Collapse Dynamics of a Self-Gravitating Brownian Gas

CLÉMENT SIRE & PIERRE-HENRI CHAVANIS
Laboratoire de Physique Théorique & CNRS
Université Paul Sabatier, Toulouse, France
(clement.sire@irsamc.ups-tlse.fr)

- I. Introduction and background
- II. Collapse in the canonical ensemble
- III. Post-collapse dynamics and analogy with Bose-Einstein condensation
- V. Conclusion

Introduction

General Background on self-gravitating gas

- Competition between kinetic energy (temperature) and gravitation
- Occurrence of a collapse phase below T_c or E_c
- The long-range nature of gravitation is crucial
- Relevance of the thermodynamical ensemble (CE vs MCE)
- MF approximation is claimed to be exact in the limit $N \to \infty$, $G \to 0$

Dynamics of a self-gravitating Brownian gas

Instead of treating the dynamics of the actual Newtonian gas of particles, we assume the existence of a large friction ξ and associated random force (inert gas, of effective dynamical origin...).

$$\frac{d^2 \mathbf{x}_i}{dt^2} = -\xi \frac{d \mathbf{x}_i}{dt} - \nabla \Phi + \sqrt{2D\xi} \,\eta_i$$

For $\xi \to +\infty$, the problem is reduced to the dynamics of self-gravitating Brownian particles. We consider the general case $D = T \rho^{1/n}$.

Schmoluchowski-Poisson equation (SPE) reads:

$$\frac{\partial \rho}{\partial t} = \nabla \left[\frac{1}{\xi} (D \nabla \rho + \rho \nabla \Phi) \right], \qquad \Delta \Phi(\mathbf{r}) = G S_d \rho(\mathbf{r}).$$

The constraints are:

- Constant total mass M in the box of radius R
- \bullet Constant and uniform temperature T (canonical ensemble)

From now:
$$G = M = R = \xi = 1$$

Analogy with chemotaxis

$$\frac{\partial \rho}{\partial t} = D\Delta \rho - \chi \nabla(\rho \nabla c),$$

$$D_c^{-1} \frac{\partial c}{\partial t} = \Delta c + \lambda \rho \approx 0,$$

where ρ is the concentration of a bacterial population, c the concentration of the substance secreted and χ measures the strength of the chemotactic drift.

Identify
$$\Phi \leftrightarrow -\frac{4\pi G}{\lambda}c$$
, $T \leftrightarrow \frac{4\pi GD}{\lambda\chi}$, $\xi \leftrightarrow \frac{4\pi G}{\lambda\chi}$.

Introducing the mass $M = \int \rho d^3 \mathbf{r}$ of the system and the radius R of the domain, we can show that the static problem depends on the single dimensionless parameter

$$\eta = \beta GM/R \leftrightarrow \frac{\lambda \chi}{4\pi DR}.$$

Therefore, a large value of η corresponds to a small temperature T or a large mass M.

Collapse Dynamics in the Canonical Ensemble

Scale invariant collapse within SPE for d > 2

For $T < T_c$, we look for radial solution of SPE of the form

$$\rho(\mathbf{r},t) = \rho_0(t) f[r/r_0(t)].$$

We find a scaling solution after introducing the King radius $r_0(t) = \sqrt{T/\rho_0(t)}$, leading to $\rho_0(t) = \frac{1}{2}(t_{coll} - t)^{-1}$.

The central density diverges in a finite time t_{coll} .

Results

• The scaling function is given by $(n = \infty)$

$$f(x) = \frac{4(d-2)}{S_d} \frac{d+x^2}{(d-2+x^2)^2}.$$

- For large x, $f(x) \sim x^{-\alpha}$, with $\alpha = \frac{2n}{n-1}$.
- Near T_c , we find $t_{coll} \sim c_d (T_c T)^{-1/2}$, and the width of the scaling regime is $\delta t \sim (T_c T)^{1/2}$. Above T_c , the equilibration time is $\tau \sim (T T_c)^{-1/2}$.
- Special treatment of the d=2 case $(n=\infty)$, and in general, of the case $n=n_*=d/(d-2)$.
- We estimated analytically and quantitatively the corrections to scaling (in d=3), due to the existence of a finite confining box.
- We have computed the first instability modes.

We plot $\rho(r,t)/\rho(0,t)$ as a function of $r/r_0(t)$ for different times (density range 10^2-10^7) for $\alpha=2$ and $\alpha=8/3$ ($D\sim T\rho^{1/n}$, $\alpha=\frac{2n}{n-1}$, for n=4), and compare the numerics to the analytical scaling solution.

