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Introduction '

General Background on self-gravitating gas

e Competition between kinetic energy (temperature) and gravitation

e Occurrence of a collapse phase below T, or E.
The long-range nature of gravitation is crucial
Relevance of the thermodynamical ensemble (CE vs MCE)

MEF approximation is claimed to be exact in the limit N — oo, G — 0
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Dynamics of a self-gravitating Brownian gas

Instead of treating the dynamics of the actual Newtonian gas of particles, we
assume the existence of a large friction ¢ and associated random force (inert
gas, of effective dynamical origin...).

d2XZ' dXi

5 = € = VO + /2D,

For £ — 400, the problem is reduced to the dynamics of self-gravitating
Brownian particles. We consider the general case D = Tp'/".

Schmoluchowski-Poisson equation (SPE) reads :

% —V E(DVp + pV@)] : Ad(r) = GSap(r).

The constraints are:
e Constant total mass M in the box of radius R

e Constant and uniform temperature T' (canonical ensemble)

Fromnow : G=M=R=¢(=1
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Analogy with chemotaxis

% = DAp — xV(pVc),

oc
= A Ap =~ 0
It C+ Ap ;

where p is the concentration of a bacterial population, ¢ the concentration of

D 1

the substance secreted and y measures the strength of the chemotactic drift.

Identify ® <« —4”Gc T < 4”(5{1), £ & 47TXG.

Introducing the mass M = [ pd°r of the system and the radius R of the
domain, we can show that the static problem depends on the single

dimensionless parameter

AX
n=pPBGM/R <+ DR’

Therefore, a large value of 1 corresponds to a small temperature T or a large

mass M.
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Collapse Dynamics in the Canonical Ensemble I
Scale invariant collapse within SPE for d > 2

For T' < T,, we look for radial solution of SPE of the form

p(r,t) = po(t)flr/ro(t)].

We find a scaling solution after introducing the King radius

ro(t) = m, leading to po(t) = %(tcoll — )L,

The central density diverges in a finite time ...




Laboratoire de Physique Théorique, Université de Toulouse, France — THP, 6-7 October 2009 6

e The scaling function is given by (n = co)

4(d—2) d+ 2*
Sa (d—2+a}2)2.

flz) =

- : _ 2n
For large z, f(x) ~ 7%, with o = =7,

Near T, we find t.o; ~ cq(Te — T)_l/ 2 and the width of the scaling regime
is 6t ~ (T, — T)Y/2. Above T, the equilibration time is 7 ~ (T — T,) /2.

Special treatment of the d = 2 case (n = 00), and in general, of the case
n=mns,=d/(d—2).

We estimated analytically and quantitatively the corrections to scaling (in

d = 3), due to the existence of a finite confining box.

We have computed the first instability modes.
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S(r,t)/S(0,t)

10°
r/r o(t)

We plot p(r,1)/p(0,1) as a function
of r/ro(t) for different times (den-

sity range 102 — 107) for oo = 2 and
a=8/3(D~Tp'" a= %, for

n = 4), and compare the numerics

to the analytical scaling solution.

In(n-n,)
We plot ¢.,;; as a function of T, —T';
the log-log slope is close to the
theoretical result —1/2. (coefficient

exactly known)
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Statics and Collapse in d =2 (n =

1
T+ /m0)?)?

e Above T,, we find the equilibrium density profile p(r) = 47’? (

with ro(T) = \/T/TC — 1, and poré =T.

T.=1/4 and ro(T) ~ \/T/T. — 1 are in perfect agreement with the exact

solution of the problem using conformal invariance (Abdalla et al.).

Contrary to the d > 2 case, collapse occurs at I' =T, and

p(r,t) = 4p(7)T(t) (1+(r/rlo(t)) 7 (v =4), with po(t)ré(t) =T., and

po(t) = Texp (2 +v2t) [1+ Ot '/?1Int)].

Below T, the density is a sum of the scaling solution at 7" = T, (with

weight T'/T.), plus a correction term obeying an apparent effective scaling

with a slow varying exponent «a(t) = 2 — &(t), with
In In _ . o
() =/ Zeee (14 O([Inn po ()] 1)), and fo(t) ~ po(t) 072




Laboratoire de Physique Théorique, Université de Toulouse, France — THP, 6-7 October 2009 9

P eor(X)/P (1)

10°
x=rlr_..

