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Darwinian evolution of a structured population density

Population models are structured by a parameter representing

a phenotipical trait.

We study the

population dynamics

under selection and

mutations between

the traits.



Mathematical modeling (1)

{
∂tnε − ε4nε = nε

ε R(x , Iε(t)), x ∈ Rd , t ≥ 0,

nε(t = 0) = n0ε ∈ L1(Rd ), n0ε ≥ 0,

Iε(t) =

∫
Rd

ψ(x) nε(t, x)dx .

x ∈ Rd : A phenotipical trait,

nε(t, x) : The density of trait x ,

I (t) : The pressure exerted by the population on the ressource,

R(x , I ) : The growth and death rates of trait x ,

ε : A small parameter that we introduce to consider only rare

mutations.



Mathematical modeling (1)

R(x , I ) = 1− x2

2
− I .

At left : Dynamics of the concentration point. At right : The

population density at �nal time t = 2



Mathematical modeling (2)

{
∂tnε = nε

ε R(x , Iε(t)) + 1
ε

∫
1

εd
K ( y−xε ) b(y , Iε) nε(t, y) dy ,

nε(t = 0) = n0ε ∈ L1(Rd ), n0ε ≥ 0,

Iε(t) =

∫
Rd

ψ(x) nε(t, x)dx .

K (z) : A probability kernel

ε : A small parameter that we introduce to consider only small

mutations.

Ref : G. Barles, S. Mirrahimi, B. Perthame, Concentration in

Lotka-Volterra parabolic equations : a general convergence

result.Preprint march 2009.



Table of contents

1 Introduction

2 Results

3 Sketch of the Proof

Preliminary results

Regularity results

Asymptotic behavior of uε

4 Future works



Table of contents

1 Introduction

2 Results

3 Sketch of the Proof

Preliminary results

Regularity results

Asymptotic behavior of uε

4 Future works



Mathematical modeling (1)

{
∂tnε − ε4nε = nε

ε R(x , Iε(t)), x ∈ Rd , t ≥ 0,

nε(t = 0) = n0ε ∈ L1(Rd ), n0ε ≥ 0,
(1)

Iε(t) =

∫
Rd

ψ(x) nε(t, x)dx . (2)



Some notations

n(t, x) : The weak limit of nε(t, x) as ε vanishes,

We expect n to concentrate as Dirac masses,

A change of variables : nε(t, x) = e
uε(t,x)
ε .



Results

Theorem (G. Barles, S. Mirrahimi, B. Perthame)

Assume (5)− (10). Let nε be the solution to the equations

(1)− (2), and uε = ε ln(nε). Then, after extraction of a

subsequence, uε converges locally uniformly to a function

u ∈ C(R+ \ {0} × Rd ), a viscosity solution to the following

equation : ∂tu = |∇u|2 + R(x , I (t)),

max
x∈Rd

u(t, x) = 0, ∀t > 0,
(3)

Iε(t) −→
ε→0

I (t) a.e.,

∫
ψ(x)n(t, x)dx = I (t) a.e.. (4)

If additionally (u0ε )ε is a sequence of uniformly continuous functions

which converges locally uniformly to u0 then u ∈ C(R+ × Rd ) and

u(0, x) = u0(x).



Results

x̄(t) ∈ supp n(t, ·)

=⇒ u(x̄(t), t) = 0

=⇒ R(x̄(t), I (t)) = 0



Assumptions

0 < ψm < ψ < ψM <∞, ψ ∈W 2,∞(Rd ), (5)

min
x∈Rd

R(x , Im) = 0, max
x∈Rd

R(x , IM) = 0, (6)

−K1 ≤
∂R

∂I
(x , I ) < −K−11 < 0, (7)

sup
Im

2
≤I≤2IM

‖ R(·, I ) ‖W 2,∞(Rd )< K2, (8)



Assumptions

Im ≤
∫

Rd

ψ(x)n0ε (x) ≤ IM , (9)

∃A, B > 0 , n0ε ≤ e
−A|x|+B

ε . (10)
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Preliminary results

Theorem

With the assumptions (5)− (10), and
Im − Cε2 ≤ I 0ε (t) ≤ IM + Cε2, there is a unique solution

nε ∈ C(R+; L1(Rd )) to equations (1)− (2) and it satis�es

I ′m = Im − Cε2 ≤ Iε(t) ≤ IM + Cε2 = I ′M ,

where C is a constant. This solution, nε(t, x), is nonnegative for all

t ≥ 0.



Preliminary results

G. Barles, B. Perthame, 2007 :

With the assumptions (5)− (10), we have a locally uniform

BV bound for Iε.

