Stochastic Particle Approximation to the Keller-Segel Model in 2D

Jan Haškovec*, Christian Schmeiser**

*RICAM, Austrian Academy of Sciences

**Faculty of Mathematics, University of Vienna

The Keller-Segel model of chemotaxis

The (Patlak (1953))-Keller-Segel (1970) model describing the self-induced chemotactic movement of cells on the macroscopic level:

- cell density ρ
- concentration of the chemical S

$$\partial_t \varrho + \nabla \cdot (\varrho \chi \nabla S - \nabla \varrho) = 0, \qquad \chi := 1,$$

$$-\Delta S = \varrho,$$

subject to
$$\varrho(x,t=0) = \varrho_0(x), \qquad x \in \mathbb{R}^2$$

The Keller-Segel model of chemotaxis

The (Patlak (1953))-Keller-Segel (1970) model describing the self-induced chemotactic movement of cells on the macroscopic level:

- cell density ρ
- concentration of the chemical S

$$\partial_t \varrho + \nabla \cdot (\varrho \chi \nabla S - \nabla \varrho) = 0, \qquad \chi := 1,$$
$$-\Delta S = \varrho,$$

subject to
$$\varrho(x,t=0) = \varrho_0(x), \qquad x \in \mathbb{R}^2$$

Poisson equation → 2D Newtonian potential:

$$S[\varrho](x,t) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log|x - y|\varrho(y,t) \,dy.$$

Dichotomy in 2D

Formal evolution of the 2nd order moment:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^2} \varrho(x) \frac{|x|^2}{2} \, \mathrm{d}x = \frac{M}{2\pi} (8\pi - M) \qquad \text{with } M = \int_{\mathbb{R}^2} \varrho(x) \, \mathrm{d}x \,.$$

Dichotomy in 2D

Formal evolution of the 2nd order moment:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^2} \varrho(x) \frac{|x|^2}{2} \, \mathrm{d}x = \frac{M}{2\pi} (8\pi - M) \qquad \text{with } M = \int_{\mathbb{R}^2} \varrho(x) \, \mathrm{d}x \,.$$

Theorem [Jäger-Luckhaus, 1992], [Blanchet-Dolbeault-Perthame, 2006]:

• Let
$$(1 + |x|^2 + \log \varrho)\varrho(t = 0) \in L^1(\mathbb{R}^2)$$

- Then
 - a) $M < 8\pi \rightsquigarrow \text{global existence}$
 - b) $M>8\pi \leadsto \text{blow-up in finite time}$
 - c) $M=8\pi \leadsto \text{blow-up for } t \to \infty$ [Blanchet-Carrillo-Masmoudi, 2007]

What happens after blow-up?

Regularization of the 2D Newtonian potential:

$$S_{\varepsilon}[\varrho](x) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log(|x - y| + \varepsilon) \varrho(y) \, dy$$
 with $\varepsilon > 0$

 \rightsquigarrow global in time smooth solutions ϱ_{ε} .

What happens after blow-up?

Regularization of the 2D Newtonian potential:

$$S_{\varepsilon}[\varrho](x) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log(|x - y| + \varepsilon) \varrho(y) \, \mathrm{d}y$$
 with $\varepsilon > 0$

- \rightsquigarrow global in time smooth solutions ϱ_{ε} .
- Limit $\varepsilon \to 0$ [Dolbeault-Schmeiser, 2008]:

$$\partial_t \varrho + \nabla \cdot (j[\varrho, \nu] - \nabla \varrho) = 0$$

with

- \circ a global weak solution $\varrho(t) \in \mathcal{M}_1^+(\mathbb{R}^2)$,
- \circ defect measure $u(t) \in \mathcal{M}(\mathbb{R}^2)^{\otimes 2}$,
- \circ and flux $j = j[\varrho, \nu]$.

