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The Smoluchowski-Poisson (SP) equation in R,
a>2

du = div (Vu—uVe), (tx)e(0,00)xRY,
o = Egxu, (Z‘,X)G(O,oo)de,

where d > 2 and E, is the Poisson kernel

]
Eo(x) = —5_-In|x| or Ey:=ca Ix|7(4=2) if d>3,

(so that —Ap = u).
@ Self-gravitating particles (in astrophysics).
@ Parabolic-elliptic Keller-Segel model for chemotaxis.
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|
The Smoluchowski-Poisson equation in RY, d > 2

ou= div (Vu—uV(Eg*u)), (tx)ec(0,00)xRY,

)

@ Non-negativity: ug > 0= u >0,
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|
The Smoluchowski-Poisson equation in RY, d > 2

ou= div (Vu—uV(Eg*u)), (tx)ec(0,00)xRY,

)

@ Non-negativity: up > 0= u > 0,
@ Mass conservation: [[u(t)|[1 = My := ||uo]|1,
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|
The Smoluchowski-Poisson equation in RY, d > 2

ou= div (Vu—uV(Eg*u)), (tx)ec(0,00)xRY,

)

@ Non-negativity: up > 0= u > 0,
@ Mass conservation: [[u(t)|[1 = My := ||uo]|1,

@ Competition between the diffusive term Au (spreading) and the
drift term (concentrating) div (u V(Ey * u)): global existence or
finite time blowup.

ou=Au—Vu-V(Eg*u)+u?, (tx)e(0,00) xR,



|
The generalised Smoluchowski-Poisson (gSP)
equation in RY, d > 2

The linear diffusion div (Vu) = Auis replaced by div (Vu'™) with
m>1:

ou= div (Vu™ —uV(Eg+u)), (tx)e(0,00)xRY.

@ Derivation from a Vlasov-Poisson-Fokker-Planck kinetic equation
with non-gaussian equilibria (diffusion limit),
@ Prevention of crowding (if a(r)/r — oo as r — o).
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|
A Liapunov functional |

The functional

Flu(n] = | Aw(t.x) dx—% / (Ey = u)(t,x) u(t, x) dx,

JRd
with
@ A(iry=rinr—r>-1ifm=A1,
@ A(r)=r"/(m—-1)>0ifm>1.

| Two competing terms in 7
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|
A Liapunov functional

Liapunov functional:
Flu(t)] = /Rd A(u(t, X)) dx — % /Rd(Ed « U)(t X) u(t, x) dx.

At first glance, the “negative” term is quadratic in u and the positive
term might dominate it if A increases faster than quadratically, that is, if
m> 2.

In fact,
2(d -1
7( ) (mo=1)

guarantees global existence (mass conservation and convolution).
[Sugiyama & Kunii (2006), Cie$lak & Winkler (2008)]

m>my .=

’ Is this exponent “optimal”? ‘
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|
Virial identity

Consider the second moment Mx(t) of u(t)

Mo(t) == /]Rd 1x|2 u(t, x) dx.

Then

ed=2andm=mo=1(My = HUO||1)Z
aM, B Mo
W(t)__E(MO 8”),

— non-existence of global solutions for My > 8.
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|
Virial identity

Consider the second moment Mx(t) of u(t)

Mo(t) == /]Rd 1x|2 u(t, x) dx.

Then

ed=2andm=mo=1(My = HUO”1)Z
aM, B Mo
W(t)__E(MO 8”),

— non-existence of global solutions for My > 8.
@ d>3and m=my:
dM,
dt
— non-existence of global solutions for vy such that F[u] < 0.
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|
Outline

@ The gSP equation with m = mg in R?, d > 2
@ The SP equation in R?
@ The gSP equation with m = myin RY, d > 3

© The gSP equation in Q c RY, d > 1
@ The SP equation in Q ¢ RY
@ The gSP equationin Q c R?, d > 3
@ The one-dimensional case
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The gSP equation with m = my in rRY d>2

Outline

@ The gSP equation with m = my inR?, d > 2
@ The SP equation in R?
@ The gSP equation with m = myin RY, d > 3
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The gSP equation with m = my in R 9 a >2 The SP equation in R2

The SP equation in R?

du= div (Vu—uV(Ez+u)), (tx)e(0,00)xR2.

