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The model.
The model.

{ P(O; ) = po, (1)
Otp = Vx - (pVx (W xx p+ V)).

Civelekoglu G, Edelstein-Keshet L, Modelling the dynamics of
F-actin in the cell. Bull. Math. Biol. 56(4), 587-616 (1994).

Primi |, Stevens A, Velazquez JJL. Mass-Selection in alignment
models with non-deterministic effects. Comm. Partial Differential
Equations 34(5), (2009).
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Actin filaments.
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Mesh of actin filaments.
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Actin filaments with or without cross-linking proteins.
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Cross-linking proteins.
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Action of Cross-linking proteins.

W’(x) : moment force between two filaments.
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Notations.

We the case where the density of proteins is homogeneous in
space.

o p(t, ) € MY(S! or R). p(t,x) is the density of filaments of
orientation x. We normalise it by :

[ dotey =1,

e W(x) is the interaction potential between two filaments. We
assume that this potential is symmetric.
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The model.

The force applied to one filament is :
Ox (W % p).

We assume that the rotating speed of a particle is proportional to
the moment applied. Then, p evolves as :

{ p(0,-) = po,
Otp = Ox (pOx (W x p)) -
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simulations
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simulations
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non-uniqueness of steady-states

.




The model.

non-uniqueness of steady-states
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Local stability analysis

the solution converges to a set of steady-states

The solution cannot converge to anything but a steady-state:

Proposition

Let W € C?(R). Then, For any sequence t; — oo, there exists a
subsequence, still denoted (ti), and a steady-state p € M*(R) of
(1), such that:

Wi (p(ti,"), p) — 0 as k — oo, (2)

where W, denotes the 1—Wasserstein distance.

Proof : uses the energy of the system:

E@) =3 [ [ redolen)Wic-y)dedy. ()



Local stability analysis

steady-states are sums of Dirac masses

Proposition

If W is analytical and W is confining (ie W(x) > Cx?® + C'), then
every compactly supported steady solution p of eq. (1) is a finite
sum of Dirac masses p =Y. ; pidx;.

Proof :
Vx € supp g, 0= 0x (W xp)(x).

Then, if supp p has an accumulation point, 0 = 95 (W x p). Then
Cte = W x p, which is absurd since V and W are confining.

If W is less regular than analytical (C?), L! steady-states may
exist, but they cannot be linearly stable (in a sense to be defined).
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condition for a sums of Dirac masses to be a steady-state

Oep = Ox (pOx (W x p)) .

Proposition

p= Y11 pid%, pi # 0 is steady state of eq. (1) if and only if :

(ﬁ,‘),’ € Ker ((WI()_(,- — )_9)):,1> .

Proof : fori=1,...,n,

Ox (W p) (xi) = Zﬁjwl()_(j*)_(i)
J



Local stability analysis

Necessary conditions for linear stability 1

Proposition

For a steady solution p = "_; pidz,, pi # 0 of eq. (1) to be
linearly stable under small dislocations, it is necessary that :

Vi=1,...,n, 92 (W xp)(x;) > 0.
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Necessary conditions for linear stability 2

Proposition

For a steady solution p =" ; pidz,, pi # 0 of eq. (1) to be
linearly stable under small perturbations of the X;, it is necessary
that the linear application Ly, defined by the matrix

M= (BiW" (% — X)), ; — diag ((W”(>‘<,- — %)) (ﬁj)j) )

has a spectrum included in R* x iR when restricted to the
hyperspace {(w;)i=1,...n; 31 wi = O}.
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Local stability with support conditions

Proposition

Let W € C%(R), and p = >."_, pidx a steady-state. If linear
stability conditions 1 and 2 are satisfied, then p is locally stable
under a support condition, that is :

W (p(t,),p) < Ce " k >0,

as soon as W (p°, p) is small enough.

Proof: p(t,cdot) = >"7_; pi(t, x), with d(x;,supp pi(t,-)) small.
We control:

o ([ xpi(t, x) dx);
o d(x;,supp pi(t,-))



Local stability analysis

Local stability for usual M! topology

Steady-states are not locally unique. Thus, we only get the orbital
stability of steady-states satisfying linear stability conditions 1 and
2.
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Singular potentials

Applications of non-local aggregation equations.

e W'(0") > 0: Chemotaxis, swarming,
@ W regular: granular media, Actin filaments,

e W/(0") < 0: swarming, crystallisation.



Singular potentials

W with an attractive singularity.

After blow-up theory existence theory :

Carrillo JA, Di Francesco M, Figalli A, Laurent T, Slepéev D,
Global-in-time weak measure solutions, finite-time aggregation and

confinement for nonlocal interaction equations. preprint UAB 17,
(2009), submitted.

based on the gradient-flow structure of (1), with the energy:

E()i= 5 [ [ lex)ole.y)Wix - y) dedy.
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W with an attractive singularity.

Stable steady-states are finite sums of Dirac masses:

Proposition

Let W be such that W/(0T) > 0, and p be a compactly supported
steady-state of (1). If supp p has an accumulation point xo (and a
bit more...), then it is locally unstable: For any ¢ > 0, there exists
p° € MY(R), such that Wi (p®, p) < e and

E(p7) < E(p); (4)

where E is the energy defined by (3).




Singular potentials

W with an attractive singularity.

The local stability conditions from last section extend to
interactions potentials having an attractive singularity:

Proposition

Let W be such that W/(07) > 0, and p = Y7, pidx;, pi # 0 be a
steady-state of (1). p is locally (for W) stable if the linear
stability condition 2 is satisfied.




Singular potentials
W with a repulsive singularity.

Existence theory :

Proposition

Let W be such that W/(0%) < 0. Assume that p° € W2 (R).
Then there exists a unique solution

p € LRy x R) N Lip(Ry, W?*(R))

to (1).

Notice that p(t,-) is uniformly bounded in L*(R) !
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W with a repulsive singularity.

If W(x) := —|x| + x2, then,
P=lgy
is globally stable.
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Singular potentials

Link between regular W and W with a repulsive singularity

We consider smoothed versions of W(x) := —|x| 4+ x:
=[x +x* on [-35, 5],
—%xz +x*—% on [-5,5].

W)= {

graphs of W and W03,
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Link between regular W and W with a repulsive singularity.
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Singular potentials

Link between regular W and W with a repulsive singularity.

For e > 0, let p° be a steady-state of (1) with W*¢. Then,
p° = pin M'(R),

272



Singular potentials

Conclusion

@ Singular attractive interaction potentials: finite-time
convergence to a sum of Dirac masses,

@ regular interaction potentials: infinite time convergence to a
sum of Dirac masses,

@ singular repulsive interaction potentials: convergence to L™
steady-states.



Singular potentials

Interesting questions.

e Add a diffusion term to (1),
@ more singular repulsive potentials,
@ More complicated swarming equations,
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