
[thm]

Coercive Inequalities and U-Bounds

Esther Bou Dagher

October 11, 2021

 

or



Introduction

In 1975, L. Gross obtained the following Logarithmic Sobolev inequality
([33]): Z

Rn

f 2log

✓
f 2

R
Rn f 2dµ

◆
dµ  2

Z

Rn

|Of |2dµ, (1)

where O is the standard gradient on Rn and dµ =
e�

|x|2
2

Z
d� is the

Gaussian measure. In a setup of a more general metric space, a natural
question would be to try to find similar inequalities with different

measures of the form dµ =
e�U(d)

Z
d�, where U is a function of a metric

d , and where the Euclidean gradient is replaced by a more general
sub-gradient in Rn.
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Introduction

L.Gross also pointed out ([33]) the importance of the inequality (1) in
the sense that it can be extended to infinite dimensions with additional
useful results. (See also works: [34, 12, 60, 53, 13, 68, 59].) He proved
that if L is the non-positive self-adjoint operator on L2 (µ) such that

(�Lf , f )
L2(µ) =

Z

Rn

|Of |2dµ,

then (1) is equivalent to the fact that the semigroup Pt = etL generated
by L is hypercontractive: i.e. for q (t)  1 + (q � 1) e2t with q > 1, we
have k Pt f kq(t)k f kq for all f 2 Lq (µ) . ([33])



Introduction

In 1985, D. Bakry and M. Emery extended the Logarithmic Sobolev
inequality for a larger class of probability measures defined on
Riemaniann manifolds under an important Curvature-Dimension
condition ([2]). More generally, if (⌦,F , µ) a probability space, and L is
a non-positive self-adjoint operator acting on L2 (µ) , we say that the
measure µ satisfies a Logarithmic Sobolev inequality if there is a constant
c such that, for f 2 D (L) ,

Z
f 2log

f 2

R
f 2dµ

dµ  c

Z
f (�Lf ) dµ.



Introduction

Another generalisation, the so-called q-Logarithmic Sobolev inequality, in the setting
of a metric measure space, was obtained by S. Bobkov and M. Ledoux in 2000 ([11]),
in the form: Z

f
q
log

f
q

R
f qdµ

dµ  c

Z
|Of |qdµ,

where q 2 (1, 2].In 2005 ([12]), S. Bobkov and B. Zegarliński showed that the
q-Logarithmic Sobolev inequality is better than the classical q = 2 inequality in the
sense that one gets a stronger decay of tail estimates i.e. if µ satisfies the Logarithmic
Sobolev inequality for q 2 (1, 2], then for every bounded locally Lipschitz function f

such that |Of |  M µ� a.e. for M 2 (0,1), we have

µ(etf )  exp{
cM

q

qq(q � 1)
t
q + tµ(f )} 8t > 0.

In addition, when the space is finite, and under weak conditions, they proved that the
corresponding semigroup Pt is ultracontractive i.e.

k Ptf k1k f kp

for all t � 0 and p 2 [1,1) .



Introduction

The important q-Poincaré inequality

Z ����f �
Z

fdµ

����
q

dµ  c

Z
|Of |qdµ

can be obtained from the q-Logarithmic Sobolev inequality by simply
replacing f by 1 + "f in that inequality, and letting " ! 0.



Introduction

Definition
We say that a Lie group on RN , G =(RN , �) is a (homogeneous) Carnot group if the
following properties hold:
(C.1) RN can be split as RN = RN1 ⇥ ...⇥ RNr , and the dilation �� : RN ! RN

��(x) = ��(x
(1), ..., x(r)) = (�x(1),�2

x
(2), ...,�r

x
(r)), x

(i) 2 RNi ,

is an automorphism of the group G for every � > 0. Then (RN , �, ��) is a
homogeneous Lie group on RN . Moreover, the following condition holds:
(C.2) If N1 is as above, let X1, ...,XN1 be the left invariant vector fields on G such
that Xj (0) = @/@xj |0 for j = 1, ...,N1. Then

rank(Lie{X1, ...,XN1}(x)) = N 8x 2 RN .

Definition
The vector valued operator O := (X1,X2, ...,XN1 ) is called the sub-gradient on G, and

4 =
N1X

i=1
X

2
i

is called the sub-Laplacian on G.



