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motivation
Evolution equations

d e
df—_Lf, t>0,

operator L is independent of time t
and has a unique steady state f: Lfy, =0

> Goal: find an estimate on ||f(t) — ||

> Strategy: construct a (strict) Lyapunov functional &(f, fio) ~ ||f — £ ||
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motivation
Evolution equations

d e
df—_Lf, t>0,

operator L is independent of time t
and has a unique steady state f,: Lf,o =0

> Goal: find an estimate on ||f(t) — ||
o possibly with exponential decay: ||f(t) — foo|| < ce™#t||f(0) — fol|
o possibly with sharp (=maximal) rate 1 > 0 and minimal ¢ > 1
[uniform for all £(0)]

)
> Strategy: construct a (strict) Lyapunov functional &(f, fio) ~ ||f — foc ||

S E(F(1), foo) < —2p E(£(2), ), t>0
[} Gronwall lemma

E(F(t), o) < e 2ME(£(0), o) t>0
U E(f fe) ~ I — f?

1£(£) = fuol® < ce2#[|£(0) — fioI?, t>0
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BGK-type kinetic equations



nonlinear BGK—type model with constant collision frequency ot
Of +v-Vif =c(Mi(x.v.t)—f(x.v.t)), t>0,xeT? veR?.

_ v—u(x)|?
2T(x)

> relaxation towards local Maxwellian M¢(x, v) = % e

with density p(x) := [ f dv, mean velocity u(x) := ,,(lx) [ v fdv, temperature
T(x) = 2= [ |v— u(x)]*fdv.

dp(x) -

> Consider normalized initial data f/(x, v) with unit mass [[ ' dxdv = 1,
zero mean momentum [[ v f'dxdv = 0 and unit mean pressure
[[|v]*f dxdv = d.

> normalization is conserved under the flow of (BGK)

v|2
> FO(v) := My(v) = (27)~9/2 o~'% is the unique, normalized,

space-homogeneous steady state of (BGK) via standard argument using

Boltzmann entropy, but no information about rate of convergence.

Our result: For normalized initial data 7! "sufficiently close” to >, the

solutions of (BGK) converge to > exp. fast: Construction of a strict
Lyapunov functional and derivation of explicit exponential decay rate.

'BGK: BHATNAGAR-GROSS-KROOK (1954), WELANDER (1954), KOGAN (1958)



1D nonlinear BGK-type model - local exponential stability
Otf + vOxf = Me(x,v,t)—f, xeT, veR,

with local Maxwellian My = —p0)  o=v?/2T(x) here mean velocity=0.
V27 T(x)

Theorem 1 (FA-ARNOLD-CARLEN 2016)
Let & [7 fo(1,v?) f'dvdx = (1,1) and My = —Le**/2,

Nors
Ify > 3%, ||f' = My|j3» < 6 (=explicit constant) then

E,(F(t), My) < e U/BE(f' M), t>0.

o

Strict Lyapunov functional (with h = f — My and #7 = H7(0,27) @ L*(R; M, 1)):
EL(F M) 1= (1 + K2 (i), Prchi(V)) gy ~ IF = Ml
keZ

5;( is a bounded operator on L2(I\/l1_1), represented by "infinite” matrix Py



|dea of proof:
> For h:= f — My, rewrite nonlinear model as

Oth + vOyh = Qh + Ry
> Analyze the linearized model 9;:h + vO,h = Q>h with

Qh = (3—2"2)M1(v)/hdv—|— (V";l)/\/fl(v)/vzhdv—h.
Theorem 2 (FA-ARNOLD-CARLEN 2016)
Let % 02” I (‘}2) fldvdx = (}) Then, for v > 0,

E,(F(t), My) < e VB (F1 M),  t>0.

> remainder: ||Rellr < c||f — Mi[)3, if v > 3, If' = My < 6,

d
— Egv(f) < —0.0412 &,(f) +c||h|3
>1/25 :O(hQ)

{



|dea of proof:
> For h:= f — My, rewrite nonlinear model as

Oth + vOyh = Qh + Ry
> Analyze the linearized model 9;:h + vO,h = Q>h with

Qh = (3—2"2)M1(v)/hdv—|— (V";l)/\/fl(v)/vzhdv—h.
Theorem 2 (FA-ARNOLD-CARLEN 2016)
Let % 02” I (‘}2) fldvdx = (}) Then, for v > 0,

E,(F(t), My) < e VB (F1 M),  t>0.