In(a) We plot the residual density ap-
parent scaling in a density (time)

regime where the effective value of

For T = T,, we plot a(da/dt)*

= 7p(0,7)) as a function of
In a, which is predicted to behave as
a(da/dt)™! ~lna—5/2+0([lna]™1)
(dashed line).

a ~ 1.3, varies very little. To this
the scaling contribution at T = T,
(with weight T'/T,.) must be added
to get the total density profile.
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Post-collapse Dynamics in the Canonical Ensemble I

The scaling solution at t = ., is NOT a stationary solution!

So, what happens for ¢ > t.,; 777

The exact solution at T' = 0 suggests that a Dirac peak of mass Ny(t) develops
at r = 0, and that the residual density obeys a backward scaling relation

p(r,t) = po(t)flr/ro(t)], where po(t) decreases with time and 7o (t) increases.
At T =0, we find

a
2

No(t) ~ (¢ = tea) ¥, pol®) = 5(t o)™, 70l

and f is analytically known.
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Post-collapse scaling equations for 0 <T' < T,

M (r,t) being the total mass within the shell of radius r, we define

s(r,t) = M(T’tzq;NO(t) = po(t)S(#(t)). [mposing scaling, we obtain for ¢ > t.,;:

dNy

7 poNo, No(t) = ppord = u (

2
d—2

d/2—1
) Td/2 (t — tcoll)d/z_la

where po(t) and ro(t) are given by

po(t) = (g - 1) (t —teour) ro(t) = pOT(t)>1/2'

The resulting scaling equation is

1 1
—(28+xS’)+S”+dJr

> " S' 4+ S(dS + x28") + px~4(dS + xS’ — 1) = 0,

where p is an eigenvalue ensuring compatibility with pre-collapse for r > ro(t).
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e The post-collapse scaling function is flatter near x = 0, as
S(x) — S(0) ~ 2% instead of S(x) — S(0) ~ 22, below t.oy.

The scaling holds only for short time after ¢..;;. For large time,

p(r,t) ~ exp|—A(T)t ]w(r T) and 1 — Ny(t) ~ exp|—\(T)t]. We found that
for small T, \(T') = = + 7177 + ..., and derived analytical estimates for
Y(r,T) (analogy with semlclassmal methods: T < h).

We introduce a numerical scheme in order to “cross the singularity” :

Mo = poNp is a first order differential equation starting from No(t_,) = 0

(bU-t :00( coll) = 400 ) :
N,

_ fit arfit

NJ™ and p!™ are extracted from a fit of M(r,t) to the functional form

oy (t)
d

in a region of a few dr, excluding of course r» = 0.

M(’I“, t) ~ N({Zt (t) + Td + Upre (t) a+2 + Apost (t)r2d7
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We plot Ny(t) after t.o; (full line).
This is compared to Ng(t)Theow,

The bottom insert illustrates the ex-
)\t

ponential decay of 1 — Ny(t) ~ e
Finally, the top inset illustrates the
sensitivity of Ny(t) to the spacial

discretization.
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P(r,0)/py(t)

In the post-collapse regime, we

plot  p(r,1)/po(l) as
r = r/rg(t). The insert shows

the comparison between this post-

a function

collapse scaling function (dashed

line) and the scaling function below

tcoll .

13
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N
®
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o

(AT-1/4).T2"

N
»
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0553 . 04
T

We plot A(7T') as a function of T

(insert). The main plot rep-

resents  (A(T)T —1).772/3  as

a function of T3 (line and

squares), which should converge to
ci—3 = 2.33810741. . ..




Laboratoire de Physique Théorique, Université de Toulouse, France — THP, 6-7 October 2009

Analogy with Bose-Einstein Condensation
(Canonical Ensemble)

e We introduce a semi-classical canonical ensemble dynamics in

momentum space, reproducing the well-known equilibrium state:

dk; k;

= _2(1 + p(ki, b)) + mi(2),

dp 1

e The equations for the integrated density are strikingly similar:

OM _ . (9°M d—10M\ OM( 1 oM
ot ok \ ka1 ok ’

Ok? k Ok

or? r  Or

(Gravitation).

aM_T(a2M d—mM) M M

ot rd=1 9r

15
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Analogy with Bose-Einstein Condensation

(Canonical Ensemble)

We have obtained analytical results for the finite-time “collapse”

dynamics (scale invariant momentum density profile, residual density...) in

d = 3.

