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Introduction

General Background on self-gravitating gas

• Competition between kinetic energy (temperature) and gravitation

• Occurrence of a collapse phase below Tc or Ec

• The long-range nature of gravitation is crucial

• Relevance of the thermodynamical ensemble (CE vs MCE)

• MF approximation is claimed to be exact in the limit N → ∞, G → 0
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Dynamics of a self-gravitating Brownian gas

Instead of treating the dynamics of the actual Newtonian gas of particles, we

assume the existence of a large friction ξ and associated random force (inert

gas, of effective dynamical origin...).

d2xi

dt2
= −ξ

dxi

dt
−∇Φ+

√
2Dξ ηi

For ξ → +∞, the problem is reduced to the dynamics of self-gravitating

Brownian particles. We consider the general case D = Tρ1/n.

Schmoluchowski-Poisson equation (SPE) reads :

∂ρ

∂t
= ∇

[
1

ξ
(D∇ρ+ ρ∇Φ)

]
, ∆Φ(r) = GSdρ(r).

The constraints are:

• Constant total mass M in the box of radius R

• Constant and uniform temperature T (canonical ensemble)

From now : G = M = R = ξ = 1
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Analogy with chemotaxis

∂ρ

∂t
= D∆ρ− χ∇(ρ∇c),

D−1
c

∂c

∂t
= ∆c+ λρ ≈ 0,

where ρ is the concentration of a bacterial population, c the concentration of

the substance secreted and χ measures the strength of the chemotactic drift.

Identify Φ ↔ − 4πG
λ c, T ↔ 4πGD

λχ , ξ ↔ 4πG
λχ .

Introducing the mass M =
∫
ρd3r of the system and the radius R of the

domain, we can show that the static problem depends on the single

dimensionless parameter

η = βGM/R ↔ λχ

4πDR
.

Therefore, a large value of η corresponds to a small temperature T or a large

mass M .
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Collapse Dynamics in the Canonical Ensemble

Scale invariant collapse within SPE for d > 2

For T < Tc, we look for radial solution of SPE of the form

ρ(r, t) = ρ0(t)f [r/r0(t)].

We find a scaling solution after introducing the King radius

r0(t) =
√
T/ρ0(t), leading to ρ0(t) =

1
2 (tcoll − t)−1.

The central density diverges in a finite time tcoll.
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Results

• The scaling function is given by (n = ∞)

f(x) =
4(d− 2)

Sd

d+ x2

(
d− 2 + x2

)2 .

• For large x, f(x) ∼ x−α, with α = 2n
n−1 .

• Near Tc, we find tcoll ∼ cd(Tc − T )−1/2, and the width of the scaling regime

is δt ∼ (Tc − T )1/2. Above Tc, the equilibration time is τ ∼ (T − Tc)
−1/2.

• Special treatment of the d = 2 case (n = ∞), and in general, of the case

n = n∗ = d/(d− 2).

• We estimated analytically and quantitatively the corrections to scaling (in

d = 3), due to the existence of a finite confining box.

• We have computed the first instability modes.
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We plot ρ(r, t)/ρ(0, t) as a function

of r/r0(t) for different times (den-

sity range 102 − 107) for α = 2 and

α = 8/3 (D ∼ Tρ1/n, α = 2n
n−1 , for

n = 4), and compare the numerics

to the analytical scaling solution.
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We plot tcoll as a function of Tc−T ;

the log-log slope is close to the

theoretical result −1/2. (coefficient

exactly known)
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Statics and Collapse in d = 2 (n = ∞ = n∗ = d/(d− 2))

• Above Tc, we find the equilibrium density profile ρ(r) = 4ρ0

π
1

(1+(r/r0)2)2
,

with r0(T ) =
√
T/Tc − 1, and ρ0r

2
0 = T .

• Tc = 1/4 and r0(T ) ∼
√
T/Tc − 1 are in perfect agreement with the exact

solution of the problem using conformal invariance (Abdalla et al.).

• Contrary to the d > 2 case, collapse occurs at T = Tc, and

ρ(r, t) = 4ρ0(t)
π

1
(1+(r/r0(t))2)2

(α = 4), with ρ0(t)r
2
0(t) = Tc, and

ρ0(t) =
1
4 exp

(
5
2 +

√
2t
) [

1 +O(t−1/2 ln t)
]
.

• Below Tc, the density is a sum of the scaling solution at T = Tc (with

weight T/Tc), plus a correction term obeying an apparent effective scaling

with a slow varying exponent α(t) = 2− ε(t), with

ε(t) =
√

2 ln ln ρ0(t)
ln ρ0(t)

(
1 +O([ln ln ρ0(t)]

−1)
)
, and ρ̇0(t) ∼ ρ0(t)

1+α(t)/2.
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to get the total density profile.
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Post-collapse Dynamics in the Canonical Ensemble

The scaling solution at t = tcoll is NOT a stationary solution!