)

The Liapunov functional:

Flu(t)] = /Rz(u(t,x)lnu(t,x)—u(t,x)) dx

—% /RZ(EZ « U)(t, x) u(t,x) dx.

CBDiff 06/10/2009

10/39



The gSP equation with m = my in R 9 a >2 The SP equation in R2

Global existence

@ Finite time blow-up if ||ug||y > 87
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The gSP equation with m = my in R 9 a >2 The SP equation in R2

Global existence

@ Finite time blow-up if ||ug||y > 87

@ Global existence if ||up||1 < Mc < 87 by Gagliardo-Nirenberg
inequalities. [Jager & Luckhaus (1992)].
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The gSP equation with m = my in R 9 a >2 The SP equation in R2

Global existence

@ Finite time blow-up if ||ug||y > 87

@ Global existence if ||up||1 < Mc < 87 by Gagliardo-Nirenberg
inequalities. [Jager & Luckhaus (1992)].

@ Global existence if ||up||1 < 87 by symmetrization techniques.
[Diaz, Nagai & Rakotoson (1998)]

@ Global existence if |up||1 < 87 by the logarithmic
Hardy-Littlewood-Sobolev inequality. [Dolbeault & Perthame, 2004].
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The gSP equation with m = my in R 9 a >2 The SP equation in R2

The logarithmic Hardy-Littlewood-Sobolev inequality

hnnox — i [ [ Ealx-y) hx) hy) oo
R2 1Al Jr2 Jre
> —|hlls (1 +In7 —In|hl)
Then
Flu = (“W>/ e
8w R2
ull2
B ||8(;1 (1+In7—In|luoll1) ,

hence a control of u Inuin L' — global existence.



The gSP equation with m = my in R 9 a >2 The SP equation in R2

Critical mass ||up||1 = 87

The useful term in the lower bound

A= (1- 1) [ uinudc- cjul)
8 JR2

vanishes in the critical case ||up||1 = 8.

’What happens if ||up|1 = 87?‘
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The gSP equation with m = my in R 9 a >2 The SP equation in R2

|Uo||1 = 87

Existence of a one-parameter family of stationary solutions:

(b8’l’2)2 e L'(R2)\ L (IR{Z; |x[2 dx) . b>0.
+ | X
Theorem

There is a global solution u to the Smoluchowski-Poisson equation and
u(t) — 8 oy, as t — oo, Xm being the center of mass of uy.

[Biler, Karch, L. & Nadzieja (2006), Blanchet, Carrillo & Masmoudi (2008)]
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The gSP equation with m = my in R 9 a >2 The SP equation in R2

Further properties

@ Non-existence of blowing-up self-similar solutions [Naito & Suzuki
(2008)]

@ Continuation after blowup? [Chavanis & Sire (2004), Velazquez (2004),
Dolbeault & Schmeiser (2009)]
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The gSP equation with m = my in R dd>2 The gSP equation with m = my in RY, d >3

The gSP equation with m = my inR?, d > 3

ou= div (Vu™ —uV(Eg+u)), (tx)e(0,00)xRY,

The Liapunov functional:

u™(t, x) 1

Flu(t)] = /Rdmd—1) ox /Rd(Ed* u)(t, X) u(t, x) dx.
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The gSP equation with m = my in R dd>2 The gSP equation with m = my in RY, d >3

A modified Hardy-Littlewood-Sobolev inequality

Approach: find a functional inequality characterizing the critical mass.
Lemma
There exists C, > 0 such that

[ A hY) -
Iy — yld—2 < Cx h
/Rd /Rd |x — y|d-2 dxdy| < C. [|hllm [IAll5

for all h € L'(RY) N L™(RY).