Proof of Theorem 2:

> expansion of h: Fourier in x / Hermite functions in v:
8tﬁk(t)+ik Lli’\lk(t) = —L3ﬁk(t), keZ,

for some Hermitian matrices Ly, L3 with L3 > 0



1D linearized BGK model - simplified Lyapunov functional
> For k € Z, dshy(t) = —Cyhy(t) where C; := ik L; + L3

L =d 1 1,1, ...
L vi 0 v2 0 ’ 2::aogn(se’rvezd ’ u;nt’ities)‘
Tlo v2 o V3| ’ .
: 0 V3 -
>
0 —ia/k 0 0
ia/k 0 0 0 0
Pr=I1+| 0 0 0 —iB/2k
0 0 i8/2k 0
0 0

> For Cy :=ikLy + L3 and Py with o = 3 = 3, Jpup > 0 such that

P.Cy + C?Pk > 2uoPyx  uniform-in-k



some references in kinetic theory/hypocoercivity
general theory on hypocoercivity:

MoUHOT-NEUMANN (2006) weighted Sobolev spaces

general class of linear inhomogeneous kinetic equations on the torus

HiraU (200x) Fokker—Planck equation with confining potential, linear
inhomogeneous relaxation Boltzmann equation (= BGK-type equation)
VILLANI (2009) abstract operators: L := A*A + B where B = —B*

Quote: “Construct a [strict] Lyapunov functional by adding carefully
chosen lower-order terms to the 'natural’ [non-strict] Lyapunov functional.”

linear kinetic equations: 0;f + Tf = Lf:

DOLBEAULT-MOUHOT-SCHMEISER (2009, 2015) weighted L? spaces

linear kinetic equations with conservation law

DuAN (2011) macro-micro decomposition combined with Kawashima's
argument on dissipation of the hyperbolic-parabolic system +Korn ineq.
CARRAPATOSO-DOLBEAULT-HERAU-MISCHLER-MOUHOT-SCHMEISER (2021)
Special modes and hypocoercivity for linear kinetic equations with
conservation laws and a confining potential
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ODEs: Hypocoercive matrices



ODEs 2u = —Cu with (hypo)coercive matrices C

Definition 3 ((Hypo)coercive matrices)

Let C € C"™*" (with trivial £ = ker C = {0}) and H = C" be endowed
with Euclidean scalar product and norm.

> The operator C is called on (C", |- ) if
I3k>0: VueC", R(u,Cu) > k|u|® .
> The operator C is called on (C", | - ) if

k>0, c>1: YueC" t>0, le=Ctu|| < ce ™ tu .

> C is coercive with k >0 < CH 4+ C > 2kl
Energy method: d—dt||u(t)||2 = —(u(t), (CH+C)u(t)> < —2nHu(1.‘)H2
— Hu(t)”2 < ||u(0)||2 e 2"t fort>0.

> hypocoercive operator: coercive < c=1




ODEs 2u = —Cu with (hypo)coercive matrices C

Definition 3 ((Hypo)coercive matrices)

Let C € C"™*" (with trivial £ = ker C = {0}) and H = C" be endowed
with Euclidean scalar product and norm.

> The operator C is called on (C™ |- I) if
I3k>0: VueC", R(u, Cu) > kllul? .
> The operator C is called on (C™ |- | if

k>0, c>1: YueC" t>0, le=Ctu|| < ce ™ tu .

> Uso is asymptotically stable : <= ||u(t) — uso|| — 0 as t — oo
<= All eigenvalues \; of C satisfy ®)\; > 0.
<~ IPcH>: CHP+PC>0with H, = {PecC™P=P"P>0}
= ||u(t)||3 := (u(t),Pu(t)) is a strict Lyapunov functional



ODEs 2u = —Cu with (hypo)coercive matrices C

Definition 3 ((Hypo)coercive matrices)

Let C € C"™*" (with trivial £ = ker C = {0}) and H = C" be endowed
with Euclidean scalar product and norm.

> The operator C is called on (C", |- ) if
I3k>0: VueC", R(u,Cu) > k|u|® .
> The operator C is called on (C", | - ) if

k>0, c>1: YueC" t>0, le=Ctu|| < ce ™ tu .