So, what happens for t > tcoll ???

The exact solution at T = 0 suggests that a Dirac peak of mass N0(t) develops

at r = 0, and that the residual density obeys a backward scaling relation

ρ(r, t) = ρ0(t)f [r/r0(t)], where ρ0(t) decreases with time and r0(t) increases.

At T = 0, we find

N0(t) ∼ (t− tcoll)
d
2 , ρ0(t) =

d

2
(t− tcoll)

−1, r0(t) =

(
2

d

) d+2
2d

(t− tcoll)
d+2
2d ,

and f is analytically known.
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Post-collapse scaling equations for 0 < T < Tc

M(r, t) being the total mass within the shell of radius r, we define

s(r, t) = M(r,t)−N0(t)
rd

= ρ0(t)S(
r

r0(t)
). Imposing scaling, we obtain for t > tcoll:

dN0

dt
= ρ0N0, N0(t) = µρ0r

d
0 = µ

(
2

d− 2

)d/2−1

T d/2 (t− tcoll)
d/2−1,

where ρ0(t) and r0(t) are given by

ρ0(t) =

(
d

2
− 1

)
(t− tcoll)

−1, r0(t) =

(
T

ρ0(t)

)1/2

.

The resulting scaling equation is

1

d− 2
(2S + xS′) + S′′ +

d+ 1

x
S′ + S(dS + xS′) + µx−d(dS + xS′ − 1) = 0,

where µ is an eigenvalue ensuring compatibility with pre-collapse for r À r0(t).
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Remarks

• The post-collapse scaling function is flatter near x = 0, as

S(x)− S(0) ∼ xd instead of S(x)− S(0) ∼ x2, below tcoll.

• The scaling holds only for short time after tcoll. For large time,

ρ(r, t) ∼ exp[−λ(T )t]ψ(r, T ), and 1−N0(t) ∼ exp[−λ(T )t]. We found that

for small T , λ(T ) = 1
4T + cd

T 1/3 + . . ., and derived analytical estimates for

ψ(r, T ) (analogy with semiclassical methods: T ↔ ~).

• We introduce a numerical scheme in order to “cross the singularity” :
dN0

dt = ρ0N0 is a first order differential equation starting from N0(t
−
coll) = 0

(but ρ0(tcoll) = +∞ !) :
dN0

dt
= ρfit0 Nfit

0 .

Nfit
0 and ρfit0 are extracted from a fit of M(r, t) to the functional form

M(r, t) ≈ Nfit
0 (t) +

ρfit0 (t)

d
rd + apre(t)r

d+2 + apost(t)r
2d,

in a region of a few dr, excluding of course r = 0.
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We plot N0(t) after tcoll (full line).

This is compared to N0(t)
Theory.

The bottom insert illustrates the ex-

ponential decay of 1−N0(t) ∼ e−λt.

Finally, the top inset illustrates the

sensitivity of N0(t) to the spacial

discretization.

10
-4

10
-2

10
0

10
2

10
4

r/r
0
(t)

10
-6

10
-4

10
-2

10
0

ρ(
r,

t)
/ρ

0(t
)

0 2 4 6 8 10
x

0.0

0.1

0.2

0.3

0.4

S(
x)

In the post-collapse regime, we

plot ρ(r, t)/ρ0(t) as a function

x = r/r0(t). The insert shows

the comparison between this post-

collapse scaling function (dashed

line) and the scaling function below

tcoll.
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(insert). The main plot rep-

resents
(
λ(T )T − 1

4

)
.T−2/3 as

a function of T 1/3 (line and

squares), which should converge to

cd=3 = 2.33810741 . . ..
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Analogy with Bose-Einstein Condensation

(Canonical Ensemble)

• We introduce a semi-classical canonical ensemble dynamics in

momentum space, reproducing the well-known equilibrium state:

dki

dt
= −ki

ξ
(1 + ρ(ki, t)) + ηi(t), (1)

∂ρ

∂t
=

1

ξ
∇k

[
T∇kρ+ ρ(1 + ρ)k

]
. (2)

• The equations for the integrated density are strikingly similar:

∂M

∂t
= T

(
∂2M

∂k2
− d− 1

k

∂M

∂k

)
+ k

∂M

∂k

(
1

kd−1

∂M

∂k
+ 1

)
, (3)

∂M

∂t
= T

(
∂2M

∂r2
− d− 1

r

∂M

∂r

)
+

M

rd−1

∂M

∂r
(Gravitation). (4)
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Analogy with Bose-Einstein Condensation

(Canonical Ensemble)

• We have obtained analytical results for the finite-time “collapse”

dynamics (scale invariant momentum density profile, residual density...) in

d = 3.