Introduction

In the setting of Carnot groups, D. Bakry and M. Emery’s

Curvature-Dimension condition in [2] will no longer hold true. In 2010 ([35]), a

method of studying coercive inequalities on general metric spaces that does not

require a bound on the curvature of space was developed. Working on a

general metric space equipped with non-commuting vector fields {X1, . . . ,Xn},
their method is based on U-bounds, which are inequalities of the form:

Z
f qU (d) dµ  C

Z
|Of |qdµ+ D

Z
f qdµ

where dµ =
e�U(d)

Z
d� is a probability measure, U(d) and U (d) are functions

having a suitable growth at infinity, � is a natural measure like the Lebesgue

measure for instance (which is the Haar measure for nilpotent Lie groups), d is

a metric related to the gradient O = (X1, . . . ,Xn) , and q 2 (1,1) .



R
f qU (d) dµ  C

R
|Of |qdµ+ D

R
f qdµ; dµ = e�U(d)

Z d�





Carnot-Carathéodory distance

Definition
We say that � is horizontal if there exist measurable functions a1, . . . , aN1 : [0, 1] ! R such

that �0 (t) =

N1X

i=1
ai (t)Xi (� (t))for almost all t 2 [0, 1]. For such a horizontal curve �, we

define the length of � to be

|�| =
Z 1

0

0

@
N1X

i=1
a
2
i
(t)

1

A

1
2

dt.

Definition
The Carnot-Carathéodory distance or the control distance between two points x and y is

defined by

d (x, y) = inf
�
t|� : [0, t] ! G , � (0) = x, � (t) = y |�0 (s) |  1 8s 2 [0, t]

 
,

where � : [0, 1] ! G is an absolutely continuous horizontal path on [0, 1] .

We are concerned with proving U-Bounds (to get Logarithmic Sobolev and Poincaré

inequalities) for the measure dµU =
e
�U(d)

Z
d�.



U-Bound; dµ = e�U(d)

Z d�

Theorem (EBD, 2021 [18])

Assume that outside the open unit ball B = {d (x) < 1} , the metric d satisfies the following:
|Od| is bounded, say |Od|  1, and there exist finite positive constants K and c0 such that

�d  K + U
0 (d)

⇣
|Od|2 � c0

⌘
. (2)

(i) If U00  �U
0

for some positive constant �, outside B, then for any q 2 (1,1) , there exist
constants Cq,Dq, independent of f , such that

Z
|f |q|U0 (d) |qdµU  Cq

Z
|Of |qdµU + Dq

Z
|f |qdµU .

(ii) If, in addition, U  �U0q for some positive constant � and some q > 1, outside B, then

Z
|f |qU (d)dµU  Cq

Z
|Of |qdµU + Dq

Z
|f |qdµU .

Take U(d) =|U0 (d) |q, by Hebisch-Zegarlinski Theorem 1, (i)!q�Poincaré. To apply

Theorem 2, we need U(d) = U(d) + |OU(d)|q = U(d) + |U0(d)Od|q  U(d) + |U0(d)|q. Using

(i) and (ii), we get q�LSI.



Examples of Logarithmic Sobolev inequality

Example (EBD, 2021 [18])

The q-Poincaré and a q-Logarithmic Sobolev inequality are satisfied for
the measure

dµU =
e�(d+1)p log(d+1)d�

Z

for q � �, where � is the finite index conjugate to p.

Example (EBD, 2021 [18])

For U (d) = sinh (d) , U (d) = U
00
(d)  cosh (d) = U

0
(d) .

So, by Corollary 9, the q-Poincaré and q-Logarithmic Sobolev inequalities

hold true for the measure dµU =
e�sinh(d)

Z
d� for all q � 1.



Talagrand Inequality

In 2000, F. Otto and C. Villani showed [57] that in the setting of manifolds under D.
Bakry and M. Emery’s Curvature-Dimension condition, the Logarithmic Sobolev
inequality implies the Talagrand transportation cost inequality. The Talagrand
transportation cost inequality was first introduced in 1996 ([64]) by M. Talagrand:

Tw (µ, ⌫)  2
Z

log(f )dµ, (3)

where µ is a measure on RN absolutely continuous with respect to the Gaussian

measure ⌫, f =
dµ

d⌫
is the relative density, w(x , y) =

NX

i=1
(xi � yi )

2,and

Tw (µ, ⌫) = inf
⇡2⇧(µ,⌫)

Z

RN⇥RN

w(x , y)d⇡(x , y),

where ⇧(µ, ⌫) is the set of probability measures on RN ⇥ RN with µ the first marginal
and ⌫ the second marginal.