Strong formulation after blow-up

Ansatz: smooth part + finite number of singularities:

$$\varrho(x,t) = \bar{\varrho}(x,t) + \sum_{n \in \mathcal{S}} M_n(t)\delta(x - x_n(t)).$$

Strong formulation after blow-up

Ansatz: smooth part + finite number of singularities:

$$\varrho(x,t) = \bar{\varrho}(x,t) + \sum_{n \in \mathcal{S}} M_n(t)\delta(x - x_n(t)).$$

Then

$$M_n \geq 8\pi$$
 for all $n \in \mathcal{S}$

and

$$\partial_t \bar{\varrho} + \nabla \cdot (\bar{\varrho} \nabla S[\bar{\varrho}] - \nabla \bar{\varrho}) - \frac{1}{2\pi} \nabla \bar{\varrho} \cdot \sum_{n \in \mathcal{S}} M_n(t) \frac{x - x_n}{|x - x_n|^2} = 0$$

$$\dot{M}_n = M_n \bar{\varrho}(x = x_n)$$

$$\dot{x}_n = \nabla S[\bar{\varrho}](x = x_n) - \frac{1}{2\pi} \sum_{m \neq n} M_m \frac{x_n - x_m}{|x_n - x_m|^2}$$

... locally in time [Velazquez'04].

Numerics

Numerical solution in the smooth regime:
 [Filbet'06]: finite volumes
 [Morrocco'03]: mixed finite elements
 [Saito-Suzuki'05,'07]: finite differences
 ...

Numerics

Numerical solution in the smooth regime:

[Filbet'06]: finite volumes

[Morrocco'03]: mixed finite elements

[Saito-Suzuki'05,'07]: finite differences

. . .

Our approach: Stochastic particle approximation

$$\bar{\varrho}(x,t) \approx \sum_{n \in \mathcal{R}} M_n(t) \delta(x - x_n(t))$$

driven by the SDE

$$dx_n = -\frac{1}{2\pi} \sum_{m \neq n} M_m \frac{x_n - x_m}{|x_n - x_m|^2} dt + \sqrt{2} dB_t^n.$$

Numerics

Numerical solution in the smooth regime:

[Filbet'06]: finite volumes

[Morrocco'03]: mixed finite elements

[Saito-Suzuki'05,'07]: finite differences

. . .

Our approach: Stochastic particle approximation

$$\bar{\varrho}(x,t) \approx \sum_{n \in \mathcal{R}} M_n(t) \delta(x - x_n(t))$$

driven by the SDE

$$dx_n = -\frac{1}{2\pi} \sum_{m \neq n} M_m \frac{x_n - x_m}{|x_n - x_m|^2} dt + \sqrt{2} dB_t^n.$$

• Movement of the singular particles $(n \in S)$:

$$\dot{x}_n = -\frac{1}{2\pi} \sum_{m \neq n} M_m \frac{x_n - x_m}{|x_n - x_m|^2} dt.$$

Dynamical analysis

Define the discrete total mass and 2nd order moment:

$$M = \sum_{n \in \mathcal{R} \cup \mathcal{S}} M_n$$
, $u(t) = \sum_{n \in \mathcal{R} \cup \mathcal{S}} M_n \frac{|x_n(t)|^2}{2}$.

Formal application of the Itô-calculus, with only regular particles, gives

$$\frac{\mathrm{d}}{\mathrm{d}t}E[u(t)] = \left(M^2 - \sum_{n \in \mathcal{R}} M_n^2\right) \left(-\frac{1}{2\pi} + \frac{4}{M}\right).$$

 \rightsquigarrow critical mass 8π .

Implementation

- Discretization in time: Euler-Maruyama method.
- Collision of M and m iff $|\Delta x|^2 \leq \Delta t \frac{M+m}{2\pi}$.
 - $^{\circ}$ Ensures stability of the algorithm (\sim CFL)
 - Leads to the correct dynamics: $\dot{M}_n = M_n \bar{\varrho}(x = x_n)$.
- Splitting of randomly chosen regular particles:
 - The total number of particles is conserved.
 - Good resolution of $\bar{\varrho}$.
- Blow-up detection: Creation of a particle with mass $\geq 8\pi$.