> If for some k > 0 and P € H then
atllu(®)lp = —(u(t), (C"P + PC)u(t)) < —2rllu(t)[3
= Jlu(®)lp < [u(0)[p e fort>0
=



Venn diagram of matrices C € C"*”

C e Crxn

x = —Cx is stable

C is hypocoercive

% = —Cx is asymptotically stable

[0

—C is semi-dissipative

characterization

coercive C: || - ||3 is a strict Lyapunov functional
hypocoercive C: 3P € H,

|- |3 is a strict Lyapunov functional



Venn diagram of matrices C € C"*”

C e Cnxn

x = —Cx is stable

C is hypocoercive

% = —Cx is asymptotically stable

[0

—C is semi-dissipative

>If C = A*A + B with B = —B* then C = Cy 4 Cgs yields

Ch=3(C+C)=AAZ0 and Cs=}(C-C")=B



ODEs d—dtu = —CuwithCy >0
solutions u(t) of ODE satisfy ||u(t)||? < ||u(0)||? for t >0

Lemma Let C € C" " satisfy Cy > 0. Then, C has a purely imaginary
eigenvalue if and only if Cyw = 0 for some eigenvector w of Cg.

Lemma Let C € C"™ " satisfy Cy > 0. Then the following conditions are
equivalent:

> Cis

> SHizuTa-Kawasuiva: No eigenvector of Cg lies in the kernel of Cy.

> Kawman: rank[Cy, CsCh,. .., Cg_ch] =n

- LIH(CsYCH(CHY > 0

> Popov-BeLevitcH-Hautus: rank[Al — Cs, Cy] = n for every A € C , in
particular for every eigenvalue A of Cgs.

Construction of strict Lyapunov functional/solution P of CHP 4 PC > 0.




Hypocoercivity index for C € C"™" with Cy >0
Let C € C"™" be a positive conservative-dissipative matrix.
Definition 4

The hypocoercivity index of C = Cs + Cp with Cyy > 0 is defined as the
smallest integer myc € No (if it exists) such that .7 C,Cr(CHY > 0.
If C is not hypocoercive we set myc = oo.

> Cis coercive <— Cy >0 < myc=0
> C is hypocoercive <= mpyc < o

. - n—rank Cy
> If C is hypocoercive then kGt S mpc < n— rank Cy

> mpyc describes the structural complexity of C
Examples:
0 Vi 0 0 Q@ Cy =diag(0, 1,0, 1)
C V1 0 V2 0 = HC-index myc =1
=1
s 0 vV2 0 3 @ Cy = diag(0, 0, 1, 1)
0 0 V3 0 — HC-index myc =2



Hypocoercivity index for C € C"™" with Cy >0
Let C € C"™*" be a hypocoercive, positive conservative-dissipative matrix.

Lemma 1 (Equivalent conditions)
> no (non-trivial) subspace of ker Cy is invariant under Cs.
> 37 €No: D1 0 C5Ch(CHY > 0.
> 37 € No: rank{y/Cp,Cs/Ch,...,CL/Cy} =n
> 37 € No: (N ker(v/Cr(CHY) = {0}

> d7 € Np: Ej:o CJHCJ > 0 with Cg := /Cgy; Cj+1 = [Cj,Cs],
Jj € Np.

Examples:
O \/I 0 0 0 CH = dlag( ’ 17 ’ ]-)
C Vi 0 V2 0 — HC-index myc =1
=1
*“'lo v2 0 V3 @ Cy = diag(0, 0, 1, 1)
0 0 V3 0 = HC-index mpyc = 2



Short-time behavior for d—dtu = —CuwithCy >0

Lemma 2 (A-ArNOLD-CARLEN (2020))

Let C € C"™" satisfy Cyy > 0. Its HC-index is m - € Ny if and only if
le |z =1 —c £ 4 O(2™He¥2) |t 0T,

for some ¢ > 0.

Example (continued)
13

ODE £u(t) = —Cuwith C=[}

The squared propagator norm |le~Ct||3 satis-
fies |[e=Ct[|3 ~ 1 —t3/6 + O(t*) for t — O+
Moreover, it is the envelope of ||u(t)||3 for all
solutions with ||u(0)||3 = 1.




