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I - The equation

∂ft

∂t
+v·∇xft−F [ft]·∇vft = ∆vft+∇v·(ft(A(v)+B(x))), t > 0, x, v ∈ Rd (V FP )

where

F [ft](x) = C ∗x ft(x) =

∫
Rd

C(x− y) ft(y, w) dy dw

Interpretation 1 : if f0 is a density on R2d and if (x(0), v(0)) ∼ f0, let
dx(t)

dt
= v(t)

dv(t)

dt
= −F [ft](x(t)) +

√
2

dB(t)

dt
− A(v(t))−B(x(t)).

where (x(t), v(t)) ∼ ft. Then ft evolves according to (VFP).
Interaction force on x(t) is

F [ft](x(t)) =

∫
Rd

C(x(t)− y) ft(y, w) dy dw



Interpretation 2 :
(VFP) can be seen as the limit behaviour of the N particle system

dxi(t)

dt
= vi(t)

dvi(t)

dt
= − 1

N

N∑
j=1

C(xi(t)− xj(t)) +
√

2
dBi(t)

dt
− A(vi(t))−B(xi(t))

for 1 ≤ i ≤ N where
1

N

N∑
j=1

C(xi(t)− xj(t)) is the drift term generated no more by

the distribution ft in the kinetic level, but by the ”particle level distribution”

1

N

N∑
i=1

δ(xi(t),vi(t))

called empirical measure.



II - Trend to equilibrium

1.1. Recall the basics : the Fokker-Planck equation

∂ft

∂t
= ∆ft +∇ · (ft(∇V (v)), t > 0, v ∈ Rd

Interpretation : ft is the law of v(t) where dv(t) =
√

2dBt −∇V (v(t)) dt
Long time behaviour for V convex : ft → e−V

3 ways of quantifying the convergence :

1. L2 argument / Poincaré inequality : estimate

∫ ∣∣∣ ft

e−V
− 1

∣∣∣2e−V dv

Poincaré inequality for e−V implies L2 exp convergence :∫ ∣∣∣ ft

e−V
− 1

∣∣∣2e−V dv ≤ e−2λt

∫ ∣∣∣ f0

e−V
− 1

∣∣∣2e−V dv

2. L ln L argument / log Sobolev inequality ([Bakry-Emery]) : estimate

Ent(ft|e−V ) =

∫
ft

e−V
ln

ft

e−V
e−V =

∫
ft ln ft +

∫
fV

Log Sobolev inequality for e−V implies entropic convergence whence L1 convergence :

Ent(ft|e−V ) ≤ e−2λt Ent(f0|e−V )



3. in Wasserstein distance : estimate W2(ft, e
−V )

* length space / gradient flow argument
[Carrillo-McCann-Villani 04, Ambrosio-Gigli-Savaré 06]
* by hand
Stronger assumption on V : Hess V (v) ≥ λI , but extends to forces a(v) which are not
gradients, for which the steady state is not known and there is no Liapunov functional.

1.2. Extensions
1. L2 argument extends to inhomogeneous situations by hypocoercivity techniques
[Villani 09], [Dolbeault-Mouhot-Schmeiser 09]
2. L ln L argument extends to
* nonlinear equations such as granular media equations : [Carrillo-McCann-Villani 03]
* linear VFP equation : [Desvillettes-Villani 01], [Villani 09]
* selfconsistent VFP in the torus for small potentials : [Villani 09]
3. Wasserstein distance argument extends to
* granular media equation : [Carrillo-McCann-Villani 04] or by hand
* selfconsistent VFP : now



1.3. Trend to equilibrium for VFP

∂ft

∂t
+ v · ∇xft − F [ft] · ∇vft = ∆vft +∇v · (ft(A(v) + B(x))), t > 0, x, v ∈ Rd

where

F [ft](x) = C ∗x ft(x) =

∫
Rd

C(x− y) ft(y, w) dy dw

Theorem For linear like A(v) and B(x), small F , there exists λ such that

W2(ft, gt) ≤ e−λt W2(f0, g0)

for all solutions ft and gt with finite second moment in x, v.
In particular there exists a unique steady state f∞ and all solutions converge exp. fast
to it.

Remark Here W2 is not defined by the usual cost |x − y|2 + |v − w|2 but by the
twisted cost

a |x− y|2 + (x− y) · (v − w) + |v − w|2

with a, b depending on A, B and C. For the usual distance we obtain

W2(ft, gt) ≤ Ce−λt W2(f0, g0)



Remark

This result gives convergence in a weak sense, not in L1 norm as in [Villani 09], but

* holds in a noncompact case (not the torus)

* shows existence and uniqueness of stady state, does not use it

* is also a stability result for all solutions

* is really simple



III - The particle system


dxi(t)

dt
= vi(t)

dvi(t)

dt
= − 1

N

N∑
j=1

C(xi(t)− xj(t)) +
√

2
dBi(t)

dt
− A(vi(t))−B(xi(t))

for 1 ≤ i ≤ N , with initially (xi(0), vi(0)) ∼ f0, for instance independent

For all t > 0 the particles are correlated, but for N large :

1. they get independent, in particular law(2 particles) ∼ law(1 particle)⊗2

2. by symmetry they all have the same law (true for all N)
3. law(1 particle) ∼ ft

4. the law of one particle is the expectation of the empirical measure
5. the empirical measure gets deterministic
6. the empirical measure is like ft

Issue : quantify this “propagation of chaos” property



1. Particle point of view

For 1 ≤ i ≤ N the particle (xi(t), vi(t)) will look like the particle (x̄i(t), v̄i(t)) evolving
according to

dx̄i(t)

dt
= v̄i(t)

dv̄i(t)

dt
= −F [ft](x̄i(t)) +

√
2

dBi(t)

dt
− A(v̄i(t))−B(x̄i(t))

with x̄i(0) = xi(0), v̄i(0) = vi(0). These are N independent processes, all with law ft

at time t.

Quantified as

sup
t≥0

E
[
|xi(t)− x̄i(t)|2 + |xi(t)− x̄i(t)|2

]
≤ C

N

Non uniform in time estimates : classical for diffusive particle systems with Lipschitz
coefficients : McKean, Tanaka, Sznitman

Uniform in time estimates : [Malrieu 01] for granular media equations



2. PDE point of view

Goal : simulate the particle system to approximation of the solution ft of (V FP )

Look for explicit error bounds on the approximation of ft by the empirical measure :
if h is a smooth observable, bound

P
[∣∣∣ 1

N

N∑
i=1

h(xi(t), vi(t))−
∫

R2d

h ft dx dv
∣∣∣ > ε

]
in terms of h, N , t, ε and then

P
[∣∣∣ 1

N

N∑
i=1

h(xi(t), vi(t))−
∫

R2d

h f∞ dx dv
∣∣∣ > ε

]
in terms of h, N and ε, for the limit profile f∞.


