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Part I

Motivation



motivation
Evolution equations

d
dt f = −Lf , t ≥ 0 ,

operator L is independent of time t
operator L and has a unique steady state f∞: Lf∞ = 0

. Goal: find an estimate on ‖f (t)− f∞‖

◦ possibly with exponential decay: ‖f (t)− f∞‖ ≤ ce−µt‖f (0)− f∞‖
◦ possibly with sharp (=maximal) rate µ > 0 and minimal c ≥ 1

[uniform for all f (0)]

. Strategy: construct a (strict) Lyapunov functional E(f , f∞) ∼ ‖f − f∞‖2

d
dt E(f (t), f∞) ≤ −2µ E(f (t), f∞) , t ≥ 0

⇓ Gronwall lemma

E(f (t), f∞) ≤ e−2µtE(f (0), f∞) , t ≥ 0

⇓ E(f , f∞) ∼ ‖f − f∞‖2

‖f (t)− f∞‖2 ≤ ce−2µt‖f (0)− f∞‖2 , t ≥ 0
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Part II

BGK-type kinetic equations



nonlinear BGK-type model with constant collision frequency σ1

∂t f + v · ∇x f = σ(Mf (x , v , t)− f (x , v , t)) , t ≥ 0 , x ∈ Td , v ∈ Rd .

. relaxation towards local Maxwellian Mf (x , v) = ρ(x)

(2πT (x))d/2
e
− |v−u(x)|2

2T (x)

with density ρ(x) :=
∫
f dv , mean velocity u(x) := 1

ρ(x)

∫
v f dv , temperature

T (x) := 1
dρ(x)

∫
|v − u(x)|2f dv .

. Consider normalized initial data f I (x , v) with unit mass
∫∫

f I dx dv = 1,

zero mean momentum
∫∫

v f I dx dv = 0 and unit mean pressure∫∫
|v |2f I dx dv = d .

. normalization is conserved under the flow of (BGK)

. f∞(v) := M1(v) = (2π)−d/2 e−
|v|2
2 is the unique, normalized,

space-homogeneous steady state of (BGK) via standard argument using

Boltzmann entropy, but no information about rate of convergence.

Our result: For normalized initial data f I ”sufficiently close” to f∞, the
solutions of (BGK) converge to f∞ exp. fast: Construction of a strict
Lyapunov functional and derivation of explicit exponential decay rate.

1BGK: Bhatnagar-Gross-Krook (1954), Welander (1954), Kogan (1958)



1D nonlinear BGK-type model - local exponential stability
∂t f + v∂x f = Mf (x , v , t)− f , x ∈ T , v ∈ R ,

with local Maxwellian Mf = ρ(x)√
2πT (x)

e−v
2/2T (x) here mean velocity=0.

Theorem 1 (FA-Arnold-Carlen 2016)

Let 1
2π

∫ 2π
0

∫
R(1, v2) f I dv dx = (1, 1) and M1 = 1√

2π
e−v

2/2.

If γ > 1
2 , ‖f I −M1‖Hγ < δγ (=explicit constant) then

Eγ(f (t),M1) ≤ e−t/25Eγ(f I ,M1) , t ≥ 0 .

Strict Lyapunov functional (with h = f −M1 and Hγ := Hγ(0, 2π)⊗ L2(R;M−1
1 )):

Eγ(f ,M1) :=
∑

k∈Z
(1 + k2)γ〈hk(v), P̃khk(v)〉L2(M−1

1 ) ∼ ‖f −M1‖2Hγ

P̃k is a bounded operator on L2(M−11 ), represented by ”infinite” matrix Pk



Idea of proof:
. For h := f −M1, rewrite nonlinear model as

∂th + v∂xh = Q2h + Rf

. Analyze the linearized model ∂th + v∂xh = Q2h with

Q2h :=
(
3−v2

2

)
M1(v)

∫
h dv +

(
v2−1
2

)
M1(v)

∫
v2h dv − h .

Theorem 2 (FA-Arnold-Carlen 2016)

Let 1
2π

∫ 2π
0

∫
R
( 1
v2

)
f I dv dx =

(1
1

)
. Then, for γ ≥ 0,

Eγ(f (t),M1) ≤ e−t/25Eγ(f I ,M1) , t ≥ 0 .

