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A flocking model by Cucker-Smale
Motion of m particles (e.g. birds) with (x;, §;) € R” x R":

dx; = dt,

d§; = Z U(lx — xi)(& — &) dt.
=1

Proposition (Cucker-Smale 07)

Let
Cn'fy

— R,
@+ PP~

U(x) =

103 g0, 1ism
j=1

e3> % (%) holds conditionally.



Related work

e Ha-Tadmor: From particle to kinetic and hydrodynamic
descriptions of flocking.

e Ha-Liu: A simple proof of the Cucker-Smale flocking
dynamics and mean-field limit.

e Carrillo-Fornasier-Rosado-Toscani: Asymptotic flocking
dynamics for the kinetic Cucker-Smale model.

Our work will be more related to the study of some nonlinear
Fokker-Planck equations.

e Villani: Hypocoercivity.

e Dolbeault-Mouhot-Schmeiser: Hypocoercivity for kinetic
equations with linear relaxation terms.

e Guo: The Landau equation in a periodic box.



Cucker-Smale model with non-uniform noise

We consider: x = (x1, -, xm), £ = (1, . €m),

dx; = §;dt,

m
dé; = Zu (g = x)(& — €)dt+ | 2u)  U(lx — xi[)dW,
j=1
Here, for the /*"-agent,
m
strength of noise o< d;(x Z U(lx; — xil).
Jj=1

So, randomness increases as soon as particles are closer to
each other.



Remark

Rewrite

dé; = di(x) | D> wii(x)& — & | dt ++/2ud;(x) aw;
j=1

random

~
alignment

where
m
Z wii(x) =1, 1<i<m, Vx.
j=1
So, in the model we proposed, the non-uniform noise is such

that
strength of alignment o strength of noise,

and both strengths  d;(x) for each i.

! Stabilize the existing equilibrium states !



Mean-field limit

Scale

U="2u,
m

Set o
Fm(t,x,€) = — ,Z;(S(X = xi(0)3(€ = &(t)),
and assume: 31(t) € M(R?"), s.t.
FM = () in w-M(R?") as m— oo.
Then,
Otf +&-Vuf + KU * per - Vef = KUg * prVe - (uVef 4 £F),
with

(e = [ fex @ per(ex) = [ er(exode



Nonlinear Fokker-Planck equation and equilibriums
We consider the Cauchy problem

f(0,x,€) = fo(x, §).

Assume that U is continuous in x with
U(x) = U(x|) > 0, / U(x)dx = 1.

The existing equilibrium state is a global Maxwellian (after
normalization):

M =M() = oz o (-IER/2).

Problem:

! well-posedness and large-time behavior of solutions !



Try to find a Lyapunov functional

One has J
ZE() = -D().

where

E(f) = //Rann [ﬁ + log f} fdxdg,

U %
D = [ ZREVer +erPaxdg— [ Unpgrperdx
RAxRN RN

Difficulty: it is presently unknown if D(f) is non-negative !

Remark: If U = §p, then D(f) = Dy(f) with

:// P |Ver + &fPPdxae - / loes Pdlx
R xR

:// |vgf+(g—&)f|2dxdgzo_
ny RN f pf



Observation at the linearized level
Notice D(M) = 0, and

d d?
%D(M+€¢)|e=020 de2

where L is a linear self-adjoint operator.

DM+ €¢)e=0 = 2L(—=).

El

Problem: Does L have a sign over some Hilbert space ?
(Yes ! Non positive definite !
The density-dependent diffusion is responsible
for this.)

In fact, decompose
LE=N@N*, N =Span{VM, {VM},
and define P by
P:L; >N, u—Pu={a"+b" VM,
a' = (VM, u), b= (EVM, u).



Coercivity of the linearized operator

Theorem (D.-Fornasier-Toscani 09)
—L is coercive in the sense that 3\ > 0, s.t.

1
[ Ly = A = PYE + SITab,
for any u = u(x, §), where

Jully = [ 19eutx O + (©lux, ) Pdeaxdt,
V(&) =1+I¢”
1Tabl = [ Ulx= yDIb*0 - 50y Paxdy.
Tab"(x,y) = b¥(x) = b"(y).

So, it is possible to found a perturbation theory for the
nonlinear Cauchy problem !



Remarks

e Is there any A\ > 0 s.t. for any b,
ITablig > Nbl> 2

NO! Actually, one can prove

_fTb2:-f// Ullx—vDIb(x)=b(V)2dxdy = 0.
A0t ITabllf = jnf, [ U(x=yDIb(x)=bly)dxdy

e Is there any coercivity estimate on the linearized
operator L corresponding to the equation with uniform
diffusion

Ocf + & Vxf + U per - Vef = Uk peVe - (6F) + Def 7

NO! This need a long calculation.



