��!20x+ 2
�� : (3.6)Here IId denotes the idendity matrix in Rd . Note that the Lindblad condition(A1) guarantees that the di�usion matrix is positive de�nite if 
 > 0 and then(3.2) is parabolic in the phase-space coordinates (x; �) 2 R2d .3.1 Fundamental solutionNow consider only the �rst order part of the operator (3.2), resp. (3.4). Theassociated characteristic ODE's are given by_X = �; X(t = 0) = x0; (3.7)_� = �(!20X + 2
�); �(t = 0) = �0: (3.8)This system de�nes the characteristic 
ow �t(x0; �0) = [Xt(x0; �0); _Xt(x0; �0)]in phase space Rdx � Rd� . This 
ow can be explicitly calculated, depending onthe size of the friction constant 
.Lemma 3.1. Consider the system (3.7), (3.8) with 
 � 0, then the dissipative
ow �t : R2d ! R2d is given by:1. If 0 � 
 < !0, then, with ! := p!20 � 
2,�t(x0; �0) = e�
t! �x0(! cos(!t) + 
 sin(!t)) + �0 sin(!t);�0(! cos(!t)� 
 sin(!t))� x0!20 sin(!t)�: (3.9)



Long time behavior of QFP 72. If 
 > !0, then, with ! := p
2 � !20,�t(x0; �0) = e�
t! �x0(! cosh(!t) + 
 sinh(!t)) + �0 sinh(!t);�0(! cosh(!t)� 
 sinh(!t))� x0!20 sinh(!t)�:(3.10)3. If 
 = !0 then�t(x0; �0) = e�
t�(
t+ 1)x0 + t�0; (1� 
t)�0 � 
2tx0�: (3.11)Proof. The proof follows from straightforward calculations.Now, using lemma 2.1, we obtain an explicit representation of Green's func-tion G of the QFP equation with harmonic oscillator potential, depending onthe size of 
.Proposition 3.1. Let 
 � 0 and let conditions (A1), (A3) hold, then theGreen's function G associated to (3.2) is, for every �xed t > 0, a pointwisepositive function, given byG(t; x; �; x0; �0) = e2d
tF (t;X�t(x; �)� x0; _X�t(x; �)� �0); (3.12)with F (t; x; �) = exp�� �(t)jxj2+�(t)j�j2+�(t)(x��)4�(t)�(t)��2(t) �(2�)d(4�(t)�(t) � �2(t))d=2 2 C1(R+ ;S(Rdx � Rd� )):(3.13)In (3.12) we denote by X�t; _X�t the components of the inverse characteristic
ow ��t, which satis�es ��t ��t = id:��t(x; �) = [X�t(x; �); _X�t(x; �)]:The associated functions �; �; � : R+ ! R are de�ned by the following expres-sions:�(t) := Z t0 �Dqq�2(s) +Dpp�2(s) + 2Dpq�(s)�(s)�ds; (3.14)�(t) := Z t0 �Dqq _�2(s) +Dpp _�2(s) + 2Dpq _�(s) _�(s)� ds; (3.15)�(t) := 2 Z t0 �Dqq�(s) _�(s) +Dpp�(s) _�(s) +Dpq dds (�(s)�(s))� ds; (3.16)where the functions �; � : R+ ! R are given by:�(t) := d�1 divx (X�t(x; �)) ; �(t) := d�1 div� (X�t(x; �)) : (3.17)Proof. The proof is similar to the calculations given in [Bo], [Ho]. First note thatby de�nition of � and �, we can write X�t(x; �) = �(t)x+�(t)�. Thus if G is thefundamental solution of (3.2), the linear transformation (3.12) guarantees that



Long time behavior of QFP 8F has to be a fundamental solution of the following PDE with time dependentcoe�cients@tF (t; x; �) = �d�dt (t)�x + d�dt (t)�� � d�dt (t)rx � r��F (t; x; �):where the functions �; �; � are calculated depending on the choice of 
. A Fouriertransform now shows that(FF )(t; k; �) � F̂ (t; k; �) := Z ZRd�Rd F (t; x; �)e�i(x�k+���) dxd�is a solution of@tF̂ (t; k; �) = ��d�dt (t)jkj2 + d�dt (t)j�j2 � d�dt (t)(k � �)� F̂ (t; k; �):This equation can easily be integrated and thus, using that F̂ (t; 0; 0) = 1 for allt � 0, we obtainln�F̂ (t; k; �)� = � ��(t)jkj2 + �(t)j�j2 � �(t)(k � �)� :After some lengthy and tedious calculations (where one checks that 4�� � �2),an inverse Fourier transform givesF (t; x; �) = (2�)�2d Z ZRd�Rd ei(x�k+���)F̂ (t; k; �)dkd�= (2�)�d e� jxj24�(4��)d=2 ZRd