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become more and more statistically independent.
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Limit as N tends to infinity? Formally

{ dXi = V2dB; + K * pu(Xi)dt,
pr = Law(X;).
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On the assumptions

Limit as N tends to infinity ? Formally
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N N N
1
N N N
Opr = — ,.; \E ((N EHZ K(xi — x,-)) Pt) + ,§:1 Dyt
For the non linear equation

{ dXi = V2dB; + K = py(X:)dt, s Bp— - (3t (K% 7)) + A

Pt = Law()_(t)
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Consider the 2D incompressible Navier-Stokes system on u € R?
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V.-u=0,

where p is the local pressure.
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The Biot-Savart kernel, defined in R? by
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Consider the 2D incompressible Navier-Stokes system on u € R?

ou=—u-Vu—Vp+ Au
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where p is the local pressure. Taking the curl of the equation above, we
get that w(t, x) = V x u(t, x) satisfies

Ow=-V-((K*xw)w)+ Aw.
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Main example : 2D vortex model

The Biot-Savart kernel, defined in R? by

1 x* 1 X X
K = —_—— = _ .
()= 27 x2 27r( |x|2’|x|2)

Consider the 2D incompressible Navier-Stokes system on u € R?

ou=—u-Vu—Vp+ Au
V.-u=0,

where p is the local pressure. Taking the curl of the equation above, we
get that w(t, x) = V x u(t, x) satisfies

Ow=-V-((K*xw)w)+ Aw.

Goal : Obtain a limit "pl — 5" as N tends to infinity for this Biot-Savart
kernel.
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In a system of N interacting particles, as N increases, two particles
become more and more statistically independent.

To quantify this "more and more", we compare the law of any subset of k
particles within the N particles system to the law of k independent
non-linear particles.
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Propagation of chaos

In a system of N interacting particles, as N increases, two particles
become more and more statistically independent.

To quantify this "more and more", we compare the law of any subset of k
particles within the N particles system to the law of k independent
non-linear particles.

We denote, for any k < N

p;(’N(Xh..,Xk) :/( p;V(X1,..,XN)ka+1...dXN
T

N—K)d

—k —®k
Bt =pi
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On the assumptions rescaled relative entropy

1NIEH (Z—Z log Z—:) if v <,
+o00 otherwise.

,HN(VJL) = {
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Theorem (adapted from Jabin-Wang (’18))

Under some assumptions (satisfied by the Biot-Savart kernel) there are
constants Cy and C, such that for all N € N, all exchangeable probability
density p and all t > 0

_ _ C
Hu(pr, pt') < 91 (HN(PQI7PSV) + ﬁ)

Theorem (Guillin-LB-Monmarché ('21))
Under some assumptions (satisfied by the Biot-Savart kernel) there are

constants Cy, C, and Cs such that for all N € N, all exchangeable
probability density p and all t > 0

Gs

Hupt' 7)< Cre™ = Hu(po . 70) + o
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Various distances

For x = (X)icp,my € T, we write 7(x) = & SV, &y, the associated
empirical measure.
Corollary

Under some assumptions (satisfied by the Biot-Savart kernel), assuming
moreover that py = py, there is a constant C such that for all k < N € N
andallt > 0,

- _ N
It = s+ e () < ¢ (| )

1
2

and
E v We(m(X), pr)) < Ca(N)

where a(N) = N~"/2In(1 + N) ifd =2 and a(N) = N="/9 ifd > 2.
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We write

_ 1
Hn(t) = Hn(pt,pt), In(t) = N Z /]FdN d

N
Pt

Vy; log =
ot

2
axV.
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We write

2
axV.

N =N 1 Z N pr
HN(t) HN(pt s Pt )7 N(t) N i /]rdN Pt x; 108 ﬁ?’