[Blanchet, Carrillo & L. (2009)]




The gSP equation with m = my in R dd>2 The gSP equation with m = my in RY, d >3

A bound from below for F

Introducing the critical mass
d/2
M= |2 |
(m — 1) C. Cd
we have

C* Cq
2

forall h € L'(RY) n L™(RY).

2/d 2/d
(ME' 1013 1ml < Fi

@ If |uglly < M then Flup] > 0,
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The gSP equation with m = my in R dd>2 The gSP equation with m = my in RY, d >3

A bound from below for F

Introducing the critical mass
d/2
M= |2 |
(m — 1) C. Cd
we have

C* Cq
2

forall h € L'(RY) n L™(RY).

2/d 2/d
(ME' 1013 1ml < Fi

@ If ||upll1 < M, then Flup] > 0,
@ If |uglly < M. then control on the L™-norm — global existence.
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The gSP equation with m = my in R dd>2 The gSP equation with m = my in RY, d >3

Global existence and blowup

@ Global existence if ||up|l1 < My < M. by Gagliardo-Nirenberg
inequalities and finite time blowup if ||ug||1 > Mo > My. [Sugiyama
(2007)].

@ Global existence if ||uo||1 < M. by the modified Hardy-Littlewood-Sobolev
inequality. [Blanchet, Carrillo & L. (2009)]

@ If M > M, then
pa = inf {F) = he L' N LR, |Ihlls = M} = o0,

and finite time blowup if F[us] < 0 by an argument from Weinstein (1986).
[Blanchet, Carrillo & L. (2009)]

|What happens if [|uo||1 = Mc?|
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The gSP equation with m = my in rRY d>2

The gSP equation with m = my in RY, d >3

Stationary solutions

There is a two-parameter family {V; g} of non-negative and compactly
supported stationary solutions such that

IVogls =M., zeR? R>0.

[Chavanis & Sire (2008), Blanchet, Carrillo & L. (2009)]

@ Unlike for d = 2, there are thus global and bounded solutions.
@ Minimisers of Zin {h e L'(RY) N L™(RY) : ||h]l1 = Mc}.
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The gSP equation with m = my in R dd>2 The gSP equation with m = my in RY, d >3

Global existence: ||up||1 = Mc

Proposition
If||upll1 = Mg, there is a global solution u.

[Blanchet, Carrillo & L. (2009)]
Open question: If ||ug||1 = M, what is the large time behaviour of the
global solution:

@ Convergence to a steady state?

@ Blowup in infinite time and concentration to a Dirac mass?
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The gSP equation with m = my in R dd>2 The gSP equation with m = my in RY, d >3

Self-similar blowing-up solutions

Look for solutions of the form

1 X 1 X
1) = g U ) 29 900 = g @ ()

for (t,x) € [0, T) x RY with s(t) := [d(T — 1)]"/9, T > 0.

@ There are such solutions with a radially symmetric and
non-increasing profile U satisfying ||U||1 = M for M € (M¢, M 2],
M; > € (Mg, o0). In addition, U is compactly supported.

@ There are such solutions with a radially symmetric and compactly
supported profile U having multiple bumps.

[Blanchet & L.]
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The gSP equationin @ c RY, d > 1

Outline

© The gSP equationin Q c RY, d > 1
@ The SP equation in Q ¢ RY
@ The gSP equationin Q c R?, d > 3
@ The one-dimensional case
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The gSP equationin @ c RY, d > 1

The gSP equationin Q c RY, d > 1

oiu = div (a(u) Vu—uVy), (tx)e(0,00)xQ,
—ANp=u—(u)y, (p) =0, (t,x)e€ (0,00)xQ,
ou=0,0=0, (tx)e(0,00)x 00,

u(0) =uwp, xe,

where
@ Qs an open bounded subset of R?, d > 1,

@ (u) denotes the space average of u, and
@ a>0.
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The gSP equationin @ C RY, d > 1 [ERIEEIREIE Nk Nal -Gl

Linear diffusion: a = 1

@ d = 1: global existence.

