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The Smoluchowski-Poisson (SP) equation in Rd ,
d ≥ 2

∂tu = div (∇u − u ∇ϕ) , (t , x) ∈ (0,∞)× Rd ,

ϕ = Ed ∗ u , (t , x) ∈ (0,∞)× Rd ,

where d ≥ 2 and Ed is the Poisson kernel

E2(x) := − 1
2π

ln |x | or Ed := cd |x |−(d−2) if d ≥ 3 ,

(so that −∆ϕ = u).

Self-gravitating particles (in astrophysics).
Parabolic-elliptic Keller-Segel model for chemotaxis.
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The Smoluchowski-Poisson equation in Rd , d ≥ 2

∂tu = div (∇u − u ∇(Ed ∗ u)) , (t , x) ∈ (0,∞)× Rd .

Non-negativity: u0 ≥ 0 =⇒ u ≥ 0,

Mass conservation: ‖u(t)‖1 = M0 := ‖u0‖1,
Competition between the diffusive term ∆u (spreading) and the
drift term (concentrating) div (u ∇(Ed ∗ u)): global existence or
finite time blowup.

∂tu = ∆u −∇u · ∇(Ed ∗ u) + u2 , (t , x) ∈ (0,∞)× Rd .
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The generalised Smoluchowski-Poisson (gSP)
equation in Rd , d ≥ 2

The linear diffusion div (∇u) = ∆u is replaced by div (∇um) with
m > 1:

∂tu = div (∇um − u ∇(Ed ∗ u)) , (t , x) ∈ (0,∞)× Rd .

Derivation from a Vlasov-Poisson-Fokker-Planck kinetic equation
with non-gaussian equilibria (diffusion limit),
Prevention of crowding (if a(r)/r →∞ as r →∞).
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A Liapunov functional I

The functional

F [u(t)] :=

∫
Rd
A(u(t , x)) dx − 1

2

∫
Rd

(Ed ∗ u)(t , x) u(t , x) dx ,

with

A(r) = r ln r − r ≥ −1 if m = 1,
A(r) = rm/(m − 1) ≥ 0 if m > 1.

Two competing terms in F
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A Liapunov functional II

Liapunov functional:

F [u(t)] :=

∫
Rd
A(u(t , x)) dx − 1

2

∫
Rd

(Ed ∗ u)(t , x) u(t , x) dx .

At first glance, the “negative” term is quadratic in u and the positive
term might dominate it if A increases faster than quadratically, that is, if
m > 2.

In fact,

m > md :=
2(d − 1)

d
(m2 = 1)

guarantees global existence (mass conservation and convolution).
[Sugiyama & Kunii (2006), Cieślak & Winkler (2008)]

Is this exponent “optimal”?
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Virial identity

Consider the second moment M2(t) of u(t)

M2(t) :=

∫
Rd
|x |2 u(t , x) dx .

Then
d = 2 and m = m2 = 1 (M0 = ‖u0‖1):

dM2

dt
(t) = −M0

4π
(M0 − 8π) ,

−→ non-existence of global solutions for M0 > 8π.

d ≥ 3 and m = md :

dM2

dt
(t) = 2(d − 2) F [u(t)] ≤ 2(d − 2) F [u0] ,

−→ non-existence of global solutions for u0 such that F [u0] < 0.
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Outline

1 The gSP equation with m = md in Rd , d ≥ 2
The SP equation in R2

The gSP equation with m = md in Rd , d ≥ 3

2 The gSP equation in Ω ⊂ Rd , d ≥ 1
The SP equation in Ω ⊂ Rd

The gSP equation in Ω ⊂ Rd , d ≥ 3
The one-dimensional case
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The gSP equation with m = md in Rd , d ≥ 2 The SP equation in R2

The SP equation in R2

∂tu = div (∇u − u ∇(E2 ∗ u)) , (t , x) ∈ (0,∞)× R2 .