. remainder: ‖Rf ‖Hγ ≤ c‖f −M1‖2Hγ if γ > 1
2 , ‖f I −M1‖Hγ < δγ

=⇒ d

dt
Eγ(f ) ≤ − 0.0412︸ ︷︷ ︸

>1/25

Eγ(f )︸ ︷︷ ︸
=O(h2)

+c‖h‖3Hγ
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Let 1
2π

∫ 2π
0

∫
R
( 1
v2

)
f I dv dx =

(1
1

)
. Then, for γ ≥ 0,

Eγ(f (t),M1) ≤ e−t/25Eγ(f I ,M1) , t ≥ 0 .

Proof of Theorem 2:

. expansion of h: Fourier in x / Hermite functions in v :

∂t ĥk(t) + ik L1ĥk(t) = −L3ĥk(t) , k ∈ Z ,

for some Hermitian matrices L1, L3 with L3 ≥ 0



1D linearized BGK model - simplified Lyapunov functional
. For k ∈ Z, ∂t ĥk(t) = −Ck ĥk(t) where Ck := ik L1 + L3

L1 =




0
√

1 0 · · ·√
1 0

√
2 0

0
√

2 0
√

3... 0
√

3
. . .


 ,

L3 = diag(0, 1, 0, 1, 1, . . .)

2 conserved quantities:
mass & energy

. simplified ansatz

Pk = I +




0 −iα/k 0 0
iα/k 0 0 0

0 0 0 −iβ/2k
0 0 iβ/2k 0

0

0 0




. For Ck := ikL1 + L3 and Pk with α = β = 1
3 , ∃µ0 > 0 such that

PkCk + CH
k Pk ≥ 2µ0Pk uniform-in-k



some references in kinetic theory/hypocoercivity
general theory on hypocoercivity:
Mouhot-Neumann (2006) weighted Sobolev spaces
general class of linear inhomogeneous kinetic equations on the torus

Hérau (200x) Fokker–Planck equation with confining potential, linear
inhomogeneous relaxation Boltzmann equation (= BGK-type equation)
Villani (2009) abstract operators: L := A∗A + B where B = −B∗
Quote: “Construct a [strict] Lyapunov functional by adding carefully
chosen lower-order terms to the ’natural’ [non-strict] Lyapunov functional.”

linear kinetic equations: ∂t f + Tf = L̃f :
Dolbeault-Mouhot-Schmeiser (2009, 2015) weighted L2 spaces
linear kinetic equations with only one conservation law

Duan (2011) macro-micro decomposition combined with Kawashima’s
argument on dissipation of the hyperbolic-parabolic system +Korn ineq.

Carrapatoso-Dolbeault-Hérau-Mischler-Mouhot-Schmeiser (2021)

Special modes and hypocoercivity for linear kinetic equations with several
conservation laws and a confining potential



Part III

ODEs: Hypocoercive matrices



ODEs d
dtu = −Cu with (hypo)coercive matrices C

Definition 3 ((Hypo)coercive matrices)

Let C ∈ Cn×n (with trivial K = kerC = {0}) and H = Cn be endowed
with Euclidean scalar product and norm.

. The operator C is called coercive on (Cn, ‖ · ‖) if

∃ κ > 0 : ∀ u ∈ Cn, <〈u,Cu〉 ≥ κ‖u‖2 .

. The operator C is called hypocoercive on (Cn, ‖ · ‖) if

∃ κ > 0, c ≥ 1 : ∀ u ∈ Cn, t ≥ 0, ‖e−Ctu‖ ≤ c e−κt‖u‖ .

. C is coercive with κ > 0 ⇐⇒ CH + C ≥ 2κI

Energy method: d
dt ‖u(t)‖2 = −〈u(t), (CH+C)u(t)〉 ≤ −2κ‖u(t)‖2

=⇒ ‖u(t)‖2 ≤ ‖u(0)‖2 e−2κt for t ≥ 0 .

. hypocoercive operator: coercive ⇐⇒ c = 1
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. The operator C is called hypocoercive on (Cn, ‖ · ‖) if

∃ κ > 0, c ≥ 1 : ∀ u ∈ Cn, t ≥ 0, ‖e−Ctu‖ ≤ c e−κt‖u‖ .