e�i �2� (x��)� 14� (4����2)j�j2+i���d�= exp�� �(t)jxj2+�(t)j�j2+�(t)(x��)4�(t)�(t)��2(t) �(2�)d(4�(t)�(t) � �2(t))d=2 ;which is the desired result.Note that the quantum mechanical e�ects in F and consequently in G onlyenter in form of the constants Dqq; Dpq � �h2, which appear in the auxiliaryfunctions �; �; �. In other words we obtain Green's function for the classicalFokker-Planck equation in a square-well potential by setting Dqq = Dpq = 0 inthe above expressions. The pointwise positivity of G is a consequence of theminimum principle for parabolic equations of Fokker-Planck type [Ev].From the above proposition we draw the following consequences (among whichwe obtain the conservativity of the quantum dynamical semigroup, associatedto the harmonically con�ned QFP equation).Corollary 3.1. Let 
 � 0 and assume (A1)-(A3). Then for every initialcondition w0 2 Lp(Rdx � Rd� ) with 1 � p < 1, there exists a unique classicalsolution w 2 C(R+0 ;Lp(Rdx�Rd� )) \ C1(R+ ;C1(Rdx�Rd� )) withM(t) = M0 � 1.Moreover if w0, n0 are non-negative a.e., so are w(t; �), n(t; �), for all t 2 R+ .Proof. For convenience we use the notation: y := (x; �) as well as y0 := (x0; �0).With the following linear change of variablesG(t;�t(y); y0) = e2d
tF (t; y � y0) 2 C1(R+ ;S(R2d ));



Long time behavior of QFP 9we can express our solution in the formw(t;�t(y)) = e2d
t(w0 � F (t; y)):A straightforward computation now shows that the Jacobian determinant of themapping �t(�) is given bydet�@�t(y)@y � = exp(�2d
t):With these preparations and using Young's inequality [LiLo], we obtaink w(t) kp = k w0 � F (t) kp � k w0 kp k F (t) k1 <1;since for each �xed t 2 R+ : F (t; �) 2 S(R2d ) � L1(R2d ). More precisely we havekF (t) kpp = ZR2d jF (t; y)jp dy = p�1;for all 1 � p < 1. For p = 1 this implies, after a simple calculation, thatM(t) = M0 � 1, by (A2). Since G(t; �) is pointwise positive, we clearly obtainthat if w0, resp. n0 are a.e. non-negative, so are w(t; �), n(t; �).Remark. If the initial condition w0 is the Wigner transform of a pure quantumstate  0, it is well known [Hu], [LiPa] that w0 � 0 pointwise, if and only if  0 isa Gaussian. A similar characterization for mixed states has not been found yet.From the above result it is easy to deduce the conservativity (i.e. conservation ofhermiticity, positivity and normalization of the density matrix �) of the quantumdynamical semigroup corresponding to (3.2), using the inverse Wigner transform�(x; y; t) = (2�)�d ZRdw�x+ y2 ; �; t� ei��(x�y)d�; (3.18)which is de�ned in the sense of the usual L2-Fourier transform [Fo], [LiLo].3.2 Stationary states.As in the classical case, we expect that the competing e�ects of the con�ningpotential plus the positive friction and the dissipating behavior of the operatorresult in a thermal equilibrium state as t!1.De�nition 3.1. A (thermal) equilibrium state is a steady state, i.e. stationarysolution w 2 L2(Rdx � Rd� ) of the QFP equation (2.5), such thatJ(x) = ZRd(� �Dqqrx) w(x; �)d� = 0: (3.19)In principle it could be possible that there exist stationary solutions of the QFPequation, which are not equilibrium states, however the following propositionand corollary show that this is not the case.Furthermore, we shall see that the physical intuitive assumption, that the massof the initial state is equal to the mass of the steady state, guarantees its unique-ness.