The Liapunov functional:

F [u(t)] :=

∫
R2

(u(t , x) ln u(t , x)− u(t , x)) dx

−1
2

∫
R2

(E2 ∗ u)(t , x) u(t , x) dx .
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The gSP equation with m = md in Rd , d ≥ 2 The SP equation in R2

Global existence

Finite time blow-up if ‖u0‖1 > 8π

Global existence if ‖u0‖1 < Mc < 8π by Gagliardo-Nirenberg
inequalities. [Jäger & Luckhaus (1992)].

Global existence if ‖u0‖1 < 8π by symmetrization techniques.
[Diaz, Nagai & Rakotoson (1998)]

Global existence if ‖u0‖1 < 8π by the logarithmic
Hardy-Littlewood-Sobolev inequality. [Dolbeault & Perthame, 2004].
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The gSP equation with m = md in Rd , d ≥ 2 The SP equation in R2

The logarithmic Hardy-Littlewood-Sobolev inequality

∫
R2

h ln h dx − 4π
‖h‖1

∫
R2

∫
R2

E2(x − y) h(x) h(y) dydx

≥ −‖h‖1 (1 + lnπ − ln ‖h‖1)

Then

F [u] ≥
(

1− ‖u0‖1
8π

) ∫
R2

u ln u dx

−
‖u0‖21

8π
(1 + lnπ − ln ‖u0‖1) ,

hence a control of u ln u in L1 −→ global existence.
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The gSP equation with m = md in Rd , d ≥ 2 The SP equation in R2

Critical mass ‖u0‖1 = 8π

The useful term in the lower bound

F [u] ≥
(

1− ‖u0‖1
8π

) ∫
R2

u ln u dx − C (‖u0‖1)

vanishes in the critical case ‖u0‖1 = 8π.

What happens if ‖u0‖1 = 8π?
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The gSP equation with m = md in Rd , d ≥ 2 The SP equation in R2

‖u0‖1 = 8π

Existence of a one-parameter family of stationary solutions:

8b(
b + |x |2

)2 ∈ L1(R2) \ L1
(
R2; |x |2 dx

)
, b > 0 .

Theorem
There is a global solution u to the Smoluchowski-Poisson equation and
u(t) ⇀ 8π δxm as t →∞, xm being the center of mass of u0.

[Biler, Karch, L. & Nadzieja (2006), Blanchet, Carrillo & Masmoudi (2008)]
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The gSP equation with m = md in Rd , d ≥ 2 The SP equation in R2

Further properties

Non-existence of blowing-up self-similar solutions [Naito & Suzuki
(2008)]

Continuation after blowup? [Chavanis & Sire (2004), Velázquez (2004),
Dolbeault & Schmeiser (2009)]
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The gSP equation with m = md in Rd , d ≥ 2 The gSP equation with m = md in Rd , d ≥ 3

The gSP equation with m = md in Rd , d ≥ 3

∂tu = div (∇umd − u ∇(Ed ∗ u)) , (t , x) ∈ (0,∞)× Rd .

The Liapunov functional:

F [u(t)] :=

∫
Rd

umd (t , x)

md − 1
) dx − 1

2

∫
Rd

(Ed ∗ u)(t , x) u(t , x) dx .
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The gSP equation with m = md in Rd , d ≥ 2 The gSP equation with m = md in Rd , d ≥ 3

A modified Hardy-Littlewood-Sobolev inequality

Approach: find a functional inequality characterizing the critical mass.

Lemma
There exists C∗ > 0 such that∣∣∣∣∫

Rd

∫
Rd

h(x) h(y)

|x − y |d−2 dxdy
∣∣∣∣ ≤ C∗ ‖h‖mm ‖h‖

2/d
1

for all h ∈ L1(Rd ) ∩ Lm(Rd ).

[Blanchet, Carrillo & L. (2009)]
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The gSP equation with m = md in Rd , d ≥ 2 The gSP equation with m = md in Rd , d ≥ 3

A bound from below for F

Introducing the critical mass

Mc :=

[
2

(m − 1) C∗ cd

]d/2

,

we have

C∗ cd

2

(
M2/d

c − ‖h‖2/d
1

)
‖h‖mm ≤ F [h]

for all h ∈ L1(Rd ) ∩ Lm(Rd ).