Talagrand Inequality

We would like to apply the q�Logarithmic Sobolev inequality to get hypercontractivity
and to obtain the p�Talagrand inequality on (X , d , µ) with a constant K :

Wp(µ, ⌫)
p 

1
K

Entµ

✓
d⌫

dµ

◆
, (4)

with p finite index conjugate of q. The p�Wasserstein distance between two

probability measures on X is defined as Wp(µ, ⌫)
p = inf

⇡2⇧(µ,⌫)

Z

X⇥X

d(x , y)pd⇡(x , y),

where ⇧(µ, ⌫) is the set of probability measures on X ⇥ X with µ the first marginal

and ⌫ the second marginal. Entµ

✓
d⌫

dµ

◆
=

Z
d⌫

dµ
log

✓
d⌫

dµ

◆
dµ is the entropy

functional such that ⌫ is a probability measure absolutely continuous with respect to
µ. We note that for p = 2, (3) is a special case of (4).



Talagrand Inequality

For the quadratic case p = q = 2, in 2007, J. Lott and C. Villani [48] used the
Hamilton-Jacobi infimum convolution operator under the assumption where the space
(X , d , µ) supports local Poincaré inequality and the measure µ is a doubling measure
i.e. the measure of any open ball is positive and finite and there exists a constant
cd � 1 such that for all x 2 X and r > 0,

µ(B(x , 2r))  cdµ(B(x , r)). (5)

In our setting, we show hypercontractivity and the p�Talagrand inequality using the
Hamilton-Jacobi equation in the setting of Carnot groups done by F. Dragoni in 2007
([25]). The advantage of doing so is that the restriction (5) to have µ a doubling
measure is no longer required!



Talagrand Inequality and Hypercontractivity

Theorem (EBD, 2021 [18] LSI!Talagrand)

Let 1 < q  2, and p � 2 be its finite index conjugate, so that
1

p
+

1

q
= 1.

If (G , d , µ) satisfies the q-Logarithmic Sobolev inequality with constant

c = (q � 1)
⇣ q
K

⌘
q�1

for some constant K > 0, then it also satisfies the
p-Talagrand inequality with the same constant K .

Theorem (EBD, 2021 [18] LSI!Hypercontractivity)

Assume we have the following 2-Logarithmic Sobolev inequality with the

measure dµ =
e�U(d)

Z
d�, and in the setting of the Carnot group: then, for

every bounded measurable function f on G, every t � 0, and every a 2 R,

||eQt f ||a+⇢t  ||e f ||a.





Setup

We define the step-two Carnot group G, i.e. a group isomorphic to Rn+m
with

the group law

(x , z) �
�
x 0, z 0

�
=

✓
xi + x 0

i , zj + z 0j +
1

2
< ⇤(j)x , x 0 >

◆

i=1,..,n;j=1,..,m

for x , x 0 2 Rn, z , z 0 2 Rm
, where < ., . > stands for the inner product on Rn

,

and:

1 1) The matrices ⇤(j)
are n ⇥ n skew-symmetric

2 2) The matrices are linearly independent

We are in the setting of Heisenberg group, if in addition:

1 1) ⇤(j)
are orthogonal

2 2) ⇤(k)⇤(j) + ⇤(j)⇤(k) = 0, 8k 6= j .



Setup; dµ = e�U(N)

Z d�

Heisenberg:

N ⌘
�
|x |4 + 16|z |2

� 1
4 is the Kaplan norm. In other words, N2�Q

is the unique

fundamental solution of the sub-Laplacian 4 :=
nX

i=1

X 2
i ,where Xi is the

Jacobian basis of g, the Lie algebra of G ⇠= Rn+m
, and Q = n + 2m is the

homogeneous dimension.

Step-two:

We consider N ⌘
�
|x |4 + a|z |2

� 1
4 ,where (x , z) 2 G and a 2 (0,1).



Goal



U-Bound

Theorem (EBD and B. Zegarliński, 2021 [15])

Let N =
�
|x |4 + a|z |2

� 1
4 with a 2 (0,1) be as above and

g : [0,1) ! [0,1) be a differentiable increasing function such that

g 00(N)  g 0(N)3N3 on {N � 1}. Let dµ =
e�g(N)

Z
d� be a probability

measure, and Z the normalization constant. Then, for all locally
Lipschitz functions f ,

Z
g 0 (N)

N2
|f |qdµ  C

Z
|Of |qdµ+ D

Z
|f |qdµ (6)

holds outside the unit ball {N < 1} with C and D positive constants and
q � 2.

