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Congestion in macroscopic models for sheep herds

I Sheep herds : local interactions ⇒ collective movement.

I Congestion : non-overlapping constraint ⇒ maximal density ρ∗

⇒ transition between free and constrained movement
⇒ incompressibility/compressibility

I Model for the displacement of a sheep herd
All group memberships have the same speed
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Long range attraction and short range repulsion with speed and congestion constraints

Microscopic model

Microscopic model
I Attraction-repulsion interactions (no alignement)
I N sheeps : positions Xk ∈ R2

velocities Vk ∈ R2, with |Vk | = 1

dXk

dt
= Vk ,

dVk

dt
= (Id− Vk ⊗ Vk)( Fa

k︸︷︷︸
attractive term

− F r
k︸︷︷︸

repulsive term

),

• Fa
k in the direction of the barycenter of

the mass distribution in the disc of radius
Ra

• F r
k in the direction of the barycenter of

the mass distribution in the disc of radius
Rr
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Long range attraction and short range repulsion with speed and congestion constraints

Microscopic model

Microscopic model- speed constraint
I Attraction-repulsion interactions (no alignement)

I N sheeps : positions Xk ∈ R2

velocities Vk ∈ R2, with |Vk | = 1

dXk

dt
= Vk ,

dVk

dt
= (Id− Vk ⊗ Vk)( Fa

k︸︷︷︸
attractive term

− F r
k︸︷︷︸

repulsive term

),

• |Vk |2 = 1 ⇒ dVk

dt ⊥ Vk

⇒ (Id− Vk ⊗ Vk) = orthogonal projection
matrix on the orthogonal plane to Vk .
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Long range attraction and short range repulsion with speed and congestion constraints

Microscopic model

Microscopic Model - long range attraction, short range
repulsion

dXk

dt
= Vk ,

dVk

dt
= (Id− Vk ⊗ Vk)( Fa

k︸︷︷︸
attractive term

− F r
k︸︷︷︸

repulsive term

),

I Fk = νkξk
→ νk , intensity
→ ξk = barycenter of mass distrib. in disc D(Xk ,R)

=

 ∑
j,|Xj−Xk |<R

(Xk − Xj)

 /

 ∑
j,|Xj−Xk |<R

1


I Attraction force : long range and moderate intensity

Repulsion force : short range and strong intensity

Rr � Ra and νa � νr
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Long range attraction and short range repulsion with speed and congestion constraints

Kinetic model et hydrodynamic rescaling

Mean-field Limit

I f (x , v , t) probability distribution function, x ∈ R2, v ∈ S1

I Great number of interacting particles : N → +∞ (Mean-field limit)

f N(x , v , t) =
1

N

N∑
k=1

δ(x − Xk(t)) δ(v ,Vk(t)) −→
N→+∞

f

I f satisfies : ∂t f + v · ∇x f +∇v · ((Id− v ⊗ v) (Fa −Fr ) f ) = 0

Fa,r (x , v , t) = νa,rξa,r , ξa,r (x , t) =

∫
D(x,Ra,r )

(y − x)ρ(y , t)dy∫
D(x,Ra,r )

ρ(y , t)dy

ρ(x , t) =

∫
v

f (x , v , t)dv = density
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Long range attraction and short range repulsion with speed and congestion constraints

Kinetic model et hydrodynamic rescaling

Rescaling of the kinetic model

I Large time and space dynamics : hydrodynamic rescaling

x̃ = ηx , t̃ = ηt, η � 1

Repulsive terms :

1. Rr = O(η)

2. νr = O(1)

→ Fr = ηνr
∇xρ
ρ→ local repulsive force

Attractive terms :

1. Ra = O(1)

2. νa = O(η)

→ Fa = O(η)
→ non local attractive force

I Congestion : ρ∗ maximal density
νr (ρ)→ +∞ as ρ→ ρ∗
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Long range attraction and short range repulsion with speed and congestion constraints

Kinetic model et hydrodynamic rescaling

Kinetic model

∂t f + v · ∇x f +∇v · ((Id− v ⊗ v) (Fa −Fr ) f ) = 0

Fa = νaξa, ξa(x , t) =

∫
D(x,Ra)

(y − x)ρ(y , t)dy∫
D(x,Ra)

ρ(y , t)dy

Fr = νr (ρ)
∇xρ

ρ
=: ∇xp(ρ)

with p such as p′(ρ) = νr (ρ)/ρ



Congestion in macroscopic models for sheep herds

Long range attraction and short range repulsion with speed and congestion constraints

