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The model.

{
ρ(0, ·) = ρ0,
∂tρ = ∇x · (ρ∇x (W ∗x ρ+ V )) .

(1)

Civelekoglu G, Edelstein-Keshet L, Modelling the dynamics of
F-actin in the cell. Bull. Math. Biol. 56(4), 587–616 (1994).

Primi I, Stevens A, Velazquez JJL. Mass-Selection in alignment
models with non-deterministic effects. Comm. Partial Differential
Equations 34(5), (2009).
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Actin filaments.
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Mesh of actin filaments.
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Actin filaments with or without cross-linking proteins.
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Cross-linking proteins.

filamin, ABP-50, fibrillin, villin, fascin...
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Action of Cross-linking proteins.

W ′(x) : moment force between two filaments.
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Notations.

We the case where the density of proteins is homogeneous in
space.

ρ(t, ·) ∈ M1(S1 or R). ρ(t, x) is the density of filaments of
orientation x . We normalise it by :∫

R
dρ(t, ·) = 1,

W (x) is the interaction potential between two filaments. We
assume that this potential is symmetric.
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The model.

The force applied to one filament is :

∂x (W ∗ ρ) .

We assume that the rotating speed of a particle is proportional to
the moment applied. Then, ρ evolves as :{

ρ(0, ·) = ρ0,
∂tρ = ∂x (ρ∂x (W ∗x ρ)) .
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simulations
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simulations
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non-uniqueness of steady-states
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non-uniqueness of steady-states
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Local stability analysis
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the solution converges to a set of steady-states

The solution cannot converge to anything but a steady-state:

Proposition

Let W ∈ C 2(R). Then, For any sequence tk →∞, there exists a
subsequence, still denoted (tk), and a steady-state ρ̄ ∈ M1(R) of
(1), such that:

W1 (ρ(tk , ·), ρ̄)→ 0 as k →∞, (2)

where W1 denotes the 1−Wasserstein distance.

Proof : uses the energy of the system:

E (t) :=
1

2

∫ ∫
ρ(t, x)ρ(t, y)W (x − y) dx dy . (3)
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steady-states are sums of Dirac masses

Proposition

If W is analytical and W is confining (ie W (x) ≥ Cx2 + C ′), then
every compactly supported steady solution ρ̄ of eq. (1) is a finite
sum of Dirac masses ρ̄ =

∑n
i=1 ρiδxi .

Proof :
∀x ∈ supp ρ̄, 0 = ∂x (W ∗ ρ̄) (x).

Then, if supp ρ̄ has an accumulation point, 0 = ∂x (W ∗ ρ̄). Then
Cte = W ∗ ρ̄, which is absurd since V and W are confining.

If W is less regular than analytical (C 2), L1 steady-states may
exist, but they cannot be linearly stable (in a sense to be defined).
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condition for a sums of Dirac masses to be a steady-state

∂tρ = ∂x (ρ∂x (W ∗x ρ)) .

Proposition

ρ̄ =
∑n

i=1 ρ̄iδx̄i , ρ̄i 6= 0 is steady state of eq. (1) if and only if :

(ρ̄i )i ∈ Ker
((

W ′(x̄i − x̄j)
)
i ,j

)
.

Proof : for i = 1, . . . , n,

∂x (W ∗x ρ) (x̄i ) =
∑

j

ρ̄jW
′ (x̄j − x̄i )
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Necessary conditions for linear stability 1

Proposition

For a steady solution ρ̄ =
∑n

i=1 ρ̄iδx̄i , ρi 6= 0 of eq. (1) to be
linearly stable under small dislocations, it is necessary that :

∀i = 1, . . . , n, ∂2
xx(W ∗ ρ)(x̄i ) > 0.
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Necessary conditions for linear stability 2

Proposition

For a steady solution ρ̄ =
∑n

i=1 ρ̄iδx̄i , ρi 6= 0 of eq. (1) to be
linearly stable under small perturbations of the x̄i , it is necessary
that the linear application LM defined by the matrix

M =
(
ρ̄iW

′′(x̄i − x̄j)
)
i ,j
− diag

((
W ′′(x̄i − x̄j)

)
i ,j

(ρ̄j)j

)
,

has a spectrum included in R∗− × iR when restricted to the
hyperspace {(wi )i=1,...,n;

∑n
i=1 wi = 0}.
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Local stability with support conditions

Proposition

Let W ∈ C 2(R), and ρ̄ =
∑n

i=1 ρ̄iδx̄i a steady-state. If linear
stability conditions 1 and 2 are satisfied, then ρ̄ is locally stable
under a support condition, that is :

W∞(ρ(t, ·), ρ̄) ≤ Ce−κt , κ > 0,

as soon as W∞(ρ0, ρ̄) is small enough.

