Congestion in macroscopic models for sheep herds

Laurent NAVORET

Joint work with Richard Bon, Pierre Degond & David Sanchez
Institut Mathématiques de Toulouse, Université de Toulouse

Worshop CBDif, Wednesday 7th October 2009

▶ Sheep herds : local interactions ⇒ collective movement.

- ▶ Congestion : non-overlapping constraint \Rightarrow maximal density ρ^*
 - ⇒ transition between free and constrained movement
 - ⇒ incompressibility/compressibility
- Model for the displacement of a sheep herd
 All group memberships have the same speed

Plan

Long range attraction and short range repulsion with speed and congestion constraints

Microscopic model Kinetic model et hydrodynamic rescaling Macroscopic model

Study of the free/congested dynamics transition

The asymptotic model In the congested phase The interface dynamics

Long range attraction and short range repulsion with speed and congestion constraints

Plan

Long range attraction and short range repulsion with speed and congestion constraints

Microscopic model Kinetic model et hydrodynamic rescaling Macroscopic model

Study of the free/congested dynamics transition

In the congested phase
The interface dynamics

Microscopic model

 $D(X_k, R)$

- Attraction-repulsion interactions (no alignement)
- ho N sheeps : positions $X_k \in \mathbb{R}^2$ velocities $V_k \in \mathbb{R}^2$, with $|V_k| = 1$

$$\frac{dX_k}{dt} = V_k,$$

$$\frac{dV_k}{dt} = (\operatorname{Id} - V_k \otimes V_k)(\underbrace{\mathcal{F}_k^a}_{\text{attractive term}} - \underbrace{\mathcal{F}_k^r}_{\text{repulsive term}}),$$

$$\bullet \, \mathcal{F}_k^a \text{ in the direction of the B}$$

- \mathcal{F}_k^a in the direction of the barycenter of the mass distribution in the disc of radius R_a
- \mathcal{F}_k^r in the direction of the barycenter of the mass distribution in the disc of radius R_r

Microscopic model- speed constraint

- Attraction-repulsion interactions (no alignement)
- N sheeps : positions $X_k \in \mathbb{R}^2$ velocities $V_k \in \mathbb{R}^2$, with $|V_k| = 1$

$$\frac{dX_k}{dt} = V_k,$$

$$\frac{dV_k}{dt} = (\operatorname{Id} - V_k \otimes V_k)(\underbrace{\mathcal{F}_k^a}_{\text{attractive term}} - \underbrace{\mathcal{F}_k^r}_{\text{repulsive term}})$$

$$\bullet |V_k|^2 = 1 \quad \Rightarrow \quad \frac{dV_k}{dt} \perp V_k$$

 \Rightarrow (Id $-V_k \otimes V_k$) = orthogonal projection matrix on the orthogonal plane to V_k .

Microscopic Model - long range attraction, short range repulsion

$$\begin{array}{lcl} \frac{dX_k}{dt} & = & V_k, \\ \frac{dV_k}{dt} & = & (\operatorname{Id} - V_k \otimes V_k) (\underbrace{\mathcal{F}_k^a}_{\text{attractive term}} - \underbrace{\mathcal{F}_k^r}_{\text{repulsive term}}), \end{array}$$

- $\triangleright \mathcal{F}_k = \nu_k \xi_k$
 - $\rightarrow \nu_k$, intensity
 - $\rightarrow \xi_k$ = barycenter of mass distrib. in disc $D(X_k, R)$

$$=\left(\sum_{j,|X_j-X_k|< R}(X_k-X_j)
ight)/\left(\sum_{j,|X_j-X_k|< R}1
ight)$$

Attraction force : long range and moderate intensity Repulsion force : short range and strong intensity

$$R_r \ll R_a$$
 and $\nu_a \ll \nu_r$

Kinetic model et hydrodynamic rescaling

Mean-field Limit

- f(x, v, t) probability distribution function, $x \in \mathbb{R}^2, v \in S^1$
- ▶ Great number of interacting particles : $N \to +\infty$ (Mean-field limit)

$$f^{N}(x,v,t) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - X_{k}(t)) \, \delta(v,V_{k}(t)) \quad \underset{N \to +\infty}{\longrightarrow} \quad f^{N}(x,v,t) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - X_{k}(t)) \, \delta(v,V_{k}(t))$$

▶ f satisfies : $\partial_t f + v \cdot \nabla_x f + \nabla_v \cdot ((\operatorname{Id} - v \otimes v)(\mathcal{F}_a - \mathcal{F}_r) f) = 0$

$$\mathcal{F}_{a,r}(x,v,t) = \nu_{a,r}\xi_{a,r}, \quad \xi_{a,r}(x,t) = \frac{\int_{D(x,R_{a,r})} (y-x)\rho(y,t)dy}{\int_{D(x,R_{a,r})} \rho(y,t)dy}$$
$$\rho(x,t) = \int_{V} f(x,v,t)dv = \text{density}$$