We plot t_{coll} as a function of $T_c - T$; the log-log slope is close to the theoretical result -1/2. (coefficient exactly known)

Statics and Collapse in d=2 $(n=\infty=n_*=d/(d-2))$

- Above T_c , we find the equilibrium density profile $\rho(r) = \frac{4\rho_0}{\pi} \frac{1}{(1+(r/r_0)^2)^2}$, with $r_0(T) = \sqrt{T/T_c 1}$, and $\rho_0 r_0^2 = T$.
- $T_c = 1/4$ and $r_0(T) \sim \sqrt{T/T_c 1}$ are in perfect agreement with the exact solution of the problem using conformal invariance (Abdalla *et al.*).
- Contrary to the d > 2 case, collapse occurs at $T = T_c$, and $\rho(r,t) = \frac{4\rho_0(t)}{\pi} \frac{1}{(1+(r/r_0(t))^2)^2}$ $(\alpha = 4)$, with $\rho_0(t)r_0^2(t) = T_c$, and $\rho_0(t) = \frac{1}{4} \exp\left(\frac{5}{2} + \sqrt{2t}\right) \left[1 + O(t^{-1/2} \ln t)\right]$.
- Below T_c , the density is a sum of the scaling solution at $T = T_c$ (with weight T/T_c), plus a correction term obeying an apparent effective scaling with a slow varying exponent $\alpha(t) = 2 \varepsilon(t)$, with $\varepsilon(t) = \sqrt{\frac{2 \ln \ln \rho_0(t)}{\ln \rho_0(t)}} \left(1 + O([\ln \ln \rho_0(t)]^{-1})\right)$, and $\dot{\rho}_0(t) \sim \rho_0(t)^{1+\alpha(t)/2}$.

For $T = T_c$, we plot $a(da/dt)^{-1}$ $(a(t) = \pi \rho(0, t))$ as a function of $\ln a$, which is predicted to behave as $a(da/dt)^{-1} \sim \ln a - 5/2 + O([\ln a]^{-1})$ (dashed line).

We plot the residual density apparent scaling in a density (time) regime where the effective value of $\alpha \approx 1.3$, varies very little. To this the scaling contribution at $T = T_c$ (with weight T/T_c) must be added to get the total density profile.

Post-collapse Dynamics in the Canonical Ensemble

The scaling solution at $t = t_{coll}$ is **NOT** a stationary solution!

So, what happens for $t > t_{coll}$???

The exact solution at T=0 suggests that a Dirac peak of mass $N_0(t)$ develops at r=0, and that the residual density obeys a backward scaling relation $\rho(\mathbf{r},t)=\rho_0(t)f[r/r_0(t)]$, where $\rho_0(t)$ decreases with time and $r_0(t)$ increases. At T=0, we find

$$N_0(t) \sim (t - t_{coll})^{\frac{d}{2}}, \quad \rho_0(t) = \frac{d}{2}(t - t_{coll})^{-1}, \quad r_0(t) = \left(\frac{2}{d}\right)^{\frac{d+2}{2d}} (t - t_{coll})^{\frac{d+2}{2d}},$$

and f is analytically known.

Post-collapse scaling equations for $0 < T < T_c$

M(r,t) being the total mass within the shell of radius r, we define $s(r,t) = \frac{M(r,t)-N_0(t)}{r^d} = \rho_0(t)S(\frac{r}{r_0(t)})$. Imposing scaling, we obtain for $t > t_{coll}$:

$$\frac{dN_0}{dt} = \rho_0 N_0, \qquad N_0(t) = \mu \rho_0 r_0^d = \mu \left(\frac{2}{d-2}\right)^{d/2-1} T^{d/2} \left(t - t_{coll}\right)^{d/2-1},$$

where $\rho_0(t)$ and $r_0(t)$ are given by

$$\rho_0(t) = \left(\frac{d}{2} - 1\right)(t - t_{coll})^{-1}, \qquad r_0(t) = \left(\frac{T}{\rho_0(t)}\right)^{1/2}.$$

The resulting scaling equation is

$$\frac{1}{d-2}\left(2S+xS'\right)+S''+\frac{d+1}{x}S'+S(dS+xS')+\mu x^{-d}(dS+xS'-1)=0,$$

where μ is an eigenvalue ensuring compatibility with pre-collapse for $r \gg r_0(t)$.