Proof: ρ(t, cdot) =
∑n

i=1 ρ̃i (t, x), with d(x̄i , supp ρi (t, ·)) small.
We control:

(
∫

xρi (t, x) dx)i

d(x̄i , supp ρi (t, ·))
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Local stability for usual M1 topology

Remark

Steady-states are not locally unique. Thus, we only get the orbital
stability of steady-states satisfying linear stability conditions 1 and
2.
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Singular potentials
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Applications of non-local aggregation equations.

W ′(0+) > 0: Chemotaxis, swarming,

W regular: granular media, Actin filaments,

W ′(0+) < 0: swarming, crystallisation.
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W with an attractive singularity.

After blow-up theory existence theory :

Carrillo JA, Di Francesco M, Figalli A, Laurent T, Slepc̆ev D,
Global-in-time weak measure solutions, finite-time aggregation and
confinement for nonlocal interaction equations. preprint UAB 17,
(2009), submitted.

based on the gradient-flow structure of (1), with the energy:

E (t) :=
1

2

∫ ∫
ρ(t, x)ρ(t, y)W (x − y) dx dy .
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W with an attractive singularity.

Stable steady-states are finite sums of Dirac masses:

Proposition

Let W be such that W ′(0+) > 0, and ρ̄ be a compactly supported
steady-state of (1). If supp ρ̄ has an accumulation point x0 (and a
bit more...), then it is locally unstable: For any ε > 0, there exists
ρε ∈ M1(R), such that W1(ρε, ρ̄) ≤ ε and

E (ρε) < E (ρ̄), (4)

where E is the energy defined by (3).
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W with an attractive singularity.

The local stability conditions from last section extend to
interactions potentials having an attractive singularity:

Proposition

Let W be such that W ′(0+) > 0, and ρ̄ =
∑n

i=1 ρ̄iδx̄i , ρi 6= 0 be a
steady-state of (1). ρ̄ is locally (for W∞) stable if the linear
stability condition 2 is satisfied.
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W with a repulsive singularity.

Existence theory :

Proposition

Let W be such that W ′(0+) < 0. Assume that ρ0 ∈W 2,∞(R).
Then there exists a unique solution

ρ ∈ L∞(R+ × R) ∩ Liploc(R+,W
2,∞(R))

to (1).

Notice that ρ(t, ·) is uniformly bounded in L∞(R) !
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W with a repulsive singularity.

Example

If W (x) := −|x |+ x2, then,

ρ̄ := I[− 1
2
, 1

2
]

is globally stable.

graphs of ρ(t, ·) for t = 0, 1.8.
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Link between regular W and W with a repulsive singularity.

We consider smoothed versions of W (x) := −|x |+ x2:

W ε(x) :=

{
−|x |+ x2 on [− ε

2 ,
ε
2 ]c ,

−1
εx2 + x2 − ε

4 on [− ε
2 ,

ε
2 ].

graphs of W and W 0.3.
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Link between regular W and W with a repulsive singularity.

graphs of ρ(t, ·) for W 0.3 and t = 0, 5, 20.

graphs of ρ(t, ·) for W 0.5, W 0.2, W 0.1 and t large.
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Link between regular W and W with a repulsive singularity.

For ε > 0, let ρε be a steady-state of (1) with W ε. Then,

ρε ⇀ ρ̄ in M1(R),

where ρ̄ = I[− 1
2
, 1

2
].
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Conclusion

Singular attractive interaction potentials: finite-time
convergence to a sum of Dirac masses,

regular interaction potentials: infinite time convergence to a
sum of Dirac masses,

singular repulsive interaction potentials: convergence to L∞

steady-states.
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Interesting questions.

Add a diffusion term to (1),

more singular repulsive potentials,

More complicated swarming equations,

...
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