It has been shown, by Jabin-Wang, that

SHn(D) <~ Tu(t)

1 i
e :/dN ot (K(X; — %) — K p(x)) - Vi, log pf dX"
— JT
1]

- # 2 /TdN Pt (div K(xi = x) — div K * 5i(xi)) X",
i
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1
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Step five

On the assumptions

Assumptions ?
Goal : K(x) = - %5 = 5 (_‘%‘%>

Justifying the calculations

e Thereis A > 1 such that 5o € C3°(T9)
— 5 e C(RT x TY) (Ben-Artzi ('94))
o pN e C(RY x TV (2727)
Dealing with the terms

e In the sense of distributions, V- K = 0.



Unif. in time
Prop. of Chaos
for the 2D vortex
model

Pierre Le Bris

Results

Step one
Step two
Step three
Step fou
Step five

On the assumptions

Step one : Time evolution of the
relative entropy

We write

2
axV.

N =N 1 Z N pr
HN(t) HN(pt s Pt )7 N(t) N i /]rdN Pt x; 108 ﬁ?’

It has been shown, by Jabin-Wang, that

SHn(D) <~ Tu(t)

1 i
~RE2 :/dN ot (K(X; — %) — K p(x)) - Vi, log pf dX"
— JT
1,/

- % 2 /TdN Pt (div K(xi = x) — div K * 5i(xi)) X",
i



Unif. in time
Prop. of Chaos
for the 2D vortex
model

Pierre Le Bris

Results

Step one
Step two
Step three
Step fou
Step five

On the assumptions

Step one : Time evolution of the
relative entropy

We write

2
axV.

N =N 1 Z N pr
HN(t) HN(pt s Pt )7 N(t) N i /]rdN Pt x; 108 ﬁ?’

It has been shown, by Jabin-Wang, that
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e We write
Step one NN 1 N p{v 2 N
Step two —

= zt:fE Vi log == | dX".
Zipme:e HN(t) HN(P{ » Pt )7 N( ) N : /EdN Pt x; 108 ﬁ;\/
tep fou i
Step five

On the assumptions

It has been shown, by Jabin-Wang, that
g?—t (1) < —In(t)
at "M =N

1 _
e / o (Ko = ) = K5 p(x) - Vi log X"
— JT
v
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We are left with
d
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dt
1 _
Sy /dN AN (K(x5 = x) = K % p(x)) - Vi log X",
ij vT

Idea : Use the regularity of p to deal with the singularity of K
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Step one
Step two

Step three

Step two : Integration by part

We are left with

& Ha(t) <~ Tu(t

1 _
Sy /TdN AN (K(x5 = x) = K % p(x)) - Vi log X",
i
Idea : Use the regularity of p to deal with the singularity of K
Remark : Notice that, for the Biot-Savart kernel on the whole space R?

1 oxt
T2 x|

K(x)

we have K = V - V with
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Assumptions ?

. 1 xt 1 X; X
Goal.K(x),g‘xxfz,g(,ﬁ,ﬁ)

Justifying the calculations

e Thereis A > 1 such that g, € C°(T°)
= 5 € C(RY x TY) (Ben-Artzi '94)

o PN e CP(RT x TV) (?227?)
Dealing with the terms
e In the sense of distributions, V- K = 0.

e There is a matrix field V € L* suchthat K =V - V, i.e for
1<a<d Ka=3Y5_,0sVas (Phuc-Torres '08).
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Forallt > 0, 4 1 1
z'eérvlo &HN( ) < An(t) + éBN(t) — §IN(1‘),
S i

On the assumptions

2~
Vi.pP X,

1 N - N
= Vixi —xj) -V Xi)) : dX
M0 =5z 2 L V=) = Vo)
2
|vxlpi N
NE:/WN, S i N}:v — Vs p(x)| axV.
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Step two
Step three
Step four
Step five

On the assumptions Le mma

For two probability densities . and v on a setQ, and any ® € L*>(Q),
n>0andN €N,

E'® < nHn(p,v) + % log B e"®/".
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Large deviation estimates -1

Theorem (Jabin-Wang '18)