Remarks

- The post-collapse scaling function is flatter near x = 0, as $S(x) S(0) \sim x^d$ instead of $S(x) S(0) \sim x^2$, below t_{coll} .
- The scaling holds only for short time after t_{coll} . For large time, $\rho(r,t) \sim \exp[-\lambda(T)t]\psi(r,T)$, and $1 N_0(t) \sim \exp[-\lambda(T)t]$. We found that for small T, $\lambda(T) = \frac{1}{4T} + \frac{c_d}{T^{1/3}} + \ldots$, and derived analytical estimates for $\psi(r,T)$ (analogy with semiclassical methods: $T \leftrightarrow \hbar$).
- We introduce a numerical scheme in order to "cross the singularity": $\frac{dN_0}{dt} = \rho_0 N_0 \text{ is a first order differential equation starting from } N_0(t_{coll}^-) = 0$ (but $\rho_0(t_{coll}) = +\infty$!):

$$\frac{dN_0}{dt} = \rho_0^{fit} N_0^{fit}.$$

 N_0^{fit} and ρ_0^{fit} are extracted from a fit of M(r,t) to the functional form

$$M(r,t) \approx N_0^{fit}(t) + \frac{\rho_0^{fit}(t)}{d}r^d + a_{pre}(t)r^{d+2} + a_{post}(t)r^{2d},$$

in a region of a few dr, excluding of course r=0.

We plot $N_0(t)$ after t_{coll} (full line). This is compared to $N_0(t)^{\text{Theory}}$. The bottom insert illustrates the exponential decay of $1 - N_0(t) \sim e^{-\lambda t}$. Finally, the top inset illustrates the sensitivity of $N_0(t)$ to the spacial discretization.

In the post-collapse regime, we plot $\rho(r,t)/\rho_0(t)$ as a function $x = r/r_0(t)$. The insert shows the comparison between this post-collapse scaling function (dashed line) and the scaling function below t_{coll} .

We plot $\lambda(T)$ as a function of T (insert). The main plot represents $(\lambda(T)T - \frac{1}{4}).T^{-2/3}$ as a function of $T^{1/3}$ (line and squares), which should converge to $c_{d=3} = 2.33810741...$

Analogy with Bose-Einstein Condensation (Canonical Ensemble)

• We introduce a **semi-classical canonical ensemble dynamics** in momentum space, reproducing the well-known equilibrium state:

$$\frac{d\mathbf{k_i}}{dt} = -\frac{\mathbf{k_i}}{\xi} (1 + \rho(\mathbf{k_i}, t)) + \eta_{\mathbf{i}}(t), \tag{1}$$

$$\frac{\partial \rho}{\partial t} = \frac{1}{\xi} \nabla_{\mathbf{k}} \left[T \nabla_{\mathbf{k}} \rho + \rho (1 + \rho) \mathbf{k} \right]. \tag{2}$$

• The equations for the integrated density are **strikingly similar**:

$$\frac{\partial M}{\partial t} = T \left(\frac{\partial^2 M}{\partial k^2} - \frac{d-1}{k} \frac{\partial M}{\partial k} \right) + k \frac{\partial M}{\partial k} \left(\frac{1}{k^{d-1}} \frac{\partial M}{\partial k} + 1 \right), \tag{3}$$

$$\frac{\partial M}{\partial t} = T \left(\frac{\partial^2 M}{\partial r^2} - \frac{d-1}{r} \frac{\partial M}{\partial r} \right) + \frac{M}{r^{d-1}} \frac{\partial M}{\partial r} \quad (Gravitation). \tag{4}$$

Analogy with Bose-Einstein Condensation (Canonical Ensemble)

- We have obtained analytical results for the **finite-time "collapse"** dynamics (scale invariant momentum density profile, residual density...) in d=3.
- We have treated analytically the "post-collapse" (actual Bose-Einstein condensation), leading to a partially condensed delta peak at $\mathbf{k} = 0$ and to a residual Bose-Einstein distribution associated to zero chemical potential (at Finite $T < T_c$),
- We have computed the **typical duration of the collapse dynamics**, $\tau \sim \ln \left(\frac{T_c}{T T_c} \right)$.

Conclusion

- Analytical and numerical study of the scaling theory of the collapse dynamics of a self-gravitating Brownian gas for a general diffusion coefficient $D = T\rho^{1/n}$.
- Understanding of the universal post-collapse scaling properties, as well as the very large time asymptotic regime.
- Extensive analysis of the static properties in all d and for all n, as well as for generalized entropy functional (Tsallis). Importance of the critical index $n_* = \frac{d}{d-2}$.
- Many other results: evaporation dynamics without a confining box, multi-component gas, analogy to Bose-Einstein condensation and chemotaxis...

Papers can be found on http://xxx.lanl.gov/archive/cond-mat, and are generally published in $Physical\ Review\ E$ and $Physica\ A$.