• We have treated analytically the “post-collapse” (actual Bose-Einstein

condensation), leading to a partially condensed delta peak at k = 0 and to

a residual Bose-Einstein distribution associated to zero chemical potential

(at Finite T < Tc),

• We have computed the typical duration of the collapse dynamics,

τ ∼ ln
(

Tc

T−Tc

)
.
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Conclusion

• Analytical and numerical study of the scaling theory of the collapse

dynamics of a self-gravitating Brownian gas for a general diffusion

coefficient D = Tρ1/n.

• Understanding of the universal post-collapse scaling properties, as well as

the very large time asymptotic regime.

• Extensive analysis of the static properties in all d and for all n, as well as

for generalized entropy functional (Tsallis). Importance of the critical

index n∗ = d
d−2 .

• Many other results: evaporation dynamics without a confining box,

multi-component gas, analogy to Bose-Einstein condensation and

chemotaxis...

Papers can be found on http://xxx.lanl.gov/archive/cond-mat, and are

generally published in Physical Review E and Physica A.
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Index Temperature Bounded domain Unbounded domain

T > Tc Metastable equilibrium state • Evaporation :

(local minimum of free energy): asymptotically free normal

n = ∞ box-confined isothermal sphere diffusion (gravity negligible)

T < Tc Self-similar collapse with α = 2 • Collapse:

and self-similar post-collapse leading pre-collapse and post-collapse as

to a a Dirac peak of mass M in a bounded domain

T > Tc Equilibrium state: Equilibrium state:

0 < n < n∗ box-confined (incomplete) polytrope complete polytrope

T < Tc Equilibrium state: (compact support)

complete polytrope (compact support)

T > Tc Metastable equilibrium state • Evaporation:

(local minimum of free energy): asymptotically free anomalous

n∗ < n < ∞ box-confined polytropic sphere diffusion (gravity negligible)

T < Tc Self-similar collapse with α = 2n/(n − 1) • Collapse:

and post-collapse leading to pre-collapse and post-collapse

a Dirac peak of mass M [N] as in a bounded domain

T > Tc Equilibrium state: Self-similar evaporation

n = n∗ box-confined (incomplete) polytrope modified by self-gravity

T < Tc Pseudo self-similar collapse Collapse

leading to a Dirac peak of

mass (T/Tc)
d/2M + halo.

This is followed by a post-collapse

leading to a Dirac peak of mass M

T = Tc Infinite family of steady states Infinite family of steady states
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Other results

• Exhaustive study of static properties in all dimensions.

• Analytical solution at T = 0 (α = 2d
d+2 ).

• Generalization of this study in all dimensions using Tsallis q-entropy

(Sq = − 1
q−1

∫
(ρq − ρ) ddr), leading to a modified SPE.

Full study of static (occurrence of confined polytropic states for certain

values of q) and dynamical properties (collapse).

When collapse occurs, the density scaling function decays as x−α, with

α = 2n
n−1 and n = d/2 + 1/(q − 1) [link to anomalous diffusive Langevin

walkers, chemotaxis, may be relevant for certain stellar systems...].

• Extension to degenerate systems (Fermions,...).

• Many-components system: the heaviest particles collapse as before (α = 2)

while the lightest has a scaling function decaying more slowly, with an

exponent α(µ = m1/m2 > 1, d) < 2.
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ρ1(r, t) = ρ0f(r/r0), ρ2(r, t) = ρ
α/2
0 fα(r/r0), fα(x) ∼ x−α

• Large d expansion:

α(µ, d À 1) =
4

µ+ 1

[
1− 2(µ− 1)

(µ+ 1)3
d−1 +O(d−2)

]

• Expansion around µ = m1/m2 close to 1:

α(µ = 1 + ε, d) = 2− ε2(d− 2)

∫ +∞
0

yd+1 y2+d+2
(y2+d−2)2 e

−y2/2 dy
∫ +∞
0

yd+1e−y2/2 dy
+O(ε2)

10
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0
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10
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Scaling for µ = 2, for which

α(µ = 2, d = 3) = 1.351914...

Note that the large d result leads to

α(µ = 2, d = 3) = 4/3
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Collapse Dynamics in the Microcanonical Ensemble

T (t) is still uniform but varies with time in order to conserve energy.

We make the same ansatz as before: ρ(r, t) = ρ0(t)f [r/r0(t)], with

ρ0(t)r
2
0(t) = T (t), and assume ρ0(t)r0(t)

α = cst.

Then T (t) ∼ ρ0(t)
1−2/α, with α ≥ 2.

We now obtain the modified scaling equation :

αS + xS′ = S′′ +
d+ 1

x
S′ + S(xS′ + dS), x = r/r0(t),

which has a physical solution for any α ∈ [2;αmax] (in the limit of large d, we

found αmax = 2 + 1
2 d

−1 + 11
16 d

−2 +O(d−3), and gave perturbative expressions

for S(x); αmax=2.209733... in d = 3, in striking agreement with another

treatment in the microcanical ensemble).

In principle, αmax should be dynamically selected, as it leads to the maximum

entropy production rate.