By Hebisch-Zegarlinski Theorem 1, we choose U(N) =
g 0 (N)

N2
, to obtain

q�Poincaré inequality.



Examples of Poincaré Inequality

Example (EBD and B. Zegarliński, 2021 [15])
The Poincaré inequality for q � 2 holds for the measure

dµ =
exp

�
�cosh

�
Nk
��

Z
d�, where � is the Lebesgue measure, and k � 1 in

the setting of the step-two Carnot group.

Example (J. Inglis, 2010 [36])

The Poincaré inequality for q � 2 holds for the measure dµ =
exp

�
�Nk

�

Z
d�,

where � is the Lebesgue measure, and k � 4 in the setting of the step-two

Carnot group.

Example (EBD and B. Zegarliński, 2021 [15])
The Poincaré inequality for q � 2 holds for the measure

dµ =
exp

�
�Nk log (N + 1)

�

Z
d�, where � is the Lebesgue measure, and k � 3

in the setting of the step-two Carnot group.







��Logarithmic Sobolev Inequality

Theorem (EBD and B. Zegarliński, 2021 [15])
Let U be a locally lipschitz function on RNwhich is bounded below such that

Z =
R
e�Ud� < 1, and dµ =

e�U

Z
d�. Let � : [0,1) ! R+ be a

non-negative, non-decreasing, concave function such that �(0) > 0, and
�0(0) > 0. Assume the following classical Sobolev inequality is satisfied:

✓Z
|f |q+✏d�

◆ q

q+✏

 a

Z
|Of |qd�+ b

Z
|f |qd�

for some a, b 2 [0,1), and ✏ > 0. Moreover, if for some A, B 2 [0,1), we
have:

µ (|f |q(�(U) + |OU|q))  Aµ|Of |q + Bµ|f |q, (7)

Then, there exists constants C , D 2 [0,1) such that:

µ

✓
|f |q�

✓����log
|f |q

µ|f |q

����

◆◆
 Cµ|Of |q + Dµ|f |q,

for all locally Lipschitz functions f .



Higher order LSI

Choose �(x) = (1 + x)� , for � 2 (0, 1). Then, � satisfies the conditions of the
theorem above and we have:

µ

 
|f |q

����log
|f |q

µ|f |q

����
�
!

 µ

✓
|f |q�

✓����log
|f |q

µ|f |q

����

◆◆
 Cµ|Of |q + Dµ|f |q .

Theorem (EBD and Y. Wang, 2021)

Given the following Logarithmic-Sobolev inequality

Z
|f |2

����log
✓

|f |2

µ|f |2

◆����
�

dµ  Cµ|Of |2, (8)

for � 2 (0, 1]. Then, for all m 2 N,
Z

|f |2
����log

✓
|f |2

µ|f |2

◆����
�m

dµ  D

mX

|↵|=0

Z
|O↵

f |2dµ, (9)

where O
↵
f = (X↵1

1 X
↵2
2 ...X↵n

n f ) such that |↵| =
nX

i=1
↵i , and C ,D 2 (0,1).





What is a polarizable Carnot group?

The Carnot group G is said to be polarizable if N, where N
2�Q is the fundamental

solution to the sub-Laplacian, is 1�harmonic in G\{0}, i.e. for O :=(Xi )1in,

41N :=
1
2
< O

�
|ON|2

�
,ON >= 0 in G\{0}. (10)

The concept of polarizable Carnot groups was first introduced by Z. Balogh and J.
Tyson in [4], where they used the 1�harmonicity of N to create a procedure to
construct polar coordinates. Moreover, they showed in [4] that the fundamental
solution of the p�sub-Laplacian can be expressed as the fundamental solution N

2�Q

of the sub-Laplacian, proved capacity formulas, and produced sharp constants for the
Moser-Trudinger inequality.