Long time behavior of QFP 10Proposition 3.2. Let 
 > 0, !0 > 0 and assume (A1), (A3), then the uniquesolution w1 of the stationary QFP equation, satisfyingM1 := ZRd ZRdw1(x; �) dxd� = 1; (3.20)is given by the following non-isotropic Gaussian functionw1(x; �) = 
!0(2�)dpQ exp�� 
QhQ11!20jxj2 + 2Q12!0x � � +Q22j�j2i� ;(3.21)such that w1 2 S(Rdx � Rd� ), with Q := Q11Q22 �Q212 andQ11 := Dpp + !20Dqq ; (3.22)Q12 := 2!0
Dqq; (3.23)Q22 := Dpp + !20Dqq + 4
(Dpq + 
Dqq): (3.24)Proof. The proof is much simpler in Fourier-space where the steady state ŵ1is explicitly given byŵ1(k; �) = exp�� Dpp4
!20 (jkj2 + !20 j�j2)� Dpq!20 jkj2 �Dqq�( 
!20 + 14
 ) jkj2 + !204
 j�j2 + k � ��� :First it is straightforward to check that this is indeed a solution of the Fouriertransformed stationary QFP equation!20� � rkŵ1 + (2
� � k) � r�ŵ1 = � �Dppj�j2 +Dqq jkj2 + 2Dpqk � �� ŵ1and then that it satis�es the Fourier transformed mass normalization conditionRR w1dxd� = 1, i.e.ŵ1(0; 0) = 1: (3.25)Thus, it remains to prove the uniqueness of the steady state. To do so weconsider the corresponding characteristic system_k = !20�; k(s = 0) = k0 (3.26)_� = 2
� � k; �(s = 0) = �0: (3.27)Having in mind that, by assumption, 
 > 0 we check that the real parts ofthe eigenvalues �1;2 := 
�p
2�!20 of this system are positive, which, by thestandard theory of ODE's, implies that (k; �) = (0; 0) is a source of the charac-teristic 
ow (a similar argument holds if 
 = !0). Thus the condition (3.25) isnecessary and su�cient to guarantee the uniqueness of the solution ŵ1.From the above proposition we draw the following consequences:Corollary 3.2. Under the same assumptions as above we have:1. The state w1 is also an equilibrium state, i.e. J1(x) = 0 for all x 2 Rd .



Long time behavior of QFP 112. If either !0 = 0 (free motion case) or 
 = 0 (frictionless case) or both areequal to zero, no nontrivial L1-steady state exists.Proof. It is a lengthy but straightforward calculation to show that the current-density J1 associated to w1 vanishes identically.In the limiting cases 
 = 0 or !0 = 0, we consider the characteristic curves givenby the ODE system (3.26), (3.27). Along these curves the steady state variesaccording toddsŵ1(ks; �s) = �#s(k0; �0) ŵ1(ks; �s); (3.28)where �s = �s(k0; �0), ks = ks(k0; �0) denote the (vector valued) characteristiccurves starting for s = 0 at the point (k0; �0). By #s(k0; �0), we mean#s(k0; �0) := Dppj�s(k0; �0)j2 +Dqq jks(k0; �0)j2 + 2Dpq(ks � �s)(k0; �0):We integrate equation (3.28) and obtain the Fourier transformed steady stateparametrized by s 2 Rŵ1(ks(k0; �0); �s(k0; �0)) = ŵ1(k0; �0) exp�� Z s0 #� (k0; �0) d�� : (3.29)In case the potential vanishes, i.e. !0 = 0 (and 
 � 0), we have for all s 2 Rthat ks(k0; �0) = k0 (free motion) and�� (k0; �0) = (�0 � k0� if 
 = 0;�0 exp(2
�)� k02
 if 
 > 0.Now let !0 = 
 = 0 and set k0 = 0 in equation (3.29). We obtainŵ1(0; �0) = ŵ1(0; �0) exp ��Dppj�0j2s� ; 8 �0 2 Rd ; s 2 R;which impliesŵ1(0; �0) = 0; 8 �0 2 Rd ;in contradiction to (3.25). The same type of argument holds in the case !0 = 0,
 > 0, if we set �0 = k0=2
 in equation (3.29).In the frictionless case, i.e. 
