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Warming Up

ODE and Kinectic Cucker-Smale model

N-particles ODE system:

dx i
dt
d’l}i
dt

= V; JL‘Z(O) - x,?,

N
= ijaij (’Uj — Ui> ’Uz(O) = ’U?,
j=1

with the communication rate, 5 > 0:

aij = a(|zi — xj) = (

Kinetic Model:
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Warming Up
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Warming Up

Remarks and notation il

Due to translation invariancy, w.l.o.g. the mean velocity is zero and thus the
center of mass is preserved along the evolution, i.e.,

Np Np
Zmivi(t) =0 and Z m;x;(t) = ¢
i=1 i=1

for all t > 0 and z. € R?.

Let us fix any R§ > 0 and R§ > 0, such that all the initial velocities lie inside
the ball B(0, RY) and all positions inside B(x., Rf).

Let us define the function R"(t) to be

RY(t) := max {|vi(t)] , i =1,...,N,}.
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Collapse of the velocity support Proof for the N-particles system

Sketch of the proof

Q@ RY(t) < Ro(t) Vt>0.

Q |z;(t) — z;(t)| grows at most linearly for any ¢, j.
@ RY(t) = 0ast— oo.

© 3R > 0 st x;(t) € B(z, R) Vt, Vi.

@ RY(t) behaves like exp{—Ct} for some constant C' > 0.
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Collapse of the velocity support Proof for the N-particles system

Step 1: RY(t) < Ro(t) Vt >0

Choosing the label i to be the one achieving the maximum, we get
LR = L = 23 m (01— vy) ] alas — )
dt i J 4 i il) -
J#i
Because of the choice of the label ¢, we have that (v; —v;) - v; > 0 for all j # ¢
that together with ¢ > 0 imply RY(t) < Ry for all ¢ > 0.

Vi=v) -V =0
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Collapse of the velocity support Proof for the N-particles system

Step 2: |z;(t) — z;(t)] < C + Cyt for any i, j e

Coming back to the equation for the positions,

|lzi(t) — 29 < Rit forallt >0andalli=1,...,N,.

i (t) — 2 (8)] = [ai(t) £ 2f £ 2§ —x;(1)]
< wi(t) = 2| + [a;(t) — 2| + |af — 2§
< Ro(t) + Ro(t) + 2RE
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Collapse of the velocity support Proof for the N-particles system

Step 3: RY(t) — 0 as t — oo e

a(|z; —z;|) > forallt>0and allé,j=1,..., N,

1
[14+4R3(1+ )]
with Ry = max(Rg, Rg).

Coming back to the equation for the maximal velocity

d

SR = 23 my [~ vy) v alla: - 5]
JFi
2
S T4 107 ;mﬁ ) vl
- 1+ 433?1 T t)2]7Rv(t)2 = —f(t) R"(t)?,
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Collapse of the velocity support Proof for the N-particles system

Steps 3: R'(t) - 0 ast — o0

Gronwall’s lemma:

w0 < Ry e {3 [ 16105},

For v < 1/2, the function f(¢) is not integrable at oo and therefore

t
limtﬂoo/ f(s)ds =400
0

and RY(t) — 0 as t — oo giving the convergence to a single point, its mean
velocity, of the support for the velocity.
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Collapse of the velocity support Proof for the N-particles system

Step 4: AR > 0 st z;(t) € B(x., R) Vt, Vi
Again for the position variables, we get
t t
[ ds<cn [aseas v <12
0 0
t toq
/0 lvi(s)|ds < C /0 mds =Cln(1+1t) v=1/2,

There exists R{ > 0 such that

|zi(t) — 27| < Ry
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Collapse of the velocity support

Step 5: RY(t) ~ exp{—Ct}

Now, a(|zi(t) — z;(t)]) > a(2R*),

Proof for the N-particles system

d
%R() -2 m;[(v ) -] allw; — x;)
J#i
< —2a(2R") Y mj [(vi —v;) - vi] = —2a(2R")R"(t)?
J#i

from which we finally deduce the exponential decay to zero of RY(t)
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Collapse of the velocity support Main Results

Asymptotic Flocking

Unconditional Non-universal Flocking Result for general measures

Given g € M(R??) compactly supported, then the unique measure-valued

solution to the CS kinetic model with v < 1/2, satisfies the following bounds
on their supports:

supp p(t) C B(z.(0) + mt, R*(t)) x B(m, R"(t))

for all t > 0, with R*(t) < R and R'(t) < Rpe ** with R* depending only on
the initial support radius.
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Collapse of the velocity support Main Results

Idea of the proof )L

We have that

supp py,(t) C B(z.(0) + mt, R*(t)) x B(m, R"(t))

dgoa (p(t), py (1)) < ax(t) dpae | o, Zmi d(z —a?)o(v—]) | <alt)y.

Then, p,,(t) — p(t) weakly-* as measures when n — 0 for all ¢ > 0.
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Thanks for your attention!
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