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Idea

In a system of N interacting particles, as N increases, two particles
become more and more statistically independent.
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Formal limit of SDE

N-particle system on the torus Td

dX i
t =
√

2dB i
t +

1
N

N∑
j=1

K (X i
t − X j

t )dt .
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Limit as N tends to infinity? Formally{
dX̄t =

√
2dBt + K ∗ ρ̄t (X̄t )dt ,
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Formal limit of SDE

N-particle system on the torus Td

dX i
t =
√

2dB i
t +

1
N

N∑
j=1

K (X i
t − X j

t )dt . (PS)

Limit as N tends to infinity? Formally{
dX̄t =

√
2dBt + K ∗ ρ̄t (X̄t )dt ,

ρ̄t = Law(X̄t ).
(NL)
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Liouville equations

For the particle system

dX i
t =
√

2dB i
t +

1
N

N∑
j=1

K (X i
t − X j

t )dt

←→

∂tρ
N
t = −

N∑
i=1

∇xi ·

 1
N

N∑
j=1

K (xi − xj )

 ρN
t

+
N∑

i=1

∆xiρ
N
t .

For the non linear equation{
dX̄t =

√
2dBt + K ∗ ρ̄t (X̄t )dt ,

ρ̄t = Law(X̄t ).
←→ ∂t ρ̄t = −∇ · (ρ̄t (K ∗ ρ̄t )) + ∆ρ̄t .
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Main example : 2D vortex model

The Biot-Savart kernel, defined in R2 by

K (x) =
1

2π
x⊥

|x |2 =
1

2π

(
− x2

|x |2 ,
x1

|x |2

)
.

Consider the 2D incompressible Navier-Stokes system on u ∈ R2

∂tu =− u · ∇u −∇p + ∆u

∇ · u =0,

where p is the local pressure. Taking the curl of the equation above, we
get that ω(t , x) = ∇× u(t , x) satisfies

∂tω = −∇ · ((K ∗ ω)ω) + ∆ω.

Goal : Obtain a limit "ρN
t → ρ̄t " as N tends to infinity for this Biot-Savart

kernel.
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Propagation of chaos

In a system of N interacting particles, as N increases, two particles
become more and more statistically independent.

To quantify this "more and more", we compare the law of any subset of k
particles within the N particles system to the law of k independent
non-linear particles.
We denote, for any k ≤ N

ρk,N
t (x1, .., xk ) =

∫
T(N−k)d

ρN
t (x1, .., xN)dxk+1...dxN

ρ̄k
t =ρ̄⊗k

t
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(Rescaled) relative entropy

Definition
Let µ and ν be two probability measures on TdN . We consider the
rescaled relative entropy

HN(ν, µ) =

{
1
N Eµ

(
dν
dµ log dν

dµ

)
if ν � µ,

+∞ otherwise.
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Results

Theorem (adapted from Jabin-Wang (’18))
Under some assumptions (satisfied by the Biot-Savart kernel) there are
constants C1 and C2 such that for all N ∈ N, all exchangeable probability
density ρN

0 and all t ≥ 0

HN(ρN
t , ρ̄

N
t ) ≤ eC1t

(
HN(ρN

0 , ρ̄
N
0 ) +

C2

N

)

Theorem (Guillin-LB-Monmarché (’21))
Under some assumptions (satisfied by the Biot-Savart kernel) there are
constants C1, C2 and C3 such that for all N ∈ N, all exchangeable
probability density ρN

0 and all t ≥ 0

HN(ρN
t , ρ̄

N
t ) ≤ C1e−C2tHN(ρN

0 , ρ̄
N
0 ) +

C3

N
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Various distances

For x = (xi )i∈J1,NK ∈ TdN , we write π(x) = 1
N

∑N
i=1 δxi the associated

empirical measure.

Corollary
Under some assumptions (satisfied by the Biot-Savart kernel), assuming
moreover that ρN

0 = ρ̄N
0 , there is a constant C such that for all k ≤ N ∈ N

and all t ≥ 0,

‖ρk,N
t − ρ̄k

t ‖L1 +W2

(
ρk,N

t , ρ̄k
t

)
≤ C

(⌊
N
k

⌋)− 1
2

and
EρN

t
(W2(π(X), ρ̄t )) 6 Cα(N)

where α(N) = N−1/2 ln(1 + N) if d = 2 and α(N) = N−1/d if d > 2.
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II. Proof
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Step one : Time evolution of the
relative entropy

We write

HN(t) = HN(ρN
t , ρ̄

N
t ) , IN(t) =

1
N

∑
i

∫
TdN

ρN
t

∣∣∣∣∇xi log
ρN

t

ρ̄N
t

∣∣∣∣2 dXN .

It has been shown, by Jabin-Wang, that

d
dt
HN(t) ≤− IN(t)

− 1
N2

∑
i,j

∫
TdN

ρN
t (K (xi − xj )− K ∗ ρ(xi )) · ∇xi log ρ̄N

t dXN

− 1
N2

∑
i,j

∫
TdN

ρN
t (div K (xi − xj )− div K ∗ ρ̄t (xi )) dXN .
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Assumptions?

Goal : K (x) = 1
2π

x⊥

|x|2 = 1
2π

(
− x2
|x|2 ,

x1
|x|2

)
Justifying the calculations

• ρ̄ ∈ C∞(R+ ×Td )

• There is λ > 1 such that ρ̄0 ∈ C∞λ (Td )
=⇒ ρ̄ ∈ C∞λ (R+ ×Td ) (Ben-Artzi (’94))

• ρN ∈ C∞λ (R+ ×TNd ) ( ???)