 = 0, !0 > 0, the characteristics are circles inthe (k; �) plane. Thus for s = 2�=!0 we have (ks(k0; �0); �s(k0; �0)) = (k0; �0).However if we integrate over one period, i.e. setting s = 2�=!0 in (3.29), weobtain for all k0; �0 2 Rdŵ1(k0; �0) = ŵ1(k0; �0) exp�� �!30 (Dpp + !20Dqq) (jk0j2 + !20 j�0j2)�which clearly implies, since Dpp; Dqq > 0, that ŵ1 identically vanishes.The above corollary in particular shows that, as expected, the presence of apositive friction together with a con�ning potential are crucial to guarantee theexistence of an admissible, i.e. with �nite mass, equilibrium state.



Long time behavior of QFP 12Note that although the solution w of (2.5) in general will not be nonnegative,the steady state w1 is nevertheless a pointwise positive function, because ofAssumption (A2). The associated density matrix �1 is a particular example ofa mixed quantum state with positive Wigner transform. It is explicitely given by�1(x; y) = 
!0(16�3)d=2p
Q22 e� 14
Q22 [
2!20(x+y)2+Q(x�y)2]+i!0 Q12Q22 � x2�y22 �:(3.30)Observe that the equilibrium density n1, which is obtained from the diagonal(i.e. x = y) of the steady state density matrix �1, is a real valued Gaussianfunction.Remark. As a special limit case, we observe that in the classical limit, i.e.Dqq = Dpq = 0, the equilibrium state simpli�es to the well known station-ary solution wcl1 of the classical kinetic Fokker-Planck equation (2.20) with aharmonic oscillator potential (c.f. [Ri]), i.e.wcl1(x; �) = !0
(2�)dDpp e� 
Dpp (j�j2+!20 jxj2): (3.31)Note that, in contrast to the classical case, the quantum steady state is not afunction of the classical energyH(x; �) := 12 j�j2 + 12!20 jxj2: (3.32)For the classical kinetic FP equation, the fact that wcl1 = wcl1(H), implies thatthe transport and the classical FP scattering operator vanish independentlywhen applied to wcl1. In our quantum mechanical framework this is no longertrue, since there the steady state w1 results from a cancellation of the transportoperator and the scattering term Lq .4 Long time behaviorWe are now in the position to describe the long time behavior of the linear QFPequation in the cases were both friction and an external potential of harmonicoscillator type are present, and in cases where one is missing. We will start withthe latter situation.4.1 Dispersion estimates in the uncon�ned caseWe want to address the uncon�ned or dispersive cases, i.e. either 
 = 0 or!0 = 0 (or both). By comparison with the classical FP equation, we expectthat the particles escape to in�nity and thus that the macroscopic density ndecays to 0 as t!1. More precisely we have the following theorem.Theorem 4.1. Let be either 
 = 0 or !0 = 0, or both, and assume (A1), (A3):1. If w0 2 L1 \ L2, then the solution w of the QFP equation satis�esk w(t) kp � Cp Rw(t)� d2q k w0 k1 ; 1 � p �1; (4.1)



Long time behavior of QFP 13where Cp is a constant independent of w0, p�1 + q�1 = 1 andRw(t) := e�4