If ‖u0‖1 ≤ Mc then F [u0] ≥ 0,

If ‖u0‖1 < Mc then control on the Lm-norm −→ global existence.
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The gSP equation with m = md in Rd , d ≥ 2 The gSP equation with m = md in Rd , d ≥ 3

Global existence and blowup

Global existence if ‖u0‖1 < M1 < Mc by Gagliardo-Nirenberg
inequalities and finite time blowup if ‖u0‖1 > M2 > M1. [Sugiyama
(2007)].

Global existence if ‖u0‖1 < Mc by the modified Hardy-Littlewood-Sobolev
inequality. [Blanchet, Carrillo & L. (2009)]

If M > Mc , then

µM := inf
n
F [h] : h ∈ L1(Rd) ∩ Lm(Rd) , ‖h‖1 = M

o
= −∞ ,

and finite time blowup if F [u0] < 0 by an argument from Weinstein (1986).
[Blanchet, Carrillo & L. (2009)]

What happens if ‖u0‖1 = Mc?
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The gSP equation with m = md in Rd , d ≥ 2 The gSP equation with m = md in Rd , d ≥ 3

Stationary solutions

There is a two-parameter family {Vz,R} of non-negative and compactly
supported stationary solutions such that

‖Vz,R‖1 = Mc , z ∈ Rd , R > 0 .

[Chavanis & Sire (2008), Blanchet, Carrillo & L. (2009)]

Unlike for d = 2, there are thus global and bounded solutions.
Minimisers of F in

{
h ∈ L1(Rd ) ∩ Lmd (Rd ) : ‖h‖1 = Mc

}
.
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The gSP equation with m = md in Rd , d ≥ 2 The gSP equation with m = md in Rd , d ≥ 3

Global existence: ‖u0‖1 = Mc

Proposition

If ‖u0‖1 = Mc , there is a global solution u.

[Blanchet, Carrillo & L. (2009)]

Open question: If ‖u0‖1 = Mc , what is the large time behaviour of the
global solution:

Convergence to a steady state?
Blowup in infinite time and concentration to a Dirac mass?
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The gSP equation with m = md in Rd , d ≥ 2 The gSP equation with m = md in Rd , d ≥ 3

Self-similar blowing-up solutions

Look for solutions of the form

u(t , x) =
1

s(t)d U
(

x
s(t)

)
and ϕ(t , x) =

1
s(t)d−2 Φ

(
x

s(t)

)
for (t , x) ∈ [0,T )× Rd with s(t) := [d(T − t)]1/d , T > 0.

There are such solutions with a radially symmetric and
non-increasing profile U satisfying ‖U‖1 = M for M ∈ (Mc ,Mc,2],
Mc,2 ∈ (Mc ,∞). In addition, U is compactly supported.
There are such solutions with a radially symmetric and compactly
supported profile U having multiple bumps.

[Blanchet & L.]
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The gSP equation in Ω ⊂ Rd , d ≥ 1
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The gSP equation in Ω ⊂ Rd , d ≥ 1

The gSP equation in Ω ⊂ Rd , d ≥ 1

∂tu = div (a(u) ∇u − u ∇ϕ) , (t , x) ∈ (0,∞)× Ω ,

−∆ϕ = u − 〈u〉 , 〈ϕ〉 = 0 , (t , x) ∈ (0,∞)× Ω ,

∂νu = ∂νϕ = 0 , (t , x) ∈ (0,∞)× ∂Ω ,

u(0) = u0 , x ∈ Ω ,

where
Ω is an open bounded subset of Rd , d ≥ 1,
〈u〉 denotes the space average of u, and
a ≥ 0.
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The gSP equation in Ω ⊂ Rd , d ≥ 1 The SP equation in Ω ⊂ Rd

