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The Keller-Segel model of chemotaxis

The (Patlak (1953))-Keller-Segel (1970) model describing the
self-induced chemotactic movement of cells on the macroscopic
level:

* cell density o
® concentration of the chemical S
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0o+ V- (oxVS — Vo)
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subjectto o(z,t =0) = oo(x), z € R?
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The Keller-Segel model of chemotaxis

The (Patlak (1953))-Keller-Segel (1970) model describing the
self-induced chemotactic movement of cells on the macroscopic
level:

* cell density o
® concentration of the chemical S

o+ V- (oxVS—-Vo) = 0, x:=1,
_AS — 0,
subjectto o(z,t =0) = oo(x), z € R?

Poisson equation ~~» 2D Newtonian potential:

1

Slo)(x,t) = 2 /.. log |z — ylo(y,t)dy .
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Dichotomy in 2D

Formal evolution of the 2nd order moment:

d 2 M .
- Rgg(g;)%dx:%(Sw—M) with M = RQQ(ZIJ)dZIZ.
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Dichotomy in 2D

Formal evolution of the 2nd order moment:

d |z |2 M

— o(x)=——dx = — (8w — M) with M = o(x)dx.
dt Jgo

2 27'(' R2

Theorem [Jager-Luckhaus, 1992],
[Blanchet-Dolbeault-Perthame, 2006]:

° Let (1 + |z|* +logo)o(t = 0) € L1(R?)
* Then

a) M < 8t ~» global existence

b) M > 87 ~~ blow-up in finite time

Cc) M = 8m ~~ blow-up fort — o
[Blanchet-Carrillo-Masmoudi, 2007]
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What happens after blow-up?

* Regularization of the 2D Newtonian potential:

1 .
Selel(@) = -5 . log(|z —yl +e)eo(y)dy  withe >0

~ global in time smooth solutions p..
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What happens after blow-up?

* Regularization of the 2D Newtonian potential:

1 .
Selel(@) = -5 . log(|z —yl +e)eo(y)dy  withe >0

~ global in time smooth solutions p..

* Limit ¢ — 0 [Dolbeault-Schmeiser, 2008]:.
o+ V- (jlo,v] — Vo) =0

with
° a global weak solution o(t) € M7 (R?),
o defect measure v(t) € M(R?)®?,
° and flux j = j[o, v].
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Strong formulation after blow-up

Ansatz: smooth part + finite number of singularities:

o(x,t) = o(x,t) + Z M, (t)d(x — z,(t)) .

nes
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Strong formulation after blow-up

Ansatz: smooth part + finite number of singularities:

o(x,t) = o(x,t) + Z M, (t)0(x — xp(1)) .

nes
Then
M, >8rforallneS
and
_ ~ _ ~ 1 _ T — Tp
00+ V- (2VSlel = Vo) = 5:Va- ) Ma(t)p— =g =0

nes

... locally in time [Velazquez’'04].
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Numerics

* Numerical solution in the smooth regime:
Filbet’06]: finite volumes

[Morrocco’03]: mixed finite elements
Saito-Suzuki’05,07]: finite differences
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Numerics

* Numerical solution in the smooth regime:
Filbet’06]: finite volumes

[Morrocco’03]: mixed finite elements
Saito-Suzuki’05,07]: finite differences

* Our approach: Stochastic particle approximation

Z M, (t)o(x — (1))
neR
driven by the SDE
1 —
de, = —— Y My, dt +v2dB!" .
27 \:c — Ty \2

m#£n
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Numerics

* Numerical solution in the smooth regime:
Filbet’06]: finite volumes

[Morrocco’03]: mixed finite elements
Saito-Suzuki’05,07]: finite differences

* Our approach: Stochastic particle approximation

ZM O(x — xp(t))

neR
driven by the SDE

1 —

27Tm7én \:c — T \

* Movement of the singular particles (n € S):

_i M, In — Im
2T

m#£n

dt

‘xn - xm‘2 .

1, =
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Dynamical analysis

Define the discrete total mass and 2nd order moment:

M= Y M, ut)= Y Mn‘m”;t)‘ .

neRUS neRUS

Formal application of the It6-calculus, with only regular particles,

gives

et = (- 5 0 (547

neR

~~ Critical mass 8.
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Implementation

* Discretization in time: Euler-Maruyama method.

* Collision of M and m iff |Az|? < A¢2tm,

° Ensures stabllity of the algorithm (~ CFL)
© Leads to the correct dynamics: M, = Myo(x = xy,).

* Splitting of randomly chosen regular particles:

° The total number of particles is conserved.
© Good resolution of p.

