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Darwinian evolution of a structured population density

@ Population models are structured by a parameter representing
a phenotipical trait.

o We study the
population dynamics
under selection and
mutations between
the traits.




Mathematical modeling (1)

Oene — eAne = 2=R(x, I(t)), x€RY t>0,

n(t=0)=n’ e LY(RY), nd>0,

l(t) = P(x) ne(t, x)dx.
R4

x € R? : A phenotipical trait,
ne(t,x) : The density of trait x,
I(t) : The pressure exerted by the population on the ressource,
R(x, 1) : The growth and death rates of trait x,

€ : A small parameter that we introduce to consider only rare
mutations.



Mathematical modeling (1)

2

o R(x,/)=1-% —1.

@ At left : Dynamics of the concentration point. At right : The
population density at final time t =2



Mathematical modeling (2)

Oene = 2=R(x, Ie(t)) + £ [ HK(XZ2) bly, o) ne(t,y) dy,
n(t =0)=n? € LYRY), n?>0,

/ P(x) ne(t, x)

@ K(z) : A probability kernel
€ : A small parameter that we introduce to consider only small
mutations.

o Ref : G. Barles, S. Mirrahimi, B. Perthame, Concentration in
Lotka-Volterra parabolic equations : a general convergence
result.Preprint march 2009.
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Mathematical modeling (1)

{&ne —eAnc = "R(x, (), x€eRY >0, )

n(t=0)=nd e L}(RY), nl>0,

() = /Rd (%) ne(£, x)dx. 2)



Some notations

@ n(t,x) : The weak limit of n.(t, x) as e vanishes,

@ We expect n to concentrate as Dirac masses,

ue(t,x)

@ A change of variables : n.(t,x) = e ¢



Theorem (G. Barles, S. Mirrahimi, B. Perthame)

Assume (5) — (10). Let n be the solution to the equations
(1) — (2), and uc = €ln(n,). Then, after extraction of a
subsequence, u. converges locally uniformly to a function

u € C(RT\ {0} x RY), a viscosity solution to the following
equation :

Beu = [Vul + R(x, I(£)),
max u(t,x) =0, Vt>0, (3)

xcRd

le(t) v I(t) a.e., /1,/;(x)n(t,x)dx =1I(t) ae. (4)
If additionally (u®)c is a sequence of uniformly continuous functions
which converges locally uniformly to u° then u € C(R* x RY) and
u(0,x) = u°(x).




x(t) € supp n(t,-)
= u(x(t),t) =0
= R(x(t),I(t))=0



0 < m <1 <oy < 00, P € WS (RY), (5)
min R(x,/n) =0, max R(x,Iy) =0, (6)
x€R x€R4

R
—K; < %/(x, < -K' <o, (7)
sup || R(- 1) lwz.oomay< Ko, (8)

Im<1<2iy



m< |, () (x) < I, (9)

—A|x|+B

JAB>0,n<e < . (10)
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Preliminary results

Theorem

With the assumptions (5) — (10), and
I, — Ce? < Ieo(t) < Iy + Cé€, there is a unique solution
n. € C(RT; LY(RY)) to equations (1) — (2) and it satisfies

I = Im— Ce® < I(t) < Iy + C =1},

where C is a constant. This solution, n.(t, x), is nonnegative for all
t>0.

’



Preliminary results

G. Barles, B. Perthame, 2007 :

e With the assumptions (5) — (10), we have a locally uniform
BV bound for /..

e Particularly, after extraction of a subsequence, /.(t) converges
a.e. to a function /(t), while € goes to 0.
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Regularity results

By replacing n. = e’< in equation (1), we deduce that v, is a
smooth solution to the following equation :

Orue — eAuc = |Vu > + R(x, I.(t)), x€R,t>0,
u(t =0)=elnnd.



Regularity results

Theorem (Regularity of u)

Define ve = \/2D? — u.. With the assumptions (5) — (10), for all
to > 0 v, are locally uniformly bounded and Lipschitz in
[to, 00[de ,

1

V2t ’

where C(T) is a constant depending on T, K1, K, A and B.
Moreover, if we assume that (u°). is a sequence of uniformly
continuous functions, then u. are locally uniformly bounded and
continuous in [0, co[xRY.

Vv < C(T)+




Regularity results

Step 1 An upper bound for ue,

Step 2 Regularizing effect in space,

Step 3 Regularity in space of u. near t = 0,
Step 4 Local bounds from below for wu,

Step 5 Regularizing effect in time.



Regularity results - Regularizing effect in space

Step 2 Let
u="f(v).
Then we have
f'(v) | o 2 _ R(x, 1)
Orv —eAv — [e 0) +f (v)] |Vv|* = F1(0)



Regularity results - Regularizing effect in space

We define p = Vv. By differentiating the previous equation we
obtain

(v)
" v " v 2
_ |:6f ( ) . f (( ))2 + f//(v):| ’vV|2Pi

' (v) ' 1 OR




Regularity results - Regularizing effect in space

Let f(v) = —v2 +2D?, where D(T) = /B + CT. Then we have

9|p| t'(v) |
K K
3_ "2 2
+2lpl" = 5palel = 55 =0

Thus for 6(T) large enough we have

lpl - 9)
ot

2 [e’;((vv)) + f’(v)] p-V(lp| = 0)+2(|p| — 0)3 < 0.

—en(pl-0) (1)




Regularity results - Regularizing effect in space

Define the function

y(t,x) =y(t) = ﬁ +9.

Since y — 6 is a solution to (11), and y(0) = co and |p| — @ being a
sub-solution we have

[Vv|(x,t) = |p|(x,t) < y(x,t) = V +6(T), 0<t<T.
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Asymptotic behavior of u,

step 1 (Limit) We proved that v, are locally uniformly bounded
and continuous. So by Arzela-Ascoli Theorem after
extraction of a subsequence, u. converges locally
uniformly to a continuous function w.
step 2 (Initial condition) We have u(0, x) = IinB ue(0,x) = u(x).
€E—

So the initial condition is proved.



Asymptotic behavior of u,

step 3 (max u = 0)
xeRd
o u(t,x) <0:If0<a<u(tx), =
ne(t,x) — oo, = I(t) — oo.
e—0 e—0
e maxu=0:If u(t,x) < —a <0, then [(t) — 0.
x€R e—0



Asymptotic behavior of u,

step 4 (Limit equation) Properites of Viscosity solutions.

@ According to step 1, uc(t, x) converge locally uniformly to the
continuous function u(t, x) as e vanishes.

o We have /(s) — I(s) a.e. as € goes to 0.
@ The function R(x, /) is smooth.

Ge(t,x) = ue(t,x) — /Ot R(x, I.(s))ds
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A model with local competitions

Otne = e/An. + %ne(l — ®xn,)
ne(0,x) = ng(x) >0,

where the convolution kernel ® satisfies

o>0. [o-1.



A model with local competitions

@ In the presence of local competitions we can observe
polymorphism and branching.
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@ A joint work with Emeric Bouin (LJLL) and Pierre Millien
(LJLL)
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