t(4�(t)�(t) � �2(t)); (4.2)which is a pointwise positive function with Rw(t) !1 as t!1.2. Consequently we have for the corresponding density, thatk n(t) kp � Cp Rn(t)� d2q k w0 k1 ; 1 � p � 1; (4.3)where again the rate Rn(t) !1 as t!1. ExplicitlyRn(t) := 2��(t)~�2(t) + �(t)~�(t) ~�(t) + �(t) ~�2(t)� ; (4.4)using ~�(t) := d�1 divx0 (Xt(x0; �0)) ; ~�(t) := d�1 div�0 (Xt(x0; �0)) :Proof. The estimate in claim no. 1 is trivial in the case p = 1 from the formulaof the fundamental solution in (3.12) and (2.21). The estimate for p = 1 is dueto the following property of the Green's functionZ ZRd�RdG(t; x; �; x0; �0)dx0 d�0 = 1and a trivial estimate over (2.21). The estimates for 1 < p < 1 are thenobtained by interpolation. The function Rw(t) can be computed explicitly ineach of the three cases and is given by:1. If !0 > 
 = 0, then with ' = '(t) = 2 t !0,Rw(t) = 14 �D2qq + 1!40 D2pp� �'2 + 2 cos'� 2�+ 2!20 D2pq (cos'� 1) + 12!20 DppDqq �'2 � 2 cos'+ 2� :2. If 
 > !0 = 0, then with � = �(t) = e�2 t 
 ,Rw(t) = 14 
 4 (D2pp + 4 
 DppDpq) � t 
 (1� �2)� (1� �)2�� 1
2 D2pq(1� �)2 + t
 Dqq (1� �2)3. If 
 = !0 = 0, thenRw(t) = � 4D2pq t2 + 4DppDqq t2 + 13 D2pp t4 :In all cases, Rw diverges as t!1 and thus claim no. 1 is proved.To prove claim no. 2 we �rst compute the integral of the fundamental solutionw.r.t. �, which givesZRdG(t; x; �; x0; �0) d� = R�d=2n (t) N  x�Xt(x0; �0)pRn(t) ! ; (4.5)



Long time behavior of QFP 14where Xt is de�ned as in lemma 3.1 andN (�) := (2�)�d=2 exp���22 � :We can then deduce a formula for the evolution of the macroscopic density,using (3.12), (2.21) and the above computation (4.5), to obtainn(t; x) = R�d=2n (t) Z ZRd�RdN  x�Xt(x0; �0))pRn(t) ! w0(x0; �0) dx0 d�0:The dispersion estimates are then straightforward from this expression. On theother hand, the function Rn(t) again can be computed explicitly:1. If !0 > 
 = 0, then with ' = '(t) = 2 t !0,2!30 Rn(t)=2!0Dpq (1� cos') +Dpp ('� sin') + !20 Dqq ('+ sin') :2. If 
 > !0 = 0, then with � = �(t) = e�2 t 
 ,8
3Rn(t)=Dpp �4�+ 4
t� 3� �2�+ 16
3tDqq + 8
Dpq (�+ 2
t� 1) :3. If 
 = !0 = 0, thenRn(t)=2Dqq t+ 2Dpq t2 + 23 Dpp t3:In all three cases Rn diverges as t!1 and thus claim no. 2 is also proved.The behavior at t = +1 of the rate functions can be obtained directly fromthe explicit computations in the previous result, depending on the di�usionconstants. In the following corollary we will consider only the physical mostimportand case, namely Dpp > 0.Corollary 4.1. Assume Dpp > 0 and (A1), (A3), then we, have as t! +1:1. If !0 > 
 = 0, then Rw(t) = O(t2) and Rn(t) = O(t).2. If 
 > !0 = 0, then Rw(t) = O(t) and Rn(t) = O(t).3. If 
 = !0 = 0, then Rw(t) = O(t4) and Rn(t) = O(t3).Remark. The computation of n can also be used to measure the convergencerates towards the steady state macroscopic density n1 in the con�ned case.This computation however is quite involved and we leave the details to thereader, since we will take a more elegant approach in the next subsection.Nevertheless the advantage of such an explicit calculation would be that onecan prove exponential decay of the solution, even for the classical FP equation(this can also be seen by comparison with spectral theoretical approaches [Ri]),whereas the entropy method used in section 4.2 only gives a suboptimal rate inthis case [DeVi] .