* Blow-up detection: Creation of a particle with mass > 8.
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Technical issues

... how to accelerate the O(N?) algorithm?
Localization of particles:

* Near particles - exact computation

* Far particles - approximation using particle clustering

S

For huge ensembles: Fast multipole method - O(N log N), O(N)
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The algorithm

* Particle interactions:
° Clustering & Computation of centers of gravity

© Evaluation of particle interactions:
Near interactions: Particle-Particle
Far interactions: Particle-Cluster

* Collisions, splitting
* Blow-up detection

* Brownian motion
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Convergence

The Fokker-Planck equation for p" = p" (t;z1,...,2N)
corresponding to the system of NV indistinguishable particles
with mass M /N and with the regularized interaction kernel:

op™ N 1 M : N N
W—F;vxn' ———ZK(ZBn—ZBm)p —Vxnp —O,
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Convergence

The Fokker-Planck equation for p" = p" (t;z1,...,2N)
corresponding to the system of NV indistinguishable particles
with mass M /N and with the regularized interaction kernel:

Kg(mn - Qjm)pN - vxnpN =0,

Z

L 35 K5(2) :

REEED

for z € R?.

(e >0, N < )

l6—>0

“sticky particles”

> N —00

> N —00

(K _ S)€>O

l6—>0

(K — 5)

Stochastic Particle Approximation to the Keller-Segel Model in 2D — p.11/20



Simple limit: € > 0 fixed, N — o0

* BBGKY hierarchy for k-particle marginals, k. =1,..., N:

PN (t,x1,...,xL) ::/ pN(t, x1, .., xn)depr ... day .
R2(N—k)

* Boltzmann hierarchy for P, := limy_. P.

Theorem. The Boltzmann hierarchy has unique solutions

k
Pk(t,xl,...,.fl?k):le(t,CCZ‘) \V/k227
1=1

with o(t, z) := M P (¢, x) a solution to the regularized Keller-Segel

system.
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Tough limit: € — 0, then N — o0

* Technical toolbox:
°© BBGKY hierarchy, marginals

© Tight convergence, defect measures for the interaction
terms

Ln — Lm N
PN (V. — V., )od
/R% Zn — Zo|(|Tn — Zm] +-6) (Va, n)pda

* Tight boundedness of P."" uniformly in e and N;
consequently:

o PN —~ (PN, uN)whene — 0
° (PN 1Y) — (Py,vg) When N — oo

In the sense of tight convergence of measures.
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Tough limit: € — 0, then N — o0

* The Boltzmann hierarchy admits the molecular chaos

solution
k
Pyt a1,...,ax) = |[Pit @),
1=1
k
ve(tiy; oo, ak) = nity) [ Pt @)
where =

(0,v) := (M Py, M*1)
satisfies the weak formulation of the Keller-Segel system.

* But, no hope for unigueness of P,
= only the “compatibility result” possible.
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The limit ¢ — 0: Two particles

* Fokker-Planck for p® = p°(t, z,v), x,y € R?,

op* M - -
By, —E(Vﬂc—vy)'ﬂ — (Az +Ay)p” =0,
with
£ L —Y £
x? — p ZC, I
S = e Y

subject to the symmetric initial condition

p(t=0,2z,y) =pr(z,y) = pr(y, x)
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The limit ¢ — 0: Two particles

° Tight boundedness of {p*}.~q ~
p°—p  tightlyase — 0.

* Weak formulation of the limiting interaction term:

/Rz /R iz — \2p — Vy)e(z,y) de dy

—I—§E ( ) (Vg V) o(x,z)dr,

with v(x) symmetric, nonnegative and

tr(v(e)) < plz, {z}) = /R D, y)x(r — ) dy
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The limit ¢ — 0: Two particles

Two blow-up scenarios for p:
* M < 8m. L*-blow-up at x = y, but no concentration:

op M .
9t 47T(Vw_vy)'3_(Aw+Ay)p—0,
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The limit ¢ — 0: Two particles

Two blow-up scenarios for p:
* M < 8m. L*-blow-up at x = y, but no concentration:

op M .
Y _4W(vx_vy)'ﬂ_(A:ﬁ‘|‘Ay)p—0>

* M > 8m:. concentration blow-up at x = y:
p(t,x,y) = po(t,x,y) + pi1(t,x)d(x — y) with pg, p1 Smooth
governed by

by W g
ot  4dr |z —yl|?

: (vx - vy)pO - (Aa: =+ Ay)pO = 0

opp 1 M
— — —A, - :
gt 2 M L@ o)
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A general rule

It is a concurrence of two effects:

* |nteraction (attraction)
© pushing the particles together
° with strength proportional to M

* Diffusion
° pulling the particles apart
° with constant strength
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A general rule

It is a concurrence of two effects:

* |nteraction (attraction)
© pushing the particles together
° with strength proportional to M

* Diffusion
° pulling the particles apart
° with constant strength

General rule:

An aggregate of particles is stable
If and only if
Its mass is greater than 8«
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Three particles

Possible configurations:
* 3 free particles
* 1 pair + 1 free particle
* 1 triplet
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Three particles

Possible configurations:
* 3 free particles
* 1 pair + 1 free particle
* 1 triplet

Possible scenarios:
* M < 8 particles collide, but do not stick together

* 87 < M < 127: ?? (only the aggregate of three particles
can be stable)

* M > 12x: also pairs of particles are stable
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Conclusions

Thank you for your attention!
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