A refined result of flocking for the Cucker-Smale model

J. Rosado

Universitat Autònoma de Barcelona

Paris, 2009

Outline

Warming Up

- 2 Collapse of the velocity support
 - ullet Proof for the N-particles system
 - Main Results

ODE and Kinectic Cucker-Smale model

N-particles ODE system:

$$\begin{cases} \frac{dx_i}{dt} = v_i & x_i(0) = x_i^0, \\ \frac{dv_i}{dt} = \sum_{j=1}^{N} m_j a_{ij} (v_j - v_i) & v_i(0) = v_i^0, \end{cases}$$

with the communication rate, $\beta \geq 0$:

$$a_{ij} = a(|x_i - x_j|) = \frac{1}{(1 + |x_i - x_j|^2)^{\gamma}}.$$

Kinetic Model:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = \nabla_v \cdot \left[\underbrace{\left(\int_{\mathbb{R}^{2d}} \frac{v - w}{(1 + |x - y|^2)^{\gamma}} f(y, w, t) \, dy \, dw \right)}_{:=\xi(f)(x, v, t)} f(x, v, t) \right]$$

Some References

- F. Cucker and S. Smale, On the mathematics of emergence, *Japan. J. Math.* 2 (2007) 197–227.
- S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, to appear in *Comm. Math. Sci.*
- S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, *Kinetic and Related Models* 1 (2008) 415–435.
- J. A. Cañizo, J. A. Carrillo, J. Rosado, A wel-posedness theory in measures for some kinetic models of collective motion, preprint UAB.
- J.-A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic Flocking Dynamics for the kinetic Cucker-Smale model, preprint UAB.

Remarks and notation

Due to translation invariancy, w.l.o.g. the mean velocity is zero and thus the center of mass is preserved along the evolution, i.e.,

$$\sum_{i=1}^{N_p} m_i v_i(t) = 0$$
 and $\sum_{i=1}^{N_p} m_i x_i(t) = x_c$

for all $t \geq 0$ and $x_c \in \mathbb{R}^d$.

Let us fix any $R_0^x > 0$ and $R_0^v > 0$, such that all the initial velocities lie inside the ball $B(0, R_0^v)$ and all positions inside $B(x_c, R_0^x)$.

Let us define the function $R^{v}(t)$ to be

$$R^{v}(t) := \max\{|v_{i}(t)|, i = 1, \dots, N_{p}\}.$$

- **1** $R^v(t) < R_0(t) \quad \forall t > 0.$
- $|x_i(t) x_j(t)|$ grows at most linearly for any i, j.
- $R^v(t) \to 0 \text{ as } t \to \infty.$
- $\exists R > 0 \text{ st } x_i(t) \in B(x_c, R) \ \forall t, \ \forall i.$
- $R^v(t)$ behaves like $\exp\{-Ct\}$ for some constant C>0.

Step 1: $R^v(t) < R_0(t) \quad \forall t > 0$

Choosing the label i to be the one achieving the maximum, we get

$$\frac{d}{dt}R^{v}(t)^{2} = \frac{d}{dt}|v_{i}|^{2} = -2\sum_{j\neq i}m_{j}\left[(v_{i} - v_{j}) \cdot v_{i}\right] a(|x_{i} - x_{j}|).$$

Because of the choice of the label i, we have that $(v_i - v_j) \cdot v_i \ge 0$ for all $j \ne i$ that together with $a \ge 0$ imply $R^v(t) \le R_0^v$ for all $t \ge 0$.

Step 2:
$$|x_i(t) - x_j(t)| \le C_1 + C_2 t$$
 for any i, j

Coming back to the equation for the positions,

$$|x_i(t) - x_i^0| \le R_0^v t$$
 for all $t \ge 0$ and all $i = 1, \dots, N_p$.

$$|x_i(t) - x_j(t)| = |x_i(t) \pm x_i^0 \pm x_j^0 - x_j(t)|$$

$$\leq |x_i(t) - x_i^0| + |x_j(t) - x_i^0| + |x_i^0 - x_j^0|$$

$$\leq R_0(t) + R_0(t) + 2R_0^x$$

Step 3:
$$R^v(t) \to 0$$
 as $t \to \infty$

$$a(|x_i - x_j|) \ge \frac{1}{[1 + 4R_0^2(1+t)^2]^{\gamma}}$$
 for all $t \ge 0$ and all $i, j = 1, \dots, N_p$,

with $R_0 = \max(R_0^x, R_0^v)$.