Particularly, after extraction of a subsequence, Iε(t) converges

a.e. to a function I (t), while ε goes to 0.
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Regularity results

By replacing nε = e
uε
ε in equation (1), we deduce that uε is a

smooth solution to the following equation :

{
∂tuε − ε4uε = |∇uε|2 + R(x , Iε(t)), x ∈ R, t ≥ 0,

uε(t = 0) = ε ln n0ε .



Regularity results

Theorem (Regularity of uε)

De�ne vε =
√
2D2 − uε. With the assumptions (5)− (10), for all

t0 > 0 vε are locally uniformly bounded and Lipschitz in

[t0,∞[×Rd ,

|∇vε| ≤ C (T ) +
1√
2t0

,

where C (T ) is a constant depending on T , K1, K2, A and B.

Moreover, if we assume that (u0ε )ε is a sequence of uniformly

continuous functions, then uε are locally uniformly bounded and

continuous in [0,∞[×Rd .



Regularity results

Step 1 An upper bound for uε,

Step 2 Regularizing e�ect in space,

Step 3 Regularity in space of uε near t = 0,

Step 4 Local bounds from below for uε,

Step 5 Regularizing e�ect in time.



Regularity results - Regularizing e�ect in space

Step 2 Let

u = f (v).

Then we have

∂tv − ε4v −
[
ε
f ′′(v)

f ′(v)
+ f ′(v)

]
|∇v |2 =

R(x , I )

f ′(v)
.



Regularity results - Regularizing e�ect in space

We de�ne p = ∇v . By di�erentiating the previous equation we

obtain

∂tpi − ε4pi − 2

[
ε
f ′′(v)

f ′(v)
+ f ′(v)

]
∇v · ∇pi

−
[
ε
f ′′′(v)

f ′(v)
− ε f

′′(v)2

f ′(v)2
+ f ′′(v)

]
|∇v |2pi

= − f ′′(v)

f ′(v)2
R(x , I )pi +

1

f ′(v)

∂R

∂xi
.



Regularity results - Regularizing e�ect in space

Let f (v) = −v2 + 2D2, where D(T ) =
√
B + CT . Then we have

∂|p|
∂t
− ε4|p| − 2

[
ε
f ′′(v)

f ′(v)
+ f ′(v)

]
p · ∇|p|

+2|p|3 − K2

2D2
|p| − K2

2D
≤ 0.

Thus for θ(T ) large enough we have

∂(|p| − θ)

∂t
− ε4(|p| − θ) (11)

−2
[
ε
f ′′(v)

f ′(v)
+ f ′(v)

]
p · ∇(|p| − θ) + 2(|p| − θ)3 ≤ 0.



Regularity results - Regularizing e�ect in space

De�ne the function

y(t, x) = y(t) =
1

2
√
t

+ θ.

Since y − θ is a solution to (11), and y(0) =∞ and |p| − θ being a

sub-solution we have

|∇v |(x , t) = |p|(x , t) ≤ y(x , t) =
1

2
√
t

+ θ(T ), 0 < t ≤ T .
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Asymptotic behavior of uε

step 1 (Limit) We proved that uε are locally uniformly bounded

and continuous. So by Arzela-Ascoli Theorem after

extraction of a subsequence, uε converges locally

uniformly to a continuous function u.

step 2 (Initial condition) We have u(0, x) = lim
ε→0

uε(0, x) = u0(x).

So the initial condition is proved.



Asymptotic behavior of uε

step 3 (max
x∈Rd

u = 0)

u(t, x) ≤ 0 : If 0 < a < u(t, x), ⇒
nε(t, x)→∞

ε→0

, ⇒ Iε(t)→∞
ε→0

.

max
x∈Rd

u = 0 : If u(t, x) < −a < 0, then Iε(t)→ 0
ε→0

.



Asymptotic behavior of uε

step 4 (Limit equation) Properites of Viscosity solutions.

According to step 1, uε(t, x) converge locally uniformly to the

continuous function u(t, x) as ε vanishes.

We have Iε(s)→ I (s) a.e. as ε goes to 0.

The function R(x , I ) is smooth.

φε(t, x) = uε(t, x)−
∫ t

0

R(x , Iε(s))ds
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A model with local competitions

{
∂tnε = ε4nε + 1

εnε(1− Φ ∗ nε)
nε(0, x) = n0ε (x) ≥ 0,

where the convolution kernel Φ satis�es

Φ ≥ 0,

∫
Φ = 1.



A model with local competitions

In the presence of local competitions we can observe

polymorphism and branching.

A joint work with Emeric Bouin (LJLL) and Pierre Millien

(LJLL)



Thank you !
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