Higher-Dimensional Anisotropic Heisenberg Group

For the time being, there is no classification of polarizable Carnot groups and the only
examples till now are Euclidean spaces and Heisenberg-type groups. Z. Balogh and J.
Tyson provided in [4] the anisotropic Heisenberg group in R5 as a counterexample with
the following generators of the Lie algebra: X = @

@x + 2ay · @
@t , Y = @

@y � 2ax · @
@t ,

Z = @
@z � 2w · @

@t , and W = @
@w � 2z · @

@t , where a = 1
2 . (Note that if a = 1, we have

the polarizable Heisenberg group.) We will start by extending Z. Balogh and J.
Tyson’s anisotropic Heisenberg group in R5 [4] to a higher-dimensional anisotropic
Heisenberg group in R2n+1, and use R. Beals, B. Gaveau, and P. Greiner’s [7] explicit
intergal representation to compute the fundamental solution N

2�Q . We then compute
bounds for |ON| and x · ON, which are essential to get the U-Bound of the form (6).





Gibbs measures

We aim to show that certain infinite dimensional Gibbs measures with unbounded
interaction potentials as a function of homogeneous norms on an infinite product of
Carnot groups satisfy the Poincaré inequality. So far, the passage to infinite dimensions
in the setting of Nilpotent Lie groups required the condition |Od | � c outside the unit
ball ([41, 38]), which is not true for homogeneous norms introduced. The methods
known use the single site Poincaré inequality to pass to the global Poincaré inequality.
To get results for measures as function of homogeneous norms, we use the U-Bound
(6) proved in Theorem 1 to get a weak U-bound; coupled with a weak single-site
Poincaré inequality, we are able to pass to the infinite dimensional setting.

For Carnot-Carathéodory distance: |Od | = 1, so |Od | � c outside the unit ball
{d(x) < 1}.

For Kaplan norm in Heisenberg group: N = (|x |2 + 16|z|2)
1
4 , and |ON| =

|x |
N

. For

|x | = 0 and |z| large, |ON| does not satisfy |ON| � c outside the unit ball
{N(x , z) < 1}.



Gibbs measures: Setup

We have a Carnot group G, and we give it a d-dimensional integer lattice structure: GZd .For

any compact ⇤ ⇢ Z, denote the potential U
w

⇤ by

U
w

⇤ (x⇤) :=
X

i2⇤

�(xi ) +
X

i,j2⇤,i⇠j

�V (xi , xj ) +
X

i2⇤,j /2⇤,i⇠j

�V (xi ,wj ),

where � 2 C
1(G,R) is the phase and V 2 C

1(G⇥G,R) is the interaction with strength � � 0.

Let Ew

⇤ :=
1

Zw

⇤

e
�U

w

⇤ dx⇤ be the local Gibbs measure and ⌫ be the associated global measure

satisfying ⌫Ew

⇤ = ⌫ for all compact ⇤ ⇢ Z. Denote |O⇤f |2 =
X

i2⇤

|Oi f |2 and |Of |2 = |OZf |2.



Gibbs measures: Hypothesis

Consider the following two hypotheses:

(H1) For any i 2 Z, the (U-bound !) weak U-Bound

X

j :j⇠i

⌫(f q|OjV (xi , xj)|q)  A

 
⌫|Oi f |q + ⌫|f |q +

1X

m=0

Cm

� ⌫|O{i�1�m,i+1+m}f |q
!

holds for some constants A > 0 and C� 2 [0, 1) such that A� and C� vanish as

� ! 0.

(H2) For any i 2 Z, the weak q-Poincaré inequality

⌫Ew

i |f � Ew

i f |q  BSG

 
⌫|Oi f |q +

1X

m=0

Cm

� ⌫|O{i�1�m,i+1+m}f |q
!

holds for some constants BSG > 0 and the same C� 2 [0, 1) such that A� and

BSG� ! 0 as � ! 0.



Gibbs measures: Theorem

Theorem (EBD, Y. Qiu, and M. Zhang, 2021)

Suppose (H1) and (H2) are satisfied, then there exists �̃ > 0 such that
for all � 2 [0, �̃) the global Poincaré inequality

⌫|f � ⌫f |q  cSG⌫|Of |q

holds for some constant cSG > 0.

Thanks to the U-Bound in Theorem 1, we were able to get examples for
� and V as functions of the homogeneous norms introduced, as well as a
mixture of those norms. Under an additional hypothesis, we were also
able to prove a global Logarithmic-Sobolev inequality.





Proof idea of U-Bound Inequality

Theorem (EBD and B. Zegarliński, 2021 [15])

Let N =
�
|x |4 + a|z |2

� 1
4 with a 2 (0,1) be as above and

g : [0,1) ! [0,1) be a differentiable increasing function such that

g 00(N)  g 0(N)3N3 on {N � 1}. Let dµ =
e�g(N)

Z
d� be a probability

measure, and Z the normalization constant. Then, for all locally
Lipschitz functions f ,

Z
g 0 (N)

N2
|f |qdµ  C

Z
|Of |qdµ+ D

Z
|f |qdµ (11)

holds outside the unit ball {N < 1} with C and D positive constants and
q � 2.