Rescaling of the kinetic model

▶ Large time and space dynamics : hydrodynamic rescaling

$$\tilde{x} = \eta x, \quad \tilde{t} = \eta t, \quad \eta \ll 1$$

Repulsive terms :

1.
$$R_r = O(\eta)$$

2.
$$\nu_r = O(1)$$

$$ightarrow \mathcal{F}_r = \eta \nu_r rac{
abla_{\scriptscriptstyle x}
ho}{
ho}$$

→ local repulsive force

Attractive terms :

1.
$$R_a = O(1)$$

$$2. \ \nu_{\mathsf{a}} = O(\eta)$$

$$ightarrow \mathcal{F}_{\mathsf{a}} = \mathcal{O}(\eta)$$

 \rightarrow non local attractive force

► Congestion : ρ^* maximal density $\nu_r(\rho) \to +\infty$ as $\rho \to \rho^*$

Long range attraction and short range repulsion with speed and congestion constraints

Kinetic model et hydrodynamic rescaling

Kinetic model

$$\begin{split} \partial_t f + v \cdot \nabla_x f + \nabla_v \cdot \left(\left(\operatorname{Id} - v \otimes v \right) \left(\mathcal{F}_{\mathsf{a}} - \mathcal{F}_r \right) f \right) &= 0 \\ \\ \mathcal{F}_{\mathsf{a}} &= \nu_{\mathsf{a}} \xi_{\mathsf{a}}, \quad \xi_{\mathsf{a}} (x,t) = \frac{\int_{D(\mathsf{x},R_{\mathsf{a}})} (y-\mathsf{x}) \rho(y,t) dy}{\int_{D(\mathsf{x},R_{\mathsf{a}})} \rho(y,t) dy} \\ \\ \mathcal{F}_{\mathsf{r}} &= \nu_{\mathsf{r}} (\rho) \frac{\nabla_{\mathsf{x}} \rho}{\rho} =: \nabla_{\mathsf{x}} p(\rho) \\ \\ & \text{with } p \text{ such as } p'(\rho) = \nu_{\mathsf{r}} (\rho) / \rho \end{split}$$

Macroscopic model

- Monokinetic assumption : $f(x, v, t) = \rho(x, t)\delta(v, u(x, t)), |u| = 1.$ "Locally, only one velocity"

Integration of the kinetic equation leads to

$$\begin{split} |u| &= 1 \\ \partial_t \rho + \nabla_x \cdot \rho u &= 0 \\ \partial_t u + u \cdot \nabla_x u + (Id - u \otimes u)(\nabla_x p(\rho) - \mathcal{F}_a) &= 0 \end{split}$$

Plan

Long range attraction and short range repulsion with speed and congestion constraints

Microscopic model
Kinetic model et hydrodynamic rescaling
Macroscopic model

Study of the free/congested dynamics transition

The asymptotic model In the congested phase The interface dynamics

Pressure localization: asymptotic limit

▶ Focus on repulsion : $\mathcal{F}_a = 0$

$$\begin{split} &\partial_t \rho + \nabla_x \cdot \rho u = 0, \\ &\partial_t u + u \cdot \nabla_x u + (Id - u \otimes u) \nabla_x \rho(\rho) = 0 \\ &|u| = 1 \end{split}$$

- $p(\rho) \to +\infty$ as $\rho \to \rho^*$
- For $\rho \ll \rho^*$, no repulsion \to free motion For $\rho \sim \rho^* \to$ congestion

▶ ε : range of p for $\rho \ll \rho^*$ ⇒ We rescale p into εp

Two-phase model

$$\begin{split} &\partial_t \rho^\varepsilon + \nabla_x \cdot \rho^\varepsilon u^\varepsilon = 0 \\ &\partial_t u^\varepsilon + u^\varepsilon \cdot \nabla_x u^\varepsilon + (Id - u^\varepsilon \otimes u^\varepsilon) \varepsilon \nabla_x \rho(\rho^\varepsilon) = 0 \\ &|u^\varepsilon| = 1 \end{split}$$

- $\triangleright \ \varepsilon p(\rho^{\varepsilon}(x,t)) \underset{\varepsilon \to 0}{\longrightarrow} \left\{ \begin{array}{ll} 0 & \text{if } \rho^{\varepsilon}(x,t) \to \rho < \rho^* \\ \bar{p}(x,t) & \text{if } \rho^{\varepsilon}(x,t) \to \rho^* \end{array} \right.$
- ▶ In the limit $\varepsilon \to 0$, two phases :