Technical issues

... how to accelerate the ${\cal O}(N^2)$ algorithm? Localization of particles:

- Near particles exact computation
- Far particles approximation using particle clustering

For huge ensembles: Fast multipole method - $O(N \log N)$, O(N)

The algorithm

- Particle interactions:
 - Clustering & Computation of centers of gravity
 - Evaluation of particle interactions:

Near interactions: Particle-Particle

Far interactions: Particle-Cluster

- Collisions, splitting
- Blow-up detection
- Brownian motion

Convergence

The Fokker-Planck equation for $p^N = p^N(t; x_1, \dots, x_N)$ corresponding to the system of N indistinguishable particles with mass M/N and with the regularized interaction kernel:

$$\frac{\partial p^N}{\partial t} + \sum_{n=1}^N \nabla_{x_n} \cdot \left[-\frac{1}{2\pi} \frac{M}{N} \sum_{m \neq n} \mathcal{K}^{\varepsilon}(x_n - x_m) p^N - \nabla_{x_n} p^N \right] = 0,$$

$$L^{\infty}
i \mathcal{K}^{\varepsilon}(z) := rac{z}{|z|(|z|+arepsilon)} \qquad ext{for } z \in \mathbb{R}^2 \,.$$

Convergence

The Fokker-Planck equation for $p^N=p^N(t;x_1,\ldots,x_N)$ corresponding to the system of N indistinguishable particles with mass M/N and with the regularized interaction kernel:

$$\frac{\partial p^N}{\partial t} + \sum_{n=1}^N \nabla_{x_n} \cdot \left[-\frac{1}{2\pi} \frac{M}{N} \sum_{m \neq n} \mathcal{K}^{\varepsilon}(x_n - x_m) p^N - \nabla_{x_n} p^N \right] = 0,$$

$$L^{\infty} \ni \mathcal{K}^{\varepsilon}(z) := rac{z}{|z|(|z|+arepsilon)} \qquad ext{for } z \in \mathbb{R}^2 \,.$$

$$(\varepsilon > 0, N < \infty) \longrightarrow_{N \to \infty} (K - S)_{\varepsilon > 0}$$

$$\downarrow_{\varepsilon \to 0}$$

$$\downarrow_{\varepsilon \to 0}$$

"sticky particles"
$$\longrightarrow_{N\to\infty}$$
 $(K-S)$

Simple limit: $\varepsilon>0$ fixed, $N\to\infty$

• BBGKY hierarchy for k-particle marginals, k = 1, ..., N:

$$P_k^N(t, x_1, \dots, x_k) := \int_{\mathbb{R}^{2(N-k)}} p^N(t, x_1, \dots, x_N) dx_{k+1} \dots dx_N.$$

• Boltzmann hierarchy for $P_k := \lim_{N \to \infty} P_k^N$.

Theorem. The Boltzmann hierarchy has unique solutions

$$P_k(t, x_1, \dots, x_k) = \prod_{i=1}^k P_1(t, x_i) \quad \forall k \ge 2,$$

with $\varrho(t,x):=MP_1(t,x)$ a solution to the regularized Keller-Segel system.

Tough limit: $\varepsilon \to 0$, then $N \to \infty$

- Technical toolbox:
 - BBGKY hierarchy, marginals
 - Tight convergence, defect measures for the interaction terms

$$\int_{\mathbb{R}^{2k}} \frac{x_n - x_m}{|x_n - x_m|(|x_n - x_m| + \varepsilon)} P_k^{\varepsilon, N} \cdot (\nabla_{x_n} - \nabla_{x_m}) \varphi \, \mathrm{d}x$$

• Tight boundedness of $P_k^{\varepsilon,N}$ uniformly in ε and N; consequently:

$$P_k^{\varepsilon,N} \rightharpoonup (P_k^N, \nu_k^N) \text{ when } \varepsilon \to 0$$

$$\circ (P_k^N, \nu_k^N) \rightharpoonup (P_k, \nu_k) \text{ when } N \rightarrow \infty$$

in the sense of tight convergence of measures.

Tough limit: $\varepsilon \to 0$, then $N \to \infty$

The Boltzmann hierarchy admits the molecular chaos solution

$$P_k(t, x_1, \dots, x_k) = \prod_{i=1}^k P_1(t, x_i),$$

$$\nu_k(t; y; x_2, \dots, x_k) = \nu_1(t, y) \prod_{i=2}^{\kappa} P_1(t, x_i)$$

where

$$(\varrho,\nu):=(MP_1,M^2\nu_1)$$

satisfies the weak formulation of the Keller-Segel system.