Here, U =
g 0 (N)

N2
. First Question: How to choose U?



We need a technical lemma first:



How to choose U?

For q = 2,using integration by parts:

Z
(ON) · (Of ) e�g(N)d� = �

Z
O

⇣
ONe�g(N)

⌘
fd�

= �
Z

�Nfe�g(N)d�+

Z
|ON|2fg

0
(N) e�g(N)d�.

Netx, using 1) and 2),

A

Z
|x |2

N2 f g
0
(N)e�g(N)d�� B

Z
|x |2

N3 fe�g(N)d� 
Z

(ON) · (Of ) e�g(N)d�.

First candidate for U =
|x |2

N2 g
0
(N) .We need U ! 1 “in all directions” to apply

Hebisch-Zegarlinski Theorem 1 (2009). Recall that N = (|x |2 + a|z |2) 1
4 . For

|x | = 0, we can have |z |2 ! 1, but U =0. So, the problem is around the

z�axis.



Idea: Replace f by
f 2

|x |2 :

Now we have the good candidate U =
g 0(N)
N2 :

Z
f 2
✓
Ag 0(N)
N2 � B

N3

◆
e�g(N)d� 

Z
(ON) ·

✓
O

✓
f 2

|x |2

◆◆
e�g(N)d�

=

Z
(ON) ·


2f

Of
|x |2 � 2f 2

O|x |
|x |3

�
e�g(N)d�

=

Z
2f
|x |2ON · Ofe�g(N)d��2

Z
f 2ON · x

|x |4 e�g(N)d�

 2

Z
f

|x |2 |ON||Of |e�g(N)d�

 2

p
C

Z
|f |
N|x | |Of |e

�g(N)d�.

Where the last two inequalities use the calculation of ON · x , from 3) and the

upper bound on |ON| from 1).



Trial 1: Use Hardy’s Inequality

Applying Cauchy’s inequality with ✏ : ab 
✏a2

2
+

b
2

2✏
with a =

|f |
N|x |

e
� g(N)

2 and

b =
p
C |Of |e�

g(N)
2 ,

Z
f
2
✓
A
g
0(N)

N2 �
B

N3

◆
e
�g(N)

d� ✏

Z |f |2

N2|x |2
e
�g(N)

d�+
C

✏

Z
|Of |2e�g(N)

d�.

For f 2 C
1
0 (Rn+m), we want to use Hardy’s inequality:

Z
f
2

|x |2
d� 

4
(n � 2)2

Z
|Of |2d�.

The grey term becomes:

✏

Z
( fe

�g(N)
2

N
)2

|x |2
d� 
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This last term cannot be absorbed in the left-hand side of our U�Bound inequality,
and Trial 1 fails.



Trial 2: Use Hardy’s Inequality with f 2 C1
0 (BR ⇥ B1)

Using Hardy’s inequality on the grey term:
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Where the last line is true since we can bound e
�g(N) from below on BR ⇥ B1.

Regarding the complement:
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1 .
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1 and B
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R
⇥ B1, we have

1
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1
R2 ,so we avoid the singularity. However,

on BR ⇥ B
c

1 ,we face the same problem as Trial 1.



Trial 3: Introduce F = {(x , z) 2 Rn+m : |x |
p
g 0(N) < 1}
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If f 2 C
1
0 (F ), we apply Hardy’s inequality, and we are done. However, this is not the

case, and we must consider the boundary term.



Final trial: Hardy’s inequality on Fr = {(x , z) 2 Rn+m : |x |
p

g 0(N) < r}, where 1  r  2.
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Where we have used Integration by parts in the first line, Cauchy’s inequality in the last line,

and boundary term =
✏
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Using the fact that F ⇢ Fr ⇢ F2,
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Recover the full measure using the Coarea formula
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Where we have Integrated both sides of the inequality from r = 1 to r = 2. To recover the full

measure in the boundary term, we use the Coarea formula:
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The remainder of the proof is to use the condition of the theorem, the technical lemma, the

domain of integrations, and the given fields Xj ,to find a suitable ✏, which turns out to be

satisfying

✓
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n � 2
+ ✏

◆
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Thanks for your attention!