П			
Index	Temperature	Bounded domain	Unbounded domain
	$T > T_C$	Metastable equilibrium state	• Evaporation :
		(local minimum of free energy):	asymptotically free normal
$n=\infty$		box-confined isothermal sphere	diffusion (gravity negligible)
	$T < T_C$	Self-similar collapse with $\alpha=2$	• Collapse:
		and self-similar post-collapse leading	pre-collapse and post-collapse as
		to a a Dirac peak of mass M	in a bounded domain
	$T > T_C$	Equilibrium state:	Equilibrium state:
		box-confined (incomplete) polytrope	complete polytrope
	$T < T_C$	Equilibrium state:	(compact support)
		complete polytrope (compact support)	
	$T > T_C$	Metastable equilibrium state	• Evaporation:
		(local minimum of free energy):	asymptotically free anomalous
$n_* < n < \infty$		box-confined polytropic sphere	diffusion (gravity negligible)
	$T < T_C$	Self-similar collapse with $\alpha = 2n/(n-1)$	• Collapse:
		and post-collapse leading to	pre-collapse and post-collapse
		a Dirac peak of mass M [N]	as in a bounded domain
	$T > T_C$	Equilibrium state:	Self-similar evaporation
$n = n_*$		box-confined (incomplete) polytrope	modified by self-gravity
	$T < T_C$	Pseudo self-similar collapse	Collapse
		leading to a Dirac peak of	
		mass $(T/T_c)^{d/2}M$ + halo.	
		This is followed by a post-collapse	
		leading to a Dirac peak of mass M	
	$T = T_c$	Infinite family of steady states	Infinite family of steady states

Other results

- Exhaustive study of static properties in all dimensions.
- Analytical solution at T = 0 $(\alpha = \frac{2d}{d+2})$.
- Generalization of this study in all dimensions using Tsallis q-entropy $(S_q = -\frac{1}{q-1} \int (\rho^q \rho) d^d r)$, leading to a modified SPE. Full study of static (occurrence of confined polytropic states for certain values of q) and dynamical properties (collapse). When collapse occurs, the density scaling function decays as $x^{-\alpha}$, with $\alpha = \frac{2n}{n-1}$ and n = d/2 + 1/(q-1) [link to anomalous diffusive Langevin walkers, chemotaxis, may be relevant for certain stellar systems...].
- Extension to degenerate systems (Fermions,...).
- Many-components system: the heaviest particles collapse as before ($\alpha = 2$) while the lightest has a scaling function decaying more slowly, with an exponent $\alpha(\mu = m_1/m_2 > 1, d) < 2$.

$$\rho_1(r,t) = \rho_0 f(r/r_0), \quad \rho_2(r,t) = \rho_0^{\alpha/2} f_\alpha(r/r_0), \quad f_\alpha(x) \sim x^{-\alpha}$$

• Large d expansion:

$$\alpha(\mu, d \gg 1) = \frac{4}{\mu + 1} \left[1 - \frac{2(\mu - 1)}{(\mu + 1)^3} d^{-1} + O(d^{-2}) \right]$$

• Expansion around $\mu = m1/m2$ close to 1:

$$\alpha(\mu = 1 + \varepsilon, d) = 2 - \varepsilon 2(d - 2) \frac{\int_0^{+\infty} y^{d+1} \frac{y^2 + d + 2}{(y^2 + d - 2)^2} e^{-y^2/2} dy}{\int_0^{+\infty} y^{d+1} e^{-y^2/2} dy} + O(\varepsilon^2)$$

Scaling for $\mu=2$, for which $\alpha(\mu=2,d=3)=1.351914...$ Note that the large d result leads to $\alpha(\mu=2,d=3)=4/3$

Collapse Dynamics in the Microcanonical Ensemble

T(t) is still uniform but varies with time in order to conserve energy.

We make the same ansatz as before: $\rho(\mathbf{r},t) = \rho_0(t)f[r/r_0(t)]$, with $\rho_0(t)r_0^2(t) = T(t)$, and assume $\rho_0(t)r_0(t)^{\alpha} = cst$.

Then $T(t) \sim \rho_0(t)^{1-2/\alpha}$, with $\alpha \geq 2$.

We now obtain the modified scaling equation:

$$\alpha S + xS' = S'' + \frac{d+1}{x}S' + S(xS' + dS), \qquad x = r/r_0(t),$$

which has a physical solution for any $\alpha \in [2; \alpha_{\text{max}}]$ (in the limit of large d, we found $\alpha_{\text{max}} = 2 + \frac{1}{2} d^{-1} + \frac{11}{16} d^{-2} + O(d^{-3})$, and gave perturbative expressions for S(x); $\alpha_{\text{max}} = 2.209733...$ in d = 3, in striking agreement with another treatment in the microcanical ensemble).

In principle, α_{max} should be dynamically selected, as it leads to the maximum entropy production rate.