. u∞ is asymptotically stable :⇐⇒ ‖u(t)− u∞‖ → 0 as t →∞
⇐⇒ All eigenvalues λj of C satisfy <λj > 0.
⇐⇒ ∃ P ∈ H>n : CHP + PC > 0 with H>n := {P ∈ Cn×n|P = PH,P > 0}

⇒ ‖u(t)‖2P := 〈u(t),Pu(t)〉 is a strict Lyapunov functional



ODEs d
dtu = −Cu with (hypo)coercive matrices C

Definition 3 ((Hypo)coercive matrices)

Let C ∈ Cn×n (with trivial K = kerC = {0}) and H = Cn be endowed
with Euclidean scalar product and norm.

. The operator C is called coercive on (Cn, ‖ · ‖) if

∃ κ > 0 : ∀ u ∈ Cn, <〈u,Cu〉 ≥ κ‖u‖2 .

. The operator C is called hypocoercive on (Cn, ‖ · ‖) if

∃ κ > 0, c ≥ 1 : ∀ u ∈ Cn, t ≥ 0, ‖e−Ctu‖ ≤ c e−κt‖u‖ .

. If CHP + PC ≥ 2κP for some κ > 0 and P ∈ H>
n then

d
dt ‖u(t)‖2P = −〈u(t), (CHP + PC)u(t)〉 ≤ −2κ‖u(t)‖2P

=⇒ ‖u(t)‖2P ≤ ‖u(0)‖2P e−2κt for t ≥ 0

=⇒ ‖u(t)‖2 ≤ cond(P) ‖u(0)‖2 e−2κt .



Venn diagram of matrices C ∈ Cn×n
C ∈ Cn×n ẋ = −Cx is stable

[
9 −3
3 −1

]

λ1 = 0
λ2 = 8

C is hypocoercive

ẋ = −Cx is asymptotically stable

[
19 −6
6 −1

]

λ1 = 1
λ2 = 17

[
1 −1
1 0

]

λ± = 1
2 ± i

√
3
2

CH ≥ 0

[0]

−C is semi-dissipative

CH > 0
C is coercive

[1]

−C is dissipative

characterization

coercive C: ‖ · ‖22 is a strict Lyapunov functional

hypocoercive C: ∃P ∈ H>
n , ‖ · ‖2P is a strict Lyapunov functional



Venn diagram of matrices C ∈ Cn×n
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.If C = A∗A + B with B = −B∗ then C = CH + CS yields

CH = 1
2(C + CH) = A∗A ≥ 0 and CS = 1

2(C− CH) = B



ODEs d
dtu = −Cu with CH ≥ 0

solutions u(t) of ODE satisfy ‖u(t)‖2 ≤ ‖u(0)‖2 for t ≥ 0

Lemma Let C ∈ Cn×n satisfy CH ≥ 0. Then, C has a purely imaginary
eigenvalue if and only if CHw = 0 for some eigenvector w of CS .

Lemma Let C ∈ Cn×n satisfy CH ≥ 0. Then the following conditions are
equivalent:

. C is hypocoercive

. Shizuta-Kawashima: No eigenvector of CS lies in the kernel of CH .

. Kalman: rank[CH ,CSCH , . . . ,C
n−1
S CH ] = n

.
∑n−1

j=0 (CS)jCH(CH
S )j > 0

. Popov-Belevitch-Hautus: rank[λI− CS ,CH ] = n for every λ ∈ C , in
particular for every eigenvalue λ of CS .

Construction of strict Lyapunov functional/solution P of CHP + PC > 0.



Hypocoercivity index for C ∈ Cn×n with CH ≥ 0

Let C ∈ Cn×n be a positive conservative-dissipative matrix.

Definition 4

The hypocoercivity index of C = CS + CH with CH ≥ 0 is defined as the
smallest integer mHC ∈ N0 (if it exists) such that

∑mHC
j=0 Cj

SCH(CH
S )j > 0.

If C is not hypocoercive we set mHC =∞.

. C is coercive ⇐⇒ CH > 0 ⇐⇒ mHC = 0

. C is hypocoercive ⇐⇒ mHC <∞

. If C is hypocoercive then n−rankCH
rankCH

≤ mHC ≤ n − rankCH

. mHC describes the structural complexity of C

Examples:

CS = i




0
√

1 0 0√
1 0

√
2 0

0
√

2 0
√

3

0 0
√

3 0




1 CH = diag(0, 1, 0, 1)
=⇒ HC-index mHC = 1

2 CH = diag(0, 0, 1, 1)
=⇒ HC-index mHC = 2



Hypocoercivity index for C ∈ Cn×n with CH ≥ 0

Let C ∈ Cn×n be a hypocoercive, positive conservative-dissipative matrix.