Linear diffusion: a = 1

d = 1: global existence.
d = 2 and Ω = B(0,1): global existence if 〈u0〉 < 8π and finite
time blowup if 〈u0〉 > 8π and u0 sufficiently concentrated. [Jäger &
Luckhaus (1992), Nagai (1995)]

d = 2: global existence if 〈u0〉 ≤ 4π and finite time blowup
otherwise when u0 is concentrated either near a point of the
boundary or in the interior. [Biler (1998), Gajewski & Zacharias (1998),
Nagai (2001), Nagai, Senba & Suzuki (1997), Ohtsuka, Senba & Suzuki (2007)]

d ≥ 3: finite time blowup for sufficiently concentrated initial data
whatever the value of 〈u0〉 is. [Nagai (1995)]
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The gSP equation in Ω ⊂ Rd , d ≥ 1 The SP equation in Ω ⊂ Rd

Blowup profile when a = 1 and d = 2

Refined description of the dynamics at the blowup time and
construction of radially symmetric blowing-up solutions. [Herrero &
Velázquez (1996)]
If u blows up at time T > 0 then

u(t) ⇀
∑
x0∈S

m(x0) δx0 + f as t → T ,

where
S is the set of blowup points which is discrete and finite,
m(x0) = 8π if x0 ∈ Ω ∩ S and m(x0) = 4π if x0 ∈ ∂Ω ∩ S,
f ∈ L1(Ω) ∩ C

(
Ω̄ \ S

)
, f ≥ 0,

[Senba & Suzuki (2001)]
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The gSP equation in Ω ⊂ Rd , d ≥ 1 The gSP equation in Ω ⊂ Rd , d ≥ 3

Nonlinear diffusion

d ≥ 1: global existence if

a(r) ≥ C (1 + r)m−1 and m > md

d ≥ 1: finite time blowup (for some radially symmetric initial data)
by a comparison argument if

a(r) ≤ C (1 + r)m−1 and m < md .

[Cieślak & Winkler (2008)]

m = md , d 6= 2?
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The gSP equation in Ω ⊂ Rd , d ≥ 1 The gSP equation in Ω ⊂ Rd , d ≥ 3

Finite time blowup: Ω = B(0,1)

Assume that there are m ∈ [1,md ], c1 > 0, and c2 > 0 such that

0 < a(r) ≤ c1 rm−1 + c2 for r ≥ 0 .

Let M > 0. Non-existence of global solutions for some initial data u0
satisfying 〈u0〉 = M if

either 1 ≤ m < md ,
or m = md and M > M? for some M? > 0.

[Nagai (1995)]: m = 1, [Cieślak & Winkler (2008)]: m ∈ [1,md), [Cieślak & L. (2009)]

If a(r) ≥ C (1 + r)md−1 and 〈u0〉 = M is small, then global existence.
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The gSP equation in Ω ⊂ Rd , d ≥ 1 The gSP equation in Ω ⊂ Rd , d ≥ 3

An inequality of virial type

A contradiction is obtained by computing the evolution of∫
B(0,1)

|x |d u(t , x) dx

for m = 1 [Nagai (1995)] and

1
q

∫ 1

0

(
M
d
− U(t , r)

)q

rd−1 dr , q > 1 ,

U(t , r) :=
1

d |B(0,1)|

∫
B(0,r)

u(t , x) dx

for m ∈ [1,md ] [Cieślak & L. (2009)].
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The gSP equation in Ω ⊂ Rd , d ≥ 1 The gSP equation in Ω ⊂ Rd , d ≥ 3

Questions

Relationship between Mc in the case of Rd and M??
Threshold for boundary blowup?
Stability and multiplicity of steady states? (constants are steady
states)
Shape of blowup when d ≥ 3?
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The gSP equation in Ω ⊂ Rd , d ≥ 1 The one-dimensional case

The one dimensional GSP equation

∂tu = ∂x (a(u) ∂xu − u ∂xϕ) , (t , x) ∈ (0,∞)× (0,1) ,

−∂2
xϕ = u − 〈u〉 , 〈ϕ〉 = 0 , (t , x) ∈ (0,∞)× (0,1) ,

∂xu = ∂xϕ = 0 , (t , x) ∈ (0,∞)× {0,1} ,
u(0) = u0 , x ∈ (0,1) ,

with
a ∈ C1((0,∞)), a > 0,
Initial condition: u0 ∈ C([0,1]), u0 > 0, 〈u0〉 = M > 0.
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The gSP equation in Ω ⊂ Rd , d ≥ 1 The one-dimensional case

Change of unknow function

1 The cumulative distribution function:

U(t , x) :=

∫ x

0
u(t , z) dz , U(t ,1) = 〈u(t)〉 = 〈u0〉 = M .

is non-decreasing.