In the free motion phase $\rho < \rho^*$,

$$|u| = 1$$

 $\partial_t \rho + \nabla_x \cdot \rho u = 0$
 $\partial_t u + u \cdot \nabla_x u = 0$
 $\bar{p} = 0$

In the congested phase $\rho = \rho^*$,

$$|u| = 1$$

$$\rho = \rho^*, \quad \nabla_{\times} \cdot u = 0$$

$$\partial_t u + u \cdot \nabla_{\times} u$$

$$+ (Id - u \otimes u) \nabla_{\times} \bar{p} = 0$$

Pressureless gaz dynamics

Incompressible Euler

In the congested phase

The congested phase

- ▶ Euler Incompressible equations with speed constraint
- lacksquare $abla_{ imes} \cdot u = 0 \text{ and } |u| = 1$
 - $\rightarrow u$ constant on lines orthogonal to u

ightharpoonup Elliptic equation satisfied by \bar{p} on each straight lines

$$-\nabla_{\mathsf{x}}\cdot((\mathsf{Id}-\mathsf{u}\otimes\mathsf{u})\nabla_{\mathsf{x}}\bar{\mathsf{p}})=\nabla_{\mathsf{x}}^2:(\mathsf{u}\otimes\mathsf{u})$$

→ boundary conditions? Not given by formal asymptotics

Boundary conditions

▶ 1D Riemann problem accross the interface between the congested region $C_t = \{x, \rho(x) = \rho^*\}$ and non congested regions

$$\cos \theta = u \cdot n$$

$$\frac{u_{\ell}}{\rho_{\ell}} \frac{u_{r}}{n} \frac{u_{r}}{v_{r}} \frac{u_{r}}{v_{r}} \frac{u_{r}}{\rho_{r}} = \rho^{*}$$

▶ the 1D system with $\varepsilon > 0$ is not conservative \rightarrow there exist a conservative form

$$\begin{split} \partial_t \rho \ + \ \partial_x \big(\rho \cos \theta \big) &= 0 \\ \partial_t \Psi \big(\cos \theta \big) \ + \ \partial_x \left(\Phi \big(\cos \theta \big) + \varepsilon p(\rho) \right) &= 0 \end{split}$$

$$\Psi \big(u \big) &= \frac{1}{2} \log \big((1+u)/(1-u) \big) \,, \quad \Phi \big(u \big) &= -\log \left(1/\sqrt{1-u^2} \right) \end{split}$$

ightarrow no uniqueness of the conservative form but generic features

Boundary conditions

- ▶ Limit $\varepsilon \rightarrow 0$ of the Riemann problem solutions
- ▶ Congested ($\rho = \rho^*$) / Uncongested ($0 < \rho < \rho^*$) interface → Rankine Hugoniot conditions gives the pressure jump and interface velocity

$$\begin{split} \bar{p}_{|\partial C_t} &= \frac{[\Psi(u \cdot n)][\rho(u \cdot n)]}{[\rho]} - [\Phi(u \cdot n)] \\ \sigma &= \frac{[\rho(u \cdot n)]}{[\rho]} \end{split}$$

▶ Congested $(\rho = \rho^*)$ / Vacuum $(\rho = 0)$ interface

$$\bar{p}_{|\partial C_t} = 0$$
 $\sigma = \mu \cdot n$

Boundary conditions

- ► Collision between two Congested regions
 - ightarrow Riemann Problem does not provide solutions : $ar{p}=\infty$
 - ightarrow in 1D, collapsing clusters with a delta pressure in time

•
$$\bar{p} = \pi(x)\delta(t - t_c)$$
, t_c collision time

• *u* determined by

$$(\Psi(u) - \Psi(u_L))(x_c - x_L) + (\Psi(u) - \Psi(u_R))(x_R - x_c) = 0$$

- analogy with two phase-flow models [Bouchut et al.]
- \rightarrow in 2D, more complicated dynamics...

Plan

Long range attraction and short range repulsion with speed and congestion constraints

Microscopic model

Kinetic model et hydrodynamic rescaling

Macroscopic model

Study of the free/congested dynamics transition

The asymptotic model

In the congested phase

The interface dynamics

- Derivation of a macroscopic model with congestion and speed constraint
- Singular limit in the macroscopic model : free/congested transition
 Study of the compressible-incompressible transition

Outlooks:

- ▶ Numerical simulations and comparison with the microscopic model
- grazing time model with moving and motionless sheeps