We have treated analytically the “post-collapse” (actual Bose-Einstein
condensation), leading to a partially condensed delta peak at k = 0 and to

a residual Bose-Einstein distribution associated to zero chemical potential
(at Finite T' < T),

We have computed the typical duration of the collapse dynamics,
T ~ In (TTCT )




Laboratoire de Physique Théorique, Université de Toulouse, France — THP, 6-7 October 2009 17

Conclusion '

e Analytical and numerical study of the scaling theory of the collapse

dynamics of a self-gravitating Brownian gas for a general diffusion
coefficient D = Tp'/™.

Understanding of the universal post-collapse scaling properties, as well as

the very large time asymptotic regime.

Extensive analysis of the static properties in all d and for all n, as well as
for generalized entropy functional (Tsallis). Importance of the critical
d

index Ny = 1—9"

Many other results: evaporation dynamics without a confining box,
multi-component gas, analogy to Bose-Einstein condensation and

chemotaxis...

Papers can be found on http://xxx.lanl.gov/archive/cond-mat, and are
generally published in Physical Review E and Physica A.
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Temperature

Bounded domain

Unbounded domain

T > T,

Metastable equilibrium state
(local minimum of free energy):

box-confined isothermal sphere

Self-similar collapse with o = 2
and self-similar post-collapse leading

to a a Dirac peak of mass M

e Evaporation :
asymptotically free normal
diffusion (gravity negligible)
e Collapse:
pre-collapse and post-collapse as

in a bounded domain

Equilibrium state:

box-confined (incomplete) polytrope

Equilibrium state:

complete polytrope (compact support)

Equilibrium state:
complete polytrope
(compact support)

Metastable equilibrium state
(local minimum of free energy):

box-confined polytropic sphere

Self-similar collapse with a« = 2n/(n — 1)

and post-collapse leading to

a Dirac peak of mass M [N]

e Evaporation:
asymptotically free anomalous
diffusion (gravity negligible)
e Collapse:
pre-collapse and post-collapse

as in a bounded domain

Equilibrium state:

box-confined (incomplete) polytrope

Self-similar evaporation

modified by self-gravity

Pseudo self-similar collapse

leading to a Dirac peak of

mass (T/Tc)d/QM + halo.
This is followed by a post-collapse

leading to a Dirac peak of mass M

Collapse

Infinite family of steady states

Infinite family of steady states
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Other results

e Exhaustive study of static properties in all dimensions.

e Analytical solution at T'=0 (a = %).

e Generalization of this study in all dimensions using T'sallis g-entropy
(S, = ——== [(p? — p) d®r), leading to a modified SPE.

qg—1
Full study of static (occurrence of confined polytropic states for certain
values of ¢q) and dynamical properties (collapse).
When collapse occurs, the density scaling function decays as x~%, with
2n

o= ~-and n=d/2+1/(¢—1) [link to anomalous diffusive Langevin

walkers, chemotaxis, may be relevant for certain stellar systems...].
Extension to degenerate systems (Fermions,...).

Many-components system: the heaviest particles collapse as before (a = 2)

while the lightest has a scaling function decaying more slowly, with an

exponent a(pu =mq/mo > 1,d) < 2.
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p1(r,t) = pof(r/ro)y  pa(r,t) = p§'? falr/ro),  fa(z) ~a°

e Large d expansion:

4 2(p—1)
d>1)=—— |1—
olw ) p+1 (b +1)?

e Expansion around p = ml/m?2 close to 1:

d~' 4+ 0(d™?)

+00 441y +d+2 —y?/2
fO Yy (y2+d—2)2° dy

Jo T yttlevi 2 dy

alp=1+ed) =2—e2(d—2) + O(&?)

Scaling for y = 2, for which
a(p=2,d=3) =1.351914...

Note that the large d result leads to
a(p=2,d=3)=4/3
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Collapse Dynamics in the Microcanonical Ensemble I

T'(t) is still uniform but varies with time in order to conserve energy.
We make the same ansatz as before: p(r,t) = po(t)flr/ro(t)], with

po(t)ré(t) = T(t), and assume po(t)ro(t)* = cst.

Then T'(t) ~ po(t)'=2/¢, with a > 2.

We now obtain the modified scaling equation :

d+1
x

aS + xS = 8" + S+ S(xS" +dS), r =r/ro(t),

which has a physical solution for any « € [2; @] (in the limit of large d, we

found apax = 2 + % d—t + % d=? 4+ O(d™3), and gave perturbative expressions
for S(x); amax=2.209733... in d = 3, in striking agreement with another

treatment in the microcanical ensemble).

In principle, amax should be dynamically selected, as it leads to the maximum

entropy production rate.