@ d=2and Q= B(0,1): global existence if (up) < 8 and finite
time blowup if (ug) > 87 and uy sufficiently concentrated. [Jager &
Luckhaus (1992), Nagai (1995)]

@ d = 2: global existence if (uy) < 47 and finite time blowup
otherwise when vy is concentrated either near a point of the
boundary or in the interior. [Biler (1998), Gajewski & Zacharias (1998),
Nagai (2001), Nagai, Senba & Suzuki (1997), Ohtsuka, Senba & Suzuki (2007)]

@ d > 3: finite time blowup for sufficiently concentrated initial data
whatever the value of (ug) is. [Nagai (1995)]
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The gSP equationin @ C RY, d > 1 [ERIEEIREIE Nk Nal -Gl

Blowup profile whena=1and d =2

Refined description of the dynamics at the blowup time and
construction of radially symmetric blowing-up solutions. [Herrero &

Velazquez (1996)]
If u blows up attime T > 0 then

u(t) = > m(xo) dx, +f as t—T,

X0ES

where
@ S is the set of blowup points which is discrete and finite,

@ m(xp) =8rif xo € QNS and m(xp) =4nif xo € QN S,
o fe L1(Q)OC(§_2\S), f>0,
[Senba & Suzuki (2001)]
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The gSP equationin @ c RY, d > 1 The gSP equation in @ ¢ R?, d > 3

Nonlinear diffusion

@ d > 1: global existence if
an>Cc@+n™" and m>my

@ d > 1: finite time blowup (for some radially symmetric initial data)
by a comparison argument if

ann<c(+n™'" and m<my,.

[Cieslak & Winkler (2008)]

’m:md,d;«éZ?‘
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The gSP equationin @ c RY, d > 1 The gSP equation in @ ¢ R?, d > 3

Finite time blowup: Q = B(0,1)

Assume that there are m € [1, my], ¢; > 0, and ¢, > 0 such that
O<a(r)<cy rm'+¢, for r>0.

Let M > 0. Non-existence of global solutions for some initial data ug
satisfying (up) = M if

@ either1 < m < my,

@ or m= my and M > M, for some M, > 0.
[Nagai (1995)]: m = 1, [Cieslak & Winkler (2008)]: m € [1, my), [Cie$lak & L. (2009)]

If a(r) > C (1 + r)™~" and (up) = M is small, then global existence.
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The gSP equationin @ c RY, d > 1 The gSP equation in @ ¢ R?, d > 3

An inequality of virial type

A contradiction is obtained by computing the evolution of

/ |9 u(t, x) dx
B(0,1)

for m = 1 [Nagai (1995)] and

1 q
;/0 (A;—U(t,r)> rf=tdr, g>1,

1
U1 = a1 /B(O’r) u(t, x) dx

for m € [1, my] [Cie$lak & L. (2009)].
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The gSP equationin @ c RY, d > 1 The gSP equation in @ ¢ R?, d > 3

Questions

@ Relationship between M, in the case of R and M, ?
@ Threshold for boundary blowup?

@ Stability and multiplicity of steady states? (constants are steady
states)

@ Shape of blowup when d > 37
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The gSP equationin Q2 C R 9 d>1 The one-dimensional case

The one dimensional GSP equation

Ot = Ox (a(u) Oxu — u dxyp) , (t,x) € (0,00) x (0,1),
_0)2(99:U_<U>7 <59>:0 (t,X)E(0,00)X(O,1),
Oxu=0xp =0, (t,x)e(0,00)x{0,1},
u(0) =uy, xe€(0,1),
with
@ acC'((0,00)), a> 0,
@ Initial condition: vy € C([0,1]), up > 0, (up) = M > 0.