Consider any probability measure u onTY, ¢ > 0 and a scalar function
Y € L°°(T9 x T9) with |4« < 5= and such that for all z € T,
Jrwa (2, x)p(dx) = 0. Then there eXISts a constant C such that

/eXp( Zlﬁxhxh X1,)(jz))u®NdXN§C,

J1sf2=1

where C depends on

= (elpllie)* <1, B = (\/Z||¢||Lm)4 <1
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Large deviation estimates -2

Theorem (Jabin-Wang ’18)

Consider any probability measure . on T? and ¢ € L=(T9 x T9) with

. 2
7= (1600° + 366") ( sup I sup, 19 ’Z)H“”(“”) <1

p>1 p

Assume that ¢ satisfies the following cancellations
vzet’, [ otz =0~ [ oz ud).
Td Td

Then, for all N € N,

/ exp( qu(x,,x,) ®NdXN§%<oo‘

ij=1
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Conclusion

Forallt > 0,

d

Hn(t) < C (HN(I‘) + %) _ %ZN(t),

with
C = CilIV2hillios |V oo A + Col| VI[Fe X202 (| V | E

where C1, C: are universal constants.
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Step four : Uniform bounds and
logarithmic Sobolev inequality

Two goals :

* A logarithmic Sobolev inequality for 5" : Hn(t) < CZn(t)
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o Step four : Uniform bounds and
logarithmic Sobolev inequality

II. Proof

Step one
Step two
Step three
Step four
Step five

On the assumptons Two goals :
* A logarithmic Sobolev inequality for 5" : Hn(t) < CZn(t)
e Uniform in time bounds on || V|| and || V25| 1o
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A logarithmic Sobolev inequality

Lemma (Tensorization)

If v is a probability measure on T satisfying a LS| with constant CL°,
then for all N > 0, v®N satisfies a LS| with constant CL°
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A logarithmic Sobolev inequality

Lemma (Tensorization)

If v is a probability measure on T satisfying a LS| with constant CL°,
then for all N > 0, v®N satisfies a LS| with constant CL°

Lemma (Perturbation)
If v is a probability measure on T satisfying a LS| with constant CL°,
and . is a probability measure with density h with respect to v such that,
for some constant A > 0, % < h < ), then u satisfies a LSI with constant
CLS _ )\2 CLS

(T v -
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Lemma (Tensorization)

If v is a probability measure on T satisfying a LS| with constant CL°,
then for all N > 0, v®N satisfies a LS| with constant CL°

Lemma (Perturbation)

oo If v is a probability measure on T satisfying a LSI with constant CL°,
e and p is a probability measure with density h with respect to v such that,
B for some constant A > 0, 1 < h < ), then y satisfies a LSI with constant
CLS _ )\2 CLS
(M v

Lemma (LSl for the uniform distribution)
The uniform distribution u on T satisfies a LSI with constant 8‘?
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Step three
Step four
Step five

On the assumptions

n of chaos

A logarithmic Sobolev inequality

Lemma (Tensorization)

If v is a probability measure on T satisfying a LS| with constant CL°,
then for all N > 0, v®N satisfies a LS| with constant CL°

Lemma (Perturbation)
If v is a probability measure on T satisfying a LS| with constant CL°,
and . is a probability measure with density h with respect to v such that,
for some constant A > 0, % < h < ), then u satisfies a LSI with constant
CLS _ )\2 CLS

(T v -

Lemma (LSI for the uniform distribution)
The uniform distribution u on T satisfies a LSI with constant 31?