Coming back to the equation for the maximal velocity

$$\begin{split} \frac{d}{dt}R^{v}(t)^{2} &= -2\sum_{j\neq i}m_{j}\left[(v_{i}-v_{j})\cdot v_{i}\right]\,a(|x_{i}-x_{j}|)\\ &\leq -\frac{2}{[1+4R_{0}^{2}(1+t)^{2}]^{\gamma}}\sum_{j\neq i}m_{j}\left[(v_{i}-v_{j})\cdot v_{i}\right]\\ &= -\frac{2}{[1+4R_{0}^{2}(1+t)^{2}]^{\gamma}}R^{v}(t)^{2} := -f(t)\,R^{v}(t)^{2}, \end{split}$$

Steps 3: $R^v(t) \to 0$ as $t \to \infty$

Gronwall's lemma:

$$R^v(t) \le R_0^v \exp\left\{-\frac{1}{2} \int_0^t f(s) \, ds\right\}.$$

For $\gamma \leq 1/2$, the function f(t) is not integrable at ∞ and therefore

$$\lim_{t \to \infty} \int_0^t f(s) \, ds = +\infty$$

and $R^v(t) \to 0$ as $t \to \infty$ giving the convergence to a single point, its mean velocity, of the support for the velocity.

Step 4:
$$\exists R > 0 \text{ st } x_i(t) \in B(x_c, R) \ \forall t, \ \forall i$$

Again for the position variables, we get

$$\begin{cases} \int_0^t |v_i(s)| \, ds \le C_1 \int_0^t (1+s)^{-1-\epsilon} \, ds & \gamma < 1/2 \\ \int_0^t |v_i(s)| \, ds \le C \int_0^t \frac{1}{1+s} \, ds = C \ln(1+t) & \gamma = 1/2, \end{cases}.$$

There exists $R_1^x > 0$ such that

$$|x_i(t) - x_i^0| \le R_1^x$$

Step 5: $R^v(t) \sim \exp\{-Ct\}$

Now,
$$a(|x_i(t) - x_j(t)|) \ge a(2\bar{R}^x)$$
,

$$\frac{d}{dt}R^v(t)^2 = -2\sum_{j \ne i} m_j \left[(v_i - v_j) \cdot v_i \right] a(|x_i - x_j|)$$

$$\le -2a(2\bar{R}^x) \sum_{j \ne i} m_j \left[(v_i - v_j) \cdot v_i \right] = -2a(2\bar{R}^x)R^v(t)^2$$

from which we finally deduce the exponential decay to zero of $R^{v}(t)$.

Asymptotic Flocking

Unconditional Non-universal Flocking Result for general measures

Given $\mu_0 \in \mathcal{M}(\mathbb{R}^{2d})$ compactly supported, then the unique measure-valued solution to the CS kinetic model with $\gamma \leq 1/2$, satisfies the following bounds on their supports:

supp
$$\mu(t) \subset B(x_c(0) + mt, R^x(t)) \times B(m, R^v(t))$$

for all $t \geq 0$, with $R^x(t) \leq \bar{R}$ and $R^v(t) \leq R_0 e^{-\lambda t}$ with \bar{R}^x depending only on the initial support radius.

Idea of the proof

We have that

supp
$$\mu_{\eta}(t) \subset B(x_c(0) + mt, R^x(t)) \times B(m, R^v(t))$$

$$d_{\mathbb{R}^{2d}}(\mu(t), \mu_{\eta}(t)) \leq \alpha(t) \, d_{\mathbb{R}^{2d}} \left(\mu_0, \sum_{i=1}^{N_p} m_i \, \delta(x - x_i^0) \, \delta(v - v_i^0) \right) \, \leq \alpha(t) \eta.$$

Then, $\mu_{\eta}(t) \to \mu(t)$ weakly-* as measures when $\eta \to 0$ for all $t \ge 0$.

Thanks for your attention!

