Trend to equilibrium and particle approximation for a Vlasov-Fokker-Planck equation

____ o ____

François Bolley (Université Paris-Dauphine)

____ o ___

Joint work with A. Guillin and F. Malrieu

I - The equation

II - Trend to equilibrium

III - Particle approximation

I - The equation

$$\frac{\partial f_t}{\partial t} + v \cdot \nabla_x f_t - F[f_t] \cdot \nabla_v f_t = \Delta_v f_t + \nabla_v \cdot (f_t(A(v) + B(x))), \qquad t > 0, x, v \in \mathbb{R}^d \quad (VFP)$$

where

$$F[f_t](x) = C *_x f_t(x) = \int_{\mathbb{R}^d} C(x - y) f_t(y, w) \, dy \, dw$$

Interpretation 1: if f_0 is a density on \mathbb{R}^{2d} and if $(x(0), v(0)) \sim f_0$, let

$$\begin{cases} \frac{dx(t)}{dt} = v(t) \\ \frac{dv(t)}{dt} = -F[f_t](x(t)) + \sqrt{2}\frac{dB(t)}{dt} - A(v(t)) - B(x(t)). \end{cases}$$

where $(x(t), v(t)) \sim f_t$. Then f_t evolves according to (VFP).

Interaction force on x(t) is

$$F[f_t](x(t)) = \int_{\mathbb{R}^d} C(x(t) - y) f_t(y, w) dy dw$$

Interpretation 2:

(VFP) can be seen as the limit behaviour of the N particle system

$$\begin{cases} \frac{dx_i(t)}{dt} = v_i(t) \\ \frac{dv_i(t)}{dt} = -\frac{1}{N} \sum_{j=1}^{N} C(x_i(t) - x_j(t)) + \sqrt{2} \frac{dB_i(t)}{dt} - A(v_i(t)) - B(x_i(t)) \end{cases}$$

for $1 \leq i \leq N$ where $\frac{1}{N} \sum_{j=1}^{N} C(x_i(t) - x_j(t))$ is the drift term generated no more by

the distribution
$$f_t$$
 in the kinetic level, but by the "particle level distribution"
$$\frac{1}{N} \sum_{i=1}^{N} \delta_{(x_i(t), v_i(t))}$$

called empirical measure.

II - Trend to equilibrium

1.1. Recall the basics: the Fokker-Planck equation

$$\frac{\partial f_t}{\partial t} = \Delta f_t + \nabla \cdot (f_t(\nabla V(v)), \qquad t > 0, v \in \mathbb{R}^d$$

Interpretation: f_t is the law of v(t) where $dv(t) = \sqrt{2}dB_t - \nabla V(v(t)) dt$ Long time behaviour for V convex: $f_t \to e^{-V}$ 3 ways of quantifying the convergence:

1. L^2 argument / Poincaré inequality : estimate $\int \left| \frac{f_t}{e^{-V}} - 1 \right|^2 e^{-V} dv$

Poincaré inequality for e^{-V} implies L^2 exp convergence :

$$\int \left| \frac{f_t}{e^{-V}} - 1 \right|^2 e^{-V} \, dv \le e^{-2\lambda t} \int \left| \frac{f_0}{e^{-V}} - 1 \right|^2 e^{-V} \, dv$$

2. L ln L argument / log Sobolev inequality ([Bakry-Emery]) : estimate

$$Ent(f_t|e^{-V}) = \int \frac{f_t}{e^{-V}} \ln \frac{f_t}{e^{-V}} e^{-V} = \int f_t \ln f_t + \int fV$$

Log Sobolev inequality for e^{-V} implies entropic convergence whence L^1 convergence :

$$Ent(f_t|e^{-V}) \le e^{-2\lambda t} Ent(f_0|e^{-V})$$

- **3.** in Wasserstein distance : estimate $W_2(f_t, e^{-V})$
- * length space / gradient flow argument
- [Carrillo-McCann-Villani 04, Ambrosio-Gigli-Savaré 06]
- * by hand

Stronger assumption on V: Hess $V(v) \ge \lambda I$, but extends to forces a(v) which are not gradients, for which the steady state is not known and there is no Liapunov functional.