Macroscopic model

Macroscopic model

I Moments :
density ρ =

∫
f (x , v , t)dv

momentum ρu =
∫
v
vf (x , v , t)dv

I Monokinetic assumption : f (x , v , t) = ρ(x , t)δ(v , u(x , t)), |u| = 1.
”Locally, only one velocity”

Integration of the kinetic equation leads to

|u| = 1

∂tρ+∇x · ρu = 0

∂tu + u · ∇xu + (Id − u ⊗ u)(∇xp(ρ)−Fa) = 0
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Study of the free/congested dynamics transition

The asymptotic model

Pressure localization : asymptotic limit

I Focus on repulsion : Fa = 0

∂tρ+∇x · ρu = 0,

∂tu + u · ∇xu + (Id − u ⊗ u)∇xp(ρ) = 0

|u| = 1

• p(ρ)→ +∞ as ρ→ ρ∗

• For ρ� ρ∗, no repulsion → free motion
For ρ ∼ ρ∗ → congestion

p

ρ∗ ρ

I ε : range of p for ρ� ρ∗

⇒ We rescale p into εp
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Study of the free/congested dynamics transition

The asymptotic model

Two-phase model

∂tρ
ε +∇x · ρεuε = 0

∂tu
ε + uε · ∇xu

ε + (Id − uε ⊗ uε)ε∇xp(ρε) = 0

|uε| = 1

I εp(ρε(x , t)) −→
ε→0

{
0 if ρε(x , t)→ ρ < ρ∗

p̄(x , t) if ρε(x , t)→ ρ∗

I In the limit ε→ 0, two phases :

In the free motion phase ρ < ρ∗,

|u| = 1

∂tρ+∇x · ρu = 0

∂tu + u · ∇xu = 0

p̄ = 0

Pressureless gaz dynamics

In the congested phase ρ = ρ∗,

|u| = 1

ρ = ρ∗, ∇x · u = 0

∂tu + u · ∇xu

+(Id − u ⊗ u)∇x p̄ = 0

Incompressible Euler
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Study of the free/congested dynamics transition

In the congested phase

The congested phase
I Euler Incompressible equations with speed constraint

I ∇x · u = 0 and |u| = 1
→ u constant on lines orthogonal to u

ρ∗

ρ < ρ∗

I Elliptic equation satisfied by p̄ on each straight lines

−∇x · ((Id − u ⊗ u)∇x p̄) = ∇2
x : (u ⊗ u)

→ boundary conditions ? Not given by formal asymptotics
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Study of the free/congested dynamics transition

The interface dynamics

Boundary conditions
I 1D Riemann problem accross the interface between the congested

region Ct = {x , ρ(x) = ρ∗} and non congested regions

cos θ = u · n n

uℓ ur

ρr = ρ∗ρℓ < ρ∗
θℓ θr

x2

x1

I the 1D system with ε > 0 is not conservative → there exist a
conservative form

∂tρ + ∂x(ρ cos θ) = 0

∂tΨ(cos θ) + ∂x (Φ(cos θ) + εp(ρ)) = 0

Ψ(u) =
1

2
log ((1 + u)/(1− u)) , Φ(u) = − log

(
1/
√

1− u2
)

→ no uniqueness of the conservative form but generic features
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Study of the free/congested dynamics transition

The interface dynamics

Boundary conditions

I Limit ε→ 0 of the Riemann problem solutions

I Congested (ρ = ρ∗) / Uncongested (0 < ρ < ρ∗) interface
→ Rankine Hugoniot conditions gives the pressure jump and
interface velocity

p̄|∂Ct
=

[Ψ(u · n)][ρ(u · n)]

[ρ]
− [Φ(u · n)]

σ =
[ρ(u · n)]

[ρ]

I Congested (ρ = ρ∗) / Vacuum (ρ = 0) interface

p̄|∂Ct
= 0

σ = u · n
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Study of the free/congested dynamics transition

The interface dynamics

Boundary conditions

I Collision between two Congested regions
→ Riemann Problem does not provide solutions : p̄ =∞
→ in 1D, collapsing clusters with a delta pressure in time

• p̄ = π(x)δ(t − tc), tc collision time

CL CR

uL uR

CL ∪ CR

u

xRxcxL

• u determined by

(Ψ(u)−Ψ(uL))(xc − xL) + (Ψ(u)−Ψ(uR))(xR − xc) = 0

• analogy with two phase-flow models [Bouchut et al.]
→ in 2D, more complicated dynamics...
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Conclusion

I Derivation of a macroscopic model with congestion and speed
constraint

I Singular limit in the macroscopic model : free/congested transition
Study of the compressible-incompressible transition

Outlooks :

I Numerical simulations and comparison with the microscopic model

I grazing time model with moving and motionless sheeps
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