Reformulation
Recall

Bef + & Vuf + U pgr - Vef = U peVe - (Vef + £F),
£(0,x, &) = fo(x, §).

Set the perturbation v = u(t, x, ) by
f =M+ VMu.
Then,
Btu—i—E'VXU—I—U*pému-Vgu: Lu+T(u,u),
where
Lu=Agu+ %(2n — €2 )u+U * Pev/iiu EVM,

=:Au

:ILFPU

1
M(u,u) =Uxp sy, Lreu+ EU * Pey/y - EU-



Nonlinear asymptotical stability near equilibrium
Our goal is to prove
o stability:

36 >0, C>1s.t. if ug=M"Y2(fy — M) € Bs, where Bs
is a smooth neighborhood of zero, then

dlu e Cp([0, 00); Bes)
with u(0) = up.

local existence + a priori estimates

e rate of convergence:
How fast for u(t) — 0 in some smooth topology ?

spectral analysis + energy-spectrum method



Main results: nonlinear case

Theorem (D.-Fornasier-Toscani 09)
Let n>3,N >2[n/2] + 2. U is supposed as before. Assume

fo=M++vMuyy >0, luoll o, <8

for some 6 > 0.
(i) 3lu(t, x, €) € C([0, 00); HY,) with

f=M++vVMu >0, sup||u(1.“)||HNg < C||u0||HN£.
>0 x. x

for some C > 1.
(ii) If |\uol| z, with Zy = LZ(Ly) is bounded and ||V xuol| is small
enough, then

sup (14 £)4[u(8) gy, < € (llolligs, + luollz, ).
t>0 x.€ x.£

for some C.



Iteration

Define an approximate solution sequence (f)>_, by solving
Cauchy problems iteratively

atfm+1 + & . vxferl + U« pefm - vgferl

= U x pfmvg : (ngerl + &fm+1),
f =M+ VM

F =0 = fo = M+ vVMup,
or equivalently in terms of v"'(t, x, §):
O™+ € V™ + U b V™

= Lepu™ T (0™, 0™ ) + Au™,
m—+1 _
u |t=0 = Uo,

where m > 0, and u® = 0 is set at initial step.



Local existence

Define
ve (o, Tl HNR" x R")) :
X(0,T;: M) =
( ) sup [v()llgv <M, M+VMyv >0
0<t<T x£
Theorem

AT, > 0,6 >0, My >0 st ifug € HY; with
fO =M+ VMLIO >0, ||Llo||HN5 < €p,

then, for each m > 1, u™ is well-defined with u™ € X (0, T; Mp).
Furthermore, (U™)m>0 is a Cauchy sequence in C([0, T.]; H)’Xgl),
and the corresponding limit function denoted by u belongs to
X(0, Ty; Mp), and u is a solution to the Cauchy problem.
Meanwhile, 3 at most one solution in X(0, T.; Mp).



Uniform a priori estimate-1

Define the temporal functionals
E(U(E)) = Nu(O) gy + K1 Erree(u())
tho Y. G Y. lezef {1 - Plul?,

1<k<N 1Bl=k
la|+IBI<N

D@u(t) = Y 1621 =PYu(t)lls + D ITadZb (D)

|| +BI<N |a| <N
+Vx(a”, b”)(t)IIiXNfl,
where 0 < ko < K1 < 1, and

|gfree(u(t))| < ||U(t)||L2(HN)

Notice

E(u(t)) ~ u®)lIEm



Uniform a priori estimate-2

One can show

d

£ (®)) +AD(u(t)) < CE(u(t))D(u(t)).
Then, under the a priori assumption on smallness of

sup E(u(t)),

0<t<T

one has the Lyapunov inequality
d
Eé’(u(t)) + AD(u(t)) <O0.

forany 0 <t < T.



Global solutions: Continuity argument

Define
T =sup{t: sup [lu(s)|Zn < M}.
0<s<t X
Using
local existence + uniform a priori estimates,
then,

E(uo) ~ ||L’0||,21,NE < 1, 3M > 0 = T, = oo: global solution.



Key point: Construction of free energy functional-1

The free energy functional is responsible to obtain the
macroscopic dissipation

IVx(a", b)§

HYL

Make the macro-micro decomposition:
u(t,x, &) =Pu+{l—P}u,
Pu={a" + b - £}VM,

(VM, 1), b= (VM. u),

Define A = (A;;(*))nxn by

au

Aij(u) = /Rn(&fj — 1)VMud¢.