Forall N € N, t > 0 and all probability density jy € C3%(T),

2 N 2
_N A% KN N
o (e 1) < g O [ Vi log 25| aX
i=1
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Motivation
Propagation of chaos
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II. Proof
Step one

Step two

S Lemma

e Foralln>1and o,...,an € [1,d], there exist C¥, C3° > 0 such that for
On the assumptions a/lt > 0,

t
10us..npilli < CY and / 1B sl foe s < CF
0
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Step four

Step five

On the assumptions

Uniform in time bounds on the
derivatives

Lemma

Foralln>1and ai,...,an € [1,d], there exist Cy, C;° > 0 such that for
allt >0,

t
10us..npilli < CY and / 1as.. nis| 2 dls < C°
0

Thanks to Morrey’s inequality and Sobolev embeddings, it is sufficient to
prove such bounds in the Sobolev space H™ for all m, i.e in L2



Unif. in time
Prop. of Chaos
for the 2D vortex
model

Pierre Le Bris

I. Introduction
Motivation
Propagation of chaos
Results

II. Proof
Step one
Step two
Step three
Step four
Step five

On the assumptions

Uniform in

time bounds on the
derivatives-2

By induction on the order of the derivative

120
2"

2 ~ 2
[z + [[VAlliz = O,
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Uniform in time bounds on the
derivatives-2

By induction on the order of the derivative

5 oHlAlE + 197 =0,

d _ 1 _ 2 1 2 = 12 _ 2
L e + 3 S 10 e < KIS 701 17

ap
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Step four

Step five

On the assumptions

Uniform in time bounds on the
derivatives-2

By induction on the order of the derivative

5 e + IV =0,

d _ 1 _ 1 _ _ 2
3 0 1l 4 % S 190 el < 3 IKIE 71 92012

ap

d _ 1 _ ~ 2 ~ 2
7*H80é1702p1“i2 +5 Haauaz,aaﬂtnfz S” VH%”HaOﬁ foHLZHth”L2
2 dt 2

ag

2 152 ~ 2
KN 1 2ellie 119a; Vi i2,
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Step four

Step five

On the assumptions

Uniform in time bounds on the
derivatives-2

By induction on the order of the derivative

5 e + IV =0,

d _ 1 _ 1 _ _ 2
3 0 1l 4 % S 190 el < 3 IKIE 71 92012

ap

d _ 1 _ ~ 2 ~ 2
7*H80é1702p1“i2 +5 Haauaz,aaﬂtnfz S” VH%”HaOﬁ foHLZHth”L2
2 dt 2

ag

2 152 ~ 2
KN 1 2ellie 119a; Vi i2,

etc
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GoaI:K(X):LLz:f( X a)

T X2 x2
Justifying the calculations
e Thereis A > 1 such that g, € C°(T°)

Step four

= p€CT(RT x TY) (Ben-Artzi '94)

On the assumptions

o PN e CP(RT x TW) (?227?)
Dealing with the terms
e In the sense of distributions, V- K = 0.

e There is a matrix field V € L*° suchthat K =V - V, i.e for
1<a<d Ka=3Y9_,05Vas (Phuc-Torres '08).
Uniformity in time
e Foralln>1, CY:= ||V < o0

e ||K]||;1 < oo (also used to show regularity).
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Step five : Conclusion

There are constants Cy, C5°, C3 > 0 and a function t — Cy(t) > 0 with
fot Co(s)ds < Cs° forall t > 0 such that forall t > 0

CHA(D < ~(C1 — Ca)HN() + T2,

Multiplying by exp(Cit — fO’ C»(s)ds) and integrating in time we get

t

Ha() < o Cit+fi C2(90952,(0) + %/ gC1(s=0+ ¢ Cao(v)au yg
0

< e0?701tHN(t) + &90200

>~ (-/\1 N ’

which concludes.
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Step one

Step two

Step three

Step four

Step five

On the assumptions

On pV € CP(RT x TN)

Everything works for regularized kernels K<, and the final result is
independent of e.
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Motivation

Propagation of chaos

Results

On the initial condition
e Thereis A > 1 such that g, € C°(T°)

R e Foralln>1, C%:=||V"f| e < o0
On the assumptions
e On the potential K
o |K]|1 < oo.

e In the sense of distributions, V- K = 0,

e There is a matrix field V € L> suchthat K =V - V, i.e for
1<a<d Ko=X0,05Vap.



Thank yOu
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