- But, no hope for uniqueness of P_k
 - ⇒ only the "compatibility result" possible.

• Fokker-Planck for $p^{\varepsilon}=p^{\varepsilon}(t,x,y)$, $x,y\in\mathbb{R}^2$,

$$\frac{\partial p^{\varepsilon}}{\partial t} - \frac{M}{4\pi} (\nabla_x - \nabla_y) \cdot j^{\varepsilon} - (\Delta_x + \Delta_y) p^{\varepsilon} = 0,$$

with

$$j^{\varepsilon}(x,y) = \frac{x-y}{|x-y|(|x-y|+\varepsilon)} p^{\varepsilon}(x,y),$$

subject to the symmetric initial condition

$$p^{\varepsilon}(t=0,x,y) = p_I(x,y) = p_I(y,x)$$

• Tight boundedness of $\{p^{\varepsilon}\}_{\varepsilon>0} \leadsto$

$$p^{arepsilon} o p$$
 tightly as $arepsilon o 0$.

Weak formulation of the limiting interaction term:

$$\frac{M}{4\pi} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{x - y}{|x - y|^2} p \cdot (\nabla_x - \nabla_y) \varphi(x, y) \, dx \, dy
+ \frac{1}{2} \frac{M}{4\pi} \int_{\mathbb{R}^2} \nu(x) : (\nabla_x - \nabla_y)^{\otimes 2} \varphi(x, x) \, dx,$$

with $\nu(x)$ symmetric, nonnegative and

$$\operatorname{tr}(\nu(x)) \le p(x, \{x\}) := \int_{\mathbb{R}^2} p(x, y) \chi(x - y) \, \mathrm{d}y.$$

Two blow-up scenarios for p:

• $M < 8\pi$: L^{∞} -blow-up at x = y, but no concentration:

$$\frac{\partial p}{\partial t} - \frac{M}{4\pi} (\nabla_x - \nabla_y) \cdot j - (\Delta_x + \Delta_y) p = 0,$$

Two blow-up scenarios for p:

• $M < 8\pi$: L^{∞} -blow-up at x = y, but no concentration:

$$\frac{\partial p}{\partial t} - \frac{M}{4\pi} (\nabla_x - \nabla_y) \cdot j - (\Delta_x + \Delta_y) p = 0,$$

• $M > 8\pi$: concentration blow-up at x = y:

$$p(t,x,y) = p_0(t,x,y) + p_1(t,x)\delta(x-y)$$
 with p_0, p_1 smooth

governed by

$$\frac{\partial p_0}{\partial t} - \frac{M}{4\pi} \frac{x - y}{|x - y|^2} \cdot (\nabla_x - \nabla_y) p_0 - (\Delta_x + \Delta_y) p_0 = 0$$

$$\frac{\partial p_1}{\partial t} - \frac{1}{2} \Delta_x p_1 = \frac{M}{4} p_0(x, x)$$

A general rule

It is a concurrence of two effects:

- Interaction (attraction)
 - pushing the particles together
 - $^{\circ}$ with strength proportional to M
- Diffusion
 - pulling the particles apart
 - with constant strength

A general rule

It is a concurrence of two effects:

- Interaction (attraction)
 - pushing the particles together
 - \circ with strength proportional to M
- Diffusion
 - pulling the particles apart
 - with constant strength

General rule:

An aggregate of particles is stable if and only if its mass is greater than 8π

Three particles

Possible configurations:

- 3 free particles
- 1 pair + 1 free particle
- 1 triplet

Three particles

Possible configurations:

- 3 free particles
- 1 pair + 1 free particle
- 1 triplet

Possible scenarios:

- $M < 8\pi$: particles collide, but do not stick together
- $8\pi < M < 12\pi$: ?? (only the aggregate of three particles can be stable)
- $M > 12\pi$: also pairs of particles are stable

Conclusions

Thank you for your attention!