Propagator norm of (normalized) Fokker-Planck equations
Oif = dive (DVef + CEF) = LF,  D=Cy>0. (nFP)

(for hypocoercivity)

> No (nontrivial) subspace of ker D is invariant under C"
(HORMANDER: L is hypoelliptic, i.e. (nFP) has smooth solutions.)

> Let Cy == (C+C")/2 € R4 and Cyy > 0.

— C is positively stable (i.e. R\¢c >0) = Ff: Lfix =0.
Theorem 5 (ARNOLD—SCHMEISER—SIGNORELLO (2021))
Let L satisfy (i.e. L is hypocoercive). Then
le™ = Mollsgy = lle™|la, >0,

where H = L2(f5*d¢) and Mg is projection onto span{fy.}.




Conclusion

>

>

Optimal decay estimates of (drift) ODEs carry over to
Fokker-Planck equations

characterizes the short-time behavior of ODEs and
(normalized) Fokker-Planck equations. It also characterizes the
regularization rate in Fokker-Planck equations:

fo

H t)‘ 0<t<9d,

< Ct*(2ch+1)‘

[2(foo dE) 12(foo d€)

see ViLLant using Hormander rank, ArNoLD-ERB using

analysis of kinetic BGK-type models: exponential decay for discrete
/ continuous velocities, linearized / nonlinear (similar to Kawasmima).
modal decomposition yields ODE with “infinite” matrices: extension
of to “infinite” matrices and algorithm to construct
strict Lyapunov functional in myc number of steps.



Venn diagram of matrices C € C"*”

cecmr

x = —Cx is stable

C is hypocoercive

x = —Cx is asymptotically stable

(0]

—C is semi-dissipative

> Extension to d—dtu = —Cu with C € C"*n

> Extension to differential-algebraic equations (DAEs)
Elu=—Cu with E € H and C € C™" such that C; > 0



Thank you
for your attention!



References

> : On linear hypocoercive BGK models, book
chapter in "From Particle Systems to Partial Differential Equations III", 1-37,
Springer 2016.

> : On multi-dimensional hypocoercive BGK
models, Kinet. Relat. Models 11(4), 953-1009, (2018).

> : The hypocoercivity index and the short- and
long-time behavior of ODEs, preprint (2020).

> . Hypocoercivity and controllability in linear
semi-dissipative ODEs and DAEs.” arXiv preprint arXiv:2104.07619 (2021).

> : On optimal decay estimates for ODEs and

PDEs with modal decomposition. book chapter in “ Stochastic dynamics out of
equilibrium”, 241-264, Springer, 2019.

> : Sharp entropy decay for hypocoercive and non-symmetric
Fokker-Planck equations with linear drift, arXiv preprint arXiv:1409.5425 (2014).
> : Sharp decay estimates in local sensitivity

analysis for evolution equations with uncertainties: from ODEs to linear kinetic
equations. J. Differential Equations 268(3) (2020), 1156-1204.

> : Propagator norm and sharp decay
estimates for Fokker-Planck equations with linear drift. arXiv preprint
arXiv:2003.01405 (2020).



References (continued)

>

: Large time asymptotics for partially dissipative
hyperbolic systems. Arch. Ration. Mech. Anal. 199 (2011), 177-227.

: Hypocoercivity for kinetic
equations with linear relaxation terms. C. R. Math. Acad. Sci. Paris 347 (2009),
511-516.

: Hypocoercivity for linear kinetic
equations conserving mass. Trans. Amer. Math. Soc. 367 (2015), 3807-3828.

. Hypocoercivity of linear degenerately dissipative kinetic equations.
Nonlinearity 24 (2011), 2165-2189.

: Hypocoercivity and exponential time decay for the linear
inhomogeneous relaxation Boltzmann equation. Asymptotic Analysis 46 (2006),
349-359.

: Quantitative perturbative study of convergence to
equilibrium for collisional kinetic models in the torus. Nonlinearity 19 (2006),
969-998.
. Systems of equations of hyperbolic-parabolic type
with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14
(1985), 249-275.

: On the decay of solutions to the
linearized equations of electromagneto fluid dynamics. Japan J. Appl. Math. 1
(1984), 435-457.

: Hypocoercivity. Mem. Amer. Math. Soc. 202 (2009), no. 950,
iv+141 pp.



	Motivation
	Hypocoercivity

	BGK-type kinetic equations
	ODEs: Hypocoercive matrices