One can obtain a series of equations satisfied by a¥, b



Key point: Construction of free energy functional-2

Macro balance laws:
6‘ta” + VX -pY = 0,
Orbf + 0ja" — (U = bf' — bj') + U = a“bj — U = b{'a"
n
+> " 9A;({1-P}u) =0,
j=1

Evolution of high-order moments:

0:Aji({l = Pyu) + 8ib)' — U x b'b" = Aii(l + 1),

OrA;({l = P}u) + 9;b/' + 8;b' — U * bi'bj’ — U x b’ b}’

=Ajll+r), i#]
where
| =—&-V{l —P}u+ Lep{l — P}u,
1

r:U*a“Lpp{I—P}u—i—EU*b“-&{l—P}u—U*b“-Vg{I—P}u.



Key point: Construction of free energy functional-3
Define Ef,ee(u(t)) by

Erec(u() =3 3 23 [ Au(020(1 - PYyazbx

| <N-1 j i#

-3 ) Z/RHAU(GS&{I—P}u)a)?bj’dx

la|<N—-1 ij
+ > / 8%V a' - 8% b dx.
laj<n—1"R"
Then,
d u uy||2
ngree(u(t)) +>\||VX(3 ,b )HH)I(V—l
<C Y (ITad2bYIE + 1821 = P}ull?)
la|<N

+ClI(@" DY 1V (@ DY s + Y 1168 {1 = PulP).

la|<N



Representation of solutions

Consider the Cauchy problem of the linearized equation with
a nonhomogeneous source:

otu=Bu+h t>0xeR"
Ult—o = Up, x €R",

where n > 1 is the spatial dimension, h = h(t, x, ) and
up = ug(x, &) are given, and the linear operator B is defined by

B=-¢ Vy+L L=Lgp+A.

Formally, the solution can be written as the Duhamel formula

t
u(t) = eBtug +/ eBI=9)p(s)ds.
0



Main result: Linearized case

Set
_n 1 1 n m
Gam=5\4 2) "2
Theorem

Let1<q<2 n>1,andlet Z, = Lg(Li).
(i)
163 B uoll < C(1+ )7 (|18 uoll z, + 18 woll).
with m = |a — o/|.
(ii) If Ph =0, i.e. his microscopic, then

2

t
o / eB=)p(s)ds
0

t
< C/ (14t —s)72%n(lv 20 h(s)I1Z, + v 283 h(s)|*)ds,
0

with m = |a — o/|.



Spectral analysis-1
Define

g'at, k) = lla(t, k)llfg +KRe Ef e (U(t, K))

for a small constant x > 0, where

Joi#
(I — P | HU
|k
u u
T @1

Notice |, (@(t, k)| < CI|G(t, K)[%,. Then,
3

£1(a(t, k) ~ (e, K11,



Spectral analysis-2

One can show

9
ot

Alk[?
1+ k|2

'@t k) + E'((t, k) < Cllv™"2h(t, k)2,

Key idea: Make the Fourier analysis on
Ora" 4+ Vi - b =0,

n
Beb + 8;a" — (U bf' = b') + Y _8A;({l - P}u) =0,
=
atAii({I - P}U) + a,b,u = A,’,’(/ + h),
B A ({1 — PYu) + 8ibY + 9;b = Ajj(I+ h), i # .

and use Kawashima’s hyperbolic-parabolic argument. Then,
one has



Spectral analysis-3

0 |k|2 U2 0 Rul2
R k . u u
ot € gfree( (t' ))+ 4(1+ |k|2)(|a | +|b | )
]. - Re U 2 C _1/2/\ 2 ~12
e U i
< T PR+ Tl R + I - PYaE;
Combined with
10

53 Ut Kz + AR = P}aS + (1 — Re U)[b¥[?
< Cllv="2h(t, K)|7
3
The proper linear combination leads to the desired estimate.
Then,
~ 2 ~ A b2 R 2
l|a(t, k)”L? < Ce TP HUO(k)HLg"‘C/ e THK? v /h(s, k)HLgds,
0

forany t > 0 and k € R".



Rate of convergence in the nonlinear case
Write the nonlinear equation as

t
u(t) = eBtug —I—/ eBlt=9)G(s)ds,
0
where the source term G is denoted by
G="T(uu)—Uxb" Veu.
Energy-spectrum method + Weighted estimates: Use
d
(@) +2&u(t)) < Cllu(t)|?.

Lemma
If ||up|z, Is bounded, then

lu(®)I* < C(E(wo) + lluollZ, ) (L + t) 7

+C/O (14t =) 2E(u(s)E(u(s)) + €1 = P}u(s)|*]ds

+C Uotu +t—s)"7E(u(s))ds



Thanks for your attention!
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