1.2. Extensions

- 1. L^2 argument extends to inhomogeneous situations by hypocoercivity techniques [Villani 09], [Dolbeault-Mouhot-Schmeiser 09]
- **2.** $L \ln L$ argument extends to
- * nonlinear equations such as granular media equations : [Carrillo-McCann-Villani 03]
- * linear VFP equation : [Desvillettes-Villani 01], [Villani 09]
- * selfconsistent VFP in the torus for small potentials : [Villani 09]
- 3. Wasserstein distance argument extends to
- * granular media equation : [Carrillo-McCann-Villani 04] or by hand
- * selfconsistent VFP : now

1.3. Trend to equilibrium for VFP

$$\frac{\partial f_t}{\partial t} + v \cdot \nabla_x f_t - F[f_t] \cdot \nabla_v f_t = \Delta_v f_t + \nabla_v \cdot (f_t(A(v) + B(x))), \qquad t > 0, x, v \in \mathbb{R}^d$$

where

$$F[f_t](x) = C *_x f_t(x) = \int_{\mathbb{D}^d} C(x - y) f_t(y, w) dy dw$$

Theorem For linear like A(v) and B(x), small F, there exists λ such that

$$W_2(f_t, g_t) \le e^{-\lambda t} W_2(f_0, g_0)$$

for all solutions f_t and g_t with finite second moment in x, v.

In particular there exists a unique steady state f_{∞} and all solutions converge exp. fast to it.

Remark Here W_2 is not defined by the usual cost $|x-y|^2 + |v-w|^2$ but by the twisted cost

$$|a||x-y|^2 + (x-y) \cdot (v-w) + |v-w|^2$$

with a, b depending on A, B and C. For the usual distance we obtain

$$W_2(f_t, g_t) \le Ce^{-\lambda t} W_2(f_0, g_0)$$

Remark

This result gives convergence in a weak sense, not in L^1 norm as in [Villani 09], but

- * holds in a noncompact case (not the torus)
- * shows existence and uniqueness of stady state, does not use it
- * is also a stability result for all solutions
- * is really simple

III - The particle system

$$\begin{cases} \frac{dx_i(t)}{dt} = v_i(t) \\ \frac{dv_i(t)}{dt} = -\frac{1}{N} \sum_{j=1}^{N} C(x_i(t) - x_j(t)) + \sqrt{2} \frac{dB_i(t)}{dt} - A(v_i(t)) - B(x_i(t)) \end{cases}$$

for $1 \leq i \leq N$, with initially $(x_i(0), v_i(0)) \sim f_0$, for instance independent

For all t > 0 the particles are correlated, but for N large:

- 1. they get independent, in particular $law(2 \ particles) \sim law(1 \ particle)^{\otimes 2}$
- 2. by symmetry they all have the same law (true for all N)
- 3. $law(1 particle) \sim f_t$
- 4. the law of one particle is the expectation of the empirical measure
- 5. the empirical measure gets deterministic
- **6.** the empirical measure is like f_t

Issue: quantify this "propagation of chaos" property

1. Particle point of view

For $1 \leq i \leq N$ the particle $(x_i(t), v_i(t))$ will look like the particle $(\bar{x}_i(t), \bar{v}_i(t))$ evolving according to

$$\begin{cases} \frac{d\bar{x}_i(t)}{dt} = \bar{v}_i(t) \\ \frac{d\bar{v}_i(t)}{dt} = -F[f_t](\bar{x}_i(t)) + \sqrt{2}\frac{dB_i(t)}{dt} - A(\bar{v}_i(t)) - B(\bar{x}_i(t)) \end{cases}$$

with $\bar{x}_i(0) = x_i(0)$, $\bar{v}_i(0) = v_i(0)$. These are N independent processes, all with law f_t at time t.

Quantified as

$$\sup_{t>0} \mathbb{E} \left[|x_i(t) - \bar{x}_i(t)|^2 + |x_i(t) - \bar{x}_i(t)|^2 \right] \le \frac{C}{N}$$

Non uniform in time estimates : classical for diffusive particle systems with Lipschitz coefficients : McKean, Tanaka, Sznitman

Uniform in time estimates: [Malrieu 01] for granular media equations

2. PDE point of view

Goal: simulate the particle system to approximation of the solution f_t of (VFP)

Look for explicit error bounds on the approximation of f_t by the empirical measure : if h is a smooth observable, bound

$$\mathbb{P}\left[\left|\frac{1}{N}\sum_{i=1}^{N}h(x_{i}(t),v_{i}(t))-\int_{\mathbb{R}^{2d}}h\,f_{t}\,dx\,dv\right|>\varepsilon\right]$$

in terms of h, N, t, ε and then

$$\mathbb{P}\left[\left|\frac{1}{N}\sum_{i=1}^{N}h(x_{i}(t),v_{i}(t))-\int_{\mathbb{R}^{2d}}h\,f_{\infty}\,dx\,dv\right|>\varepsilon\right]$$

in terms of h, N and ε , for the limit profile f_{∞} .