Long time behavior of QFP 154.2 Exponential decay towards equilibriumWe now assume the presence of friction and of the con�ning potential. Likein the classical case, we expect exponential decay of the solution towards theequilibrium state, which is usually proved using spectral theory.However in this work we shall follow a di�erent approach, the so-called entropy-entropy-dissipation method for classical FP type equations (see [AMTU] andreferences therein). As we shall see it can be successfully applied in our quantummechanical context too (for an overview of the classical applications, see [MaVi]).First let us rewrite the drift-vector P given by (3.6) in the following wayP (x; �) = D(rA(x; �) + F (x; �)); (4.6)where the gradient is taken w.r.t. (x; �) 2 R2d and A is de�ned as the normalizedpotential appearing in the expression of the equilibrium state, more precislyw1(x; �) � exp (�A(x; �)) : (4.7)Consequently the QFP equation (3.2) takes the standard form of a non-sym-metric drift-di�usion equation@tw = div [D(rw + w(rA+ F ))] ; t 2 R+ (4.8)w(t = 0; x; �) = w0(x; �): (4.9)The vector �eld F is explicitly given byF (x; �) := D�1P (x; �) �rA(x; �); (4.10)where D�1 is the inverse of the di�usion matrix, A is de�ned by (4.7) and P isthe drift given in (3.6).The rewritten QFP equation (for harmonic oscillator potentials) with equilib-rium state given by (4.7) can now be identi�ed as a special case of FP typeequations, see [AMTU]. Therefore we introduce the concept of relative entropiesin the same sense as in the quoted work:De�nition 4.1. Let A be either R or R+ . Let ' 2 C( �A) \ C4(A) satisfy'(1) = 0; '00 � 0 with '00 6= 0 and ('000)2 � 12'00'IV on A. (4.11)Assume moreover that f 2 L1(Rn ), g 2 L1+(Rn ) with RRn f dx = RRn g dx = 1and f=g 2 �A g(dx) a.e. Thene'(f j g) := ZRn '�fg� g(dx) (4.12)is an admissible relative entropy of f w.r.t. g and generating function '.Two relative entropies which are frequently used are the logarithmic relativeentropy, associated to the generating function'1(�) := � ln�� �+ 1; � 2 R+ : (4.13)and the quadratic relative entropy with generator'2(�) := k(�� 1)2; � 2 R; k > 0: (4.14)



Long time behavior of QFP 16Indeed it is known, see [AMTU], that (up to a positive multiplicative constant)for every admissible entropy generator ', there exist constants K1, K2 > 0 suchthat for all � 2 R+ , it holds thatK1'1(�) � '(�) � K2'2(�): (4.15)Remark. The above de�ned entropies should not be confused with the quantummechanical von Neumann entropy S := �Tr(R lnR), where R is the densityoperator of the particle ensemble [Th] (also note that in contrast to the physicalconvention the minus sign in front of (4.12) is dropped).There is however a notion of entropy for quantum states, called Wehrl entropy[We], which is closely related to the logarithmic entropy de�ned above (usingthe pointwise nonnegative Husimi transform of w, see, e.g., [LiPa]) and whichcan be interpreted as a measure of coherence and localization of quantum states.For details, see [AnHa], [GnZy], [SlZy] and the references given therein.Since the solution of the QFP equation in general is not pointwise positive, itseems that we need to look for an admissible entropy on all of R. This wouldimply, see [AMTU], that the the only admissible entropy useful for our purposeis the quadratic one (4.14). We circumvent this shortcoming by decomposingthe initial condition w0 into its negative and positive parts. More precisely wewrite w0(x; �) = w+0 (x; �)� w�0 (x; �) a.e. (4.16)where now w+0 , w�0 are both non-negative functions with mass M+0 , M�0 respec-tively. Clearly condition (A2) implies1 = M+0 �M�0 : (4.17)Having in mind that the QFP equation is linear, we denote byw�(t; x; �) := Z ZRd�Rdw�0 (x0; �0) G(t; x; �; x0; �0) dx0d�0 (4.18)the mild solution of (4.8) corresponding to w�0 . Corollary 2.1 implies thatw�(t; �) � 0 a.e. and we shall now apply the entropy-entropy-dissipation methodto each of the two functions w+, w�. Note that the steady state associated tow�(t; �) is given by w�1 = M�0 w1.In order to use the results established in [AMTU], we �rst need to check thatthe following property is ful�lled.Lemma 4.1. Assume 
 > 0, !0 > 0 as well as (A1), (A3), y := (x; �) 2 R2d .Then it holds thatdivy (DFw1) = 0 on R2d (4.19)where F is de�ned by (4.10).Proof. To prove the claim, we note, using equation (4.7), that condition (4.19)is equivalent todivy (Drw1 + Pw1) = 0;which is the stationary QFP equation for potentials of the form (A3). Thus theclaim is true by de�nition of A;F and w1.