The gSP equationin Q2 C R 9 d>1 The one-dimensional case

Change of unknow function

@ The cumulative distribution function:

Ut x) = /Oxu(t,z) dz. Ut 1) = (u(t) = (Ug) = M.

is non-decreasing.
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The gSP equationin Q2 C R 9 d>1 The one-dimensional case

Change of unknow function

@ The cumulative distribution function:
X
Ultx) = [ ult2) dz. UGt 1) = (u(t) = (uo) =M.
0

is non-decreasing.
@ The (pseudo-)inverse F(t,.) : [0, M] — [0, 1] of U(t,.) is given

U(tvF(tvy)):y’ (T,y)E[0,00)X[O,M].
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The gSP equationin Q2 C R 9 d>1 The one-dimensional case

Change of unknow function

@ The cumulative distribution function:
X
Ultx) = [ ult2) dz. UGt 1) = (u(t) = (uo) =M.
0

is non-decreasing.
@ The (pseudo-)inverse F(t,.) : [0, M] — [0, 1] of U(t,.) is given

Ut,F(t.y)) =y, (ty)el0,00)x[0,M].
© f:=0yF solves

Oif = 05U (f) —1+Mf, (t.y)e (0,00) x (0,M).
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The gSP equationin Q2 C R 9 d>1 The one-dimensional case

Alternative formulation

The new unknown f solves

Ohf = RV — 1+ MF, (t,y) € (0,00) x (0, M),
0,f(1,0) = 0,f(t, M) =0, te(0,00),

1(0,y) = fo(y) := w(F0,7)) >0, ye(O,M),

with

and
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The gSP equationin Q2 C R 9 d>1 The one-dimensional case

Blowup — “touch-down”

Since ’
ftv = T I ta 60700X07M7
9 = S Fayy B9 €00 x (.M
u blows up infinite time <= f vanishes in finite time.
Remark. 1/M is an “unstable” stationary solution to

Oif = OFV(f) — 1+ Mf.
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The gSP equationin Q2 C R 9 d>1 The one-dimensional case

Global existence

Theorem

Assume thata ¢ L'(1,00). Then there is a global solution to the GSP
equation. It is bounded in L>=(0, co; R?) if a is not too singular near
r=20.

Examples:
az) = (1427 acl). (a@)-3).
a(z) = 1 g€ (—o0,1].

(1+2)(log(1+ 2))8”°
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The gSP equationin Q2 C R 9 d>1 The one-dimensional case

A Liapunov functional

Recall that f solves
Oif = 05w (f) — 1+ Mf
with W : (0,1) — (—00,0) since a ¢ L'(1,00). Then

f>0 if W(f) isbounded from below.

Liapunov functional:

LM oty dy+ [ (w(ty) - ML) d
5 | WP dy+ [ ()~ M y) dy

with W4(1) ;== 0and Vi(r) :=r V'(r) = a(1/r)/r, r € (0, ).
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The gSP equation in Q C RY d > 1 The one-dimensional case

Proof

@ The Liapunov functional controls ||0, W(f(t))||2 on bounded time
intervals.

@ The boundedness of V(f) in L*> follows by a Poincaré inequality
since (f(t)) = 1/M, and an upper bound on u(t) follows.

@ Ifa¢ L'(0,1), then there is a positive lower bound for u(t).
@ The bounds do not depend on time if, for each ¢ € (0, 1), there is
ke > 0 such that

)

a(r)gera(r)Jrﬁ7 for re (0,1).
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The gSP equationin Q2 C R 9 d>1 The one-dimensional case

Finite time blowup

Theorem

Assume that a € L'(1,00) and a is not too singular near r = 0. For

each M > 0, there is at least one initial condition uy with (uy) = M for

which u blows up in finite time.

Sufficient condition:

sup r/ a(s) ds < oo.
r

re(0,1)
Examples:
ary < Cr* ael[-2,-1),
arn < C | s,
(14 r)(log(1+r))
a(r) = r@  4>0.
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The gSP equationin Q2 C R 9 d>1 The one-dimensional case

Critical nonlinearity

No critical nonlinearity when d = 17?
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