2 The (pseudo-)inverse F (t , .) : [0,M] 7−→ [0,1] of U(t , .) is given

U(t ,F (t , y)) = y , (t , y) ∈ [0,∞)× [0,M] .

3 f := ∂yF solves

∂t f = ∂2
y Ψ(f )− 1 + Mf , (t , y) ∈ (0,∞)× (0,M) .
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The gSP equation in Ω ⊂ Rd , d ≥ 1 The one-dimensional case

Alternative formulation

The new unknown f solves

∂t f = ∂2
y Ψ(f )− 1 + Mf , (t , y) ∈ (0,∞)× (0,M) ,

∂y f (t ,0) = ∂y f (t ,M) = 0 , t ∈ (0,∞) ,

f (0, y) = f0(y) :=
1

u0(F (0, y))
> 0 , y ∈ (0,M) ,

with

Ψ′(r) :=
1
r2 a

(
1
r

)
, Ψ(1) = 0 .

and ∫ M

0
f (t , y) dy = 1 .
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The gSP equation in Ω ⊂ Rd , d ≥ 1 The one-dimensional case

Blowup −→ “touch-down”

Since
f (t , y) =

1
u(t ,F (t , y))

, (t , y) ∈ (0,∞)× (0,M) ,

u blows up in finite time ⇐⇒ f vanishes in finite time.

Remark. 1/M is an “unstable” stationary solution to

∂t f = ∂2
y Ψ(f )− 1 + Mf .
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The gSP equation in Ω ⊂ Rd , d ≥ 1 The one-dimensional case

Global existence

Theorem

Assume that a 6∈ L1(1,∞). Then there is a global solution to the GSP
equation. It is bounded in L∞(0,∞; R2) if a is not too singular near
r = 0.

Examples:

a(z) = (1 + z)α , α ∈ [−1,∞) ,

(
a(z) =

1
z

)
,

a(z) =
1

(1 + z)(log (1 + z))β
, β ∈ (−∞,1] .
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The gSP equation in Ω ⊂ Rd , d ≥ 1 The one-dimensional case

A Liapunov functional

Recall that f solves

∂t f = ∂2
y Ψ(f )− 1 + Mf ,

with Ψ : (0,1)→ (−∞,0) since a 6∈ L1(1,∞). Then

f > 0 if Ψ(f ) is bounded from below.

Liapunov functional:

1
2

∫ M

0
|∂y Ψ(f (t , y))|2 dy +

∫ M

0
(Ψ(f (t , y))−M Ψ1(f (t , y))) dy

with Ψ1(1) := 0 and Ψ′1(r) := r Ψ′(r) = a(1/r)/r , r ∈ (0,∞).
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Proof

The Liapunov functional controls ‖∂y Ψ(f (t))‖2 on bounded time
intervals.
The boundedness of Ψ(f ) in L∞ follows by a Poincaré inequality
since 〈f (t)〉 = 1/M, and an upper bound on u(t) follows.
If a 6∈ L1(0,1), then there is a positive lower bound for u(t).
The bounds do not depend on time if, for each ε ∈ (0,1), there is
κε > 0 such that

a(r) ≤ ε ra(r) +
κε
r

for r ∈ (0,1) .
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Finite time blowup

Theorem

Assume that a ∈ L1(1,∞) and a is not too singular near r = 0. For
each M > 0, there is at least one initial condition u0 with 〈u0〉 = M for
which u blows up in finite time.

Sufficient condition:

sup
r∈(0,1)

r
∫ ∞

r
a(s) ds <∞ .

Examples:

a(r) ≤ C rα α ∈ [−2,−1) ,

a(r) ≤ C
(1 + r) (log(1 + r))β

, β > 1 ,

a(r) = r−(2+α) , α > 0 .
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Critical nonlinearity

No critical nonlinearity when d = 1?
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