Lemma 1 (Equivalent conditions)

. no (non-trivial) subspace of kerCH is invariant under CS .

. ∃τ ∈ N0:
∑τ

j=0 C
j
SCH(CH

S )j > 0.

. ∃τ ∈ N0: rank{√CH ,CS

√
CH , . . . ,C

τ
S

√
CH} = n

. ∃τ ∈ N0:
⋂τ

j=0 ker(
√
CH(CH

S )j) = {0}
. ∃τ ∈ N0:

∑τ
j=0 C

H
j Cj > 0 with C0 :=

√
CH ; Cj+1 := [Cj ,CS ],

j ∈ N0.

Examples:

CS = i




0
√

1 0 0√
1 0

√
2 0

0
√

2 0
√

3

0 0
√

3 0




1 CH = diag(0, 1, 0, 1)
=⇒ HC-index mHC = 1

2 CH = diag(0, 0, 1, 1)
=⇒ HC-index mHC = 2



Short-time behavior for d
dtu = −Cu with CH ≥ 0

Lemma 2 (A-Arnold-Carlen (2020))

Let C ∈ Cn×n satisfy CH ≥ 0. Its HC-index is mHC ∈ N0 if and only if

‖e−Ct‖2 = 1− c t2mHC+1 +O
(
t2mHC+2

)
, t → 0+ ,

for some c > 0.

Example (continued)

2 4 6 8 10
t

0.2

0.4

0.6

0.8

1.0

‖eAt‖2
2

ODE d
dt u(t) = −Cu with C =

[
1 −1
1 0

]

The squared propagator norm ‖e−Ct‖22 satis-
fies ‖e−Ct‖22 ∼ 1− t3/6 +O(t4) for t → 0+.

Moreover, it is the envelope of ‖u(t)‖22 for all
solutions with ‖u(0)‖22 = 1.



Propagator norm of (normalized) Fokker-Planck equations

∂t f = divξ
(
D∇ξf + Cξf

)
=: Lf , D = CH ≥ 0 . (nFP)

Condition A (for hypocoercivity)

. No (nontrivial) subspace of kerD is invariant under C>

(Hörmander: L is hypoelliptic, i.e. (nFP) has smooth solutions.)

. Let CH := (C + C>)/2 ∈ Rd×d and CH ≥ 0.

Condition A =⇒ C is positively stable (i.e. <λC > 0) =⇒ ∃f∞: Lf∞ = 0.

Theorem 5 (Arnold-Schmeiser-Signorello (2021))

Let L satisfy Condition A (i.e. L is hypocoercive). Then

‖e−Lt − Π0‖B(H) = ‖e−Ct‖2 , t ≥ 0 ,

where H = L2(f −1∞ dξ) and Π0 is projection onto span{f∞}.



Conclusion

. Optimal decay estimates of (drift) ODEs carry over to
Fokker-Planck equations

. HC-index characterizes the short-time behavior of ODEs and
(normalized) Fokker-Planck equations. It also characterizes the
regularization rate in Fokker-Planck equations:

∥∥∥∇ξ f (t)f∞

∥∥∥
L2(f∞ dξ)

≤ ct−(2mHC+1)
∥∥∥ f0
f∞

∥∥∥
L2(f∞ dξ)

, 0 < t ≤ δ ,

see Villani using Hörmander rank, Arnold-Erb using HC-index.

. analysis of kinetic BGK-type models: exponential decay for discrete
/ continuous velocities, linearized / nonlinear (similar to Kawashima).
modal decomposition yields ODE with “infinite” matrices: extension
of HC-index mHC to “infinite” matrices and algorithm to construct
strict Lyapunov functional in mHC number of steps.



Venn diagram of matrices C ∈ Cn×n
C ∈ Cn×n ẋ = −Cx is stable

[
9 −3
3 −1

]

λ1 = 0
λ2 = 8

C is hypocoercive

ẋ = −Cx is asymptotically stable

[
19 −6
6 −1

]

λ1 = 1
λ2 = 17

[
1 −1
1 0

]

λ± = 1
2 ± i

√
3
2

CH ≥ 0

[0]

−C is semi-dissipative

CH > 0
C is coercive

[1]

−C is dissipative

. Extension to d
dt u = −Cu with C ∈ Cn×n

. Extension to differential-algebraic equations (DAEs)
E d

dt u = −Cu with E ∈ H≥n and C ∈ Cn×n such that CH ≥ 0



Thank you
for your attention!
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