Long time behavior of QFP 17With these preparations we can now state the main result of this section.Theorem 4.2. Assume 
 > 0, !0 > 0 and assume (A1)-(A3). Let the initialdata w0 be such that w0(x; �) = w+0 (x; �) � w�0 (x; �) a.e., w�0 2 L1 \ L2 andassumee'(w�0 jM�w1) <1: (A4)Then there exists a � > 0 such thate'(w�(t; �) jM�0 w1) � e�2�te'(w�0 jM�0 w1); t > 0: (4.20)As a consequence, the solution of (3.2) converges exponentially towards the equi-librium state. More precisely it holds that:1. If e'1(w�0 j w1) <1, with '1 de�ned in (4.13), thenk w(t; �) � w1k1 � Ce��t; C 2 R+ ; t > 0: (4.21)2. More generally, if e'2(w�0 j w1) <1, with '2 de�ned in (4.14), thenk w(t; �) � w1kp � Ce��t C 2 R+ ; t > 0; (4.22)with 1 � p � 2.Proof. The proof of the �rst claim (4.20) is a consequence of the following convexSobolev inequality [AMTU] (in which we use the notation d�1 = �1 dx)ZR2d '� ��1� d�1 � 12� ZR2d '00� ��1� ���� r� ��1�����2 d�1;which holds for every admissible entropy generator ' (c.f. de�nition 4.1), everyfunction � 2 L1(R2d), with M = M1 and �1 := exp(�A(x; �)) 2 L1+(R2d ),with uniformly convex potential A, i.e.@2A@(x; �)2 � �1II2d; (4.23)where �1 > 0 and II2d denotes the identity matrix in R2d . Using this inequality,we can now estimate (recall that w�1 = M�w1)ZR2d '�w�w�1� dw�1 � 12��1 ZR2d '00 �w�w�1�r>�w�w�1�Dr�w�w�1� dw�1;where � > 0 is the smallest eigenvalue of D given by� := 12 �Dpp +Dqq �q(Dpp �Dqq)2 + 4D2pq� ; (4.24)since by de�nition of �, it holds that � I � D. Provided lemma 4.1, the results of[AMTU] imply the exponential decay of the relative entropy with a rate � � ��1and thus (4.20) is proved.



Long time behavior of QFP 18Using the well knownCsisz�ar-Kullback inequality [AMTU], [Cs], [Ku], we furtherobtaink w�(t; �)�M�0 w1k1 � Ke��t; K 2 R+ ; t > 0:Since by (A2) we have 1 = M+0 �M�0 , this implieskw(t; �)� w1k1 = kw+(t; �)� w�(t; �)� (M+0 �M�0 )w1k1� kw+(t; �)�M+0 w1k1 + kw�(t; �)�M�0 w1k1� Ce��t; C 2 R+ :For entropy generators of the form (4.14), we get from (4.20)k w�(t; �)�M�0 w1k2;� � e��tk w�0 �M�0 w1k2;� 8 t > 0;where k � k2;� is the L2-norm with weight � = 1=w1, i.e.k f k22;� := Z ZRd�Rd jf(x; �)j2w�11 (dx; d�):As above, the use of the triangle inequality allows us to conclude that exponen-tial decay (with rate �) of w holds in this weighted L2-norm. Since 1=w1 � 1pointwise, we have k f k2 � k f k2;� (here we have used the Lindblad condition(A1) to show that the constant in front of 1=w1 is indeed greater than 1).This implies exponential decay in the usual L2-norm and thus, by interpolation,we obtain the exponential convergence of w towards the steady state in allLp-norms with 1 � p � 2.It should be noted, that the main drawback of the above theorem is the factthat it only holds for initial data with positive and negative part bounded inrelative entropy (A4). Furthermore one should have in mind that the abovetheorem fails, if 
 = 0 or !0 = 0, since then A is no longer uniformly convex.However we have already seen that in these cases no �nite-mass steady state,di�erent from zero, exists.The precise value of the rate � can be obtained by the following transformation.De�ne a new potential ~A by~A(~x; ~�) := A�pD (x; �)>� ; (4.25)where pD is the square root of D in the sense of positive de�nite matrices.Then, it holds that@2 ~A@(~x; ~�)2 � � I; (4.26)which gives the optimal rate � as the smallest eigenvalue of the Hessian of ~A.For details, see [AMTU] or [Ri].Remark. In contrast to our result, the convergence to the equilibrium state forclassical kinetic FP equations (2.20) is, by similar entropy methods, obtainedwith a suboptimal rate of order O(t�1), see [DeVi]. This is due to the fact,that for the classical FP equation, in addition to the thermal equilibrium state
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