Dealing with the terms

• In the sense of distributions, ∇ · K = 0.
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Step one : Time evolution of the
relative entropy

We write

HN(t) = HN(ρN
t , ρ̄

N
t ) , IN(t) =

1
N

∑
i

∫
TdN

ρN
t

∣∣∣∣∇xi log
ρN

t

ρ̄N
t

∣∣∣∣2 dXN .

It has been shown, by Jabin-Wang, that

d
dt
HN(t) ≤− IN(t)

− 1
N2

∑
i,j

∫
TdN

ρN
t (K (xi − xj )− K ∗ ρ(xi )) · ∇xi log ρ̄N

t dXN

− 1
N2

∑
i,j

∫
TdN

ρN
t (div K (xi − xj )− div K ∗ ρ̄t (xi )) dXN .
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Step two : Integration by part

We are left with

d
dt
HN(t) ≤− IN(t)

− 1
N2

∑
i,j

∫
TdN

ρN
t (K (xi − xj )− K ∗ ρ(xi )) · ∇xi log ρ̄N

t dXN .

Idea : Use the regularity of ρ̄ to deal with the singularity of K

Remark : Notice that, for the Biot-Savart kernel on the whole space R2

K̃ (x) =
1

2π
x⊥

|x |2 ,

we have K̃ = ∇ · Ṽ with

Ṽ (x) =
1

2π

 − arctan
(

x1
x2

)
0

0 arctan
(

x2
x1

)  .
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Assumptions?

Goal : K (x) = 1
2π

x⊥

|x|2 = 1
2π

(
− x2
|x|2 ,

x1
|x|2

)
Justifying the calculations

• There is λ > 1 such that ρ̄0 ∈ C∞λ (Td )
=⇒ ρ̄ ∈ C∞λ (R+ ×Td ) (Ben-Artzi ’94)

• ρN ∈ C∞λ (R+ ×TNd ) ( ???)

Dealing with the terms

• In the sense of distributions, ∇ · K = 0.

• There is a matrix field V ∈ L∞ such that K = ∇ · V , i.e for
1 ≤ α ≤ d , Kα =

∑d
β=1 ∂βVα,β (Phuc-Torres ’08).
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Step two : Integration by part

For all t > 0,
d
dt
HN(t) ≤ AN(t) +

1
2

BN(t)− 1
2
IN(t),

with

AN(t) :=
1

N2

∑
i,j

∫
TdN

ρN
t (V (xi − xj )− V ∗ ρ̄(xi )) :

∇2
xi ρ̄

N
t

ρ̄N
t

dXN

BN(t) :=
1
N

∑
i

∫
TdN

ρN
t

∣∣∇xi ρ̄
N
t

∣∣2
|ρ̄N

t |2

∣∣∣∣∣∣ 1
N

∑
j

V (xi − xj )− V ∗ ρ̄(xi )

∣∣∣∣∣∣
2

dXN .
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Step three : Change of
reference measure and large

deviation estimates

Lemma
For two probability densities µ and ν on a set Ω, and any Φ ∈ L∞(Ω),
η > 0 and N ∈ N,

EµΦ ≤ ηHN(µ, ν) +
η

N
logEνeNΦ/η.
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Large deviation estimates -1

Theorem (Jabin-Wang ’18)
Consider any probability measure µ on Td , ε > 0 and a scalar function
ψ ∈ L∞(Td ×Td ) with ‖ψ‖L∞ < 1

2ε and such that for all z ∈ Td ,∫
Td ψ(z, x)µ(dx) = 0. Then there exists a constant C such that

∫
TdN

exp
( 1

N

N∑
j1,j2=1

ψ(x1, xj1 )ψ(x1, xj2 )
)
µ⊗NdXN ≤ C,

where C depends on

α = (ε‖ψ‖L∞)4 < 1 , β =
(√

2ε‖ψ‖L∞

)4
< 1.
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Large deviation estimates -2

Theorem (Jabin-Wang ’18)
Consider any probability measure µ on Td and φ ∈ L∞(Td ×Td ) with

γ :=
(

16002 + 36e4
)(

sup
p≥1

‖ supz |φ(·, z)|‖Lp(µ))

p

)2
< 1.

Assume that φ satisfies the following cancellations

∀z ∈ Td ,

∫
Td
φ(x , z)µ(dx) = 0 =

∫
Td
φ(z, x)µ(dx) .

Then, for all N ∈ N,∫
TdN

exp
( 1

N

N∑
i,j=1

φ(xi , xj )
)
µ⊗NdXN ≤ 2

1− γ <∞.
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Conclusion

For all t > 0,

d
dt
HN(t) ≤ C

(
HN(t) +

1
N

)
− 1

2
IN(t),

with
C = Ĉ1‖∇2ρ̄t‖L∞‖V‖L∞λ+ Ĉ2‖V‖2

L∞λ
2d2‖∇ρ̄t‖2

L∞

where Ĉ1, Ĉ2 are universal constants.
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Step four : Uniform bounds and
logarithmic Sobolev inequality

Two goals :
• A logarithmic Sobolev inequality for ρ̄N : HN(t) ≤ CIN(t)

• Uniform in time bounds on ‖∇ρ̄t‖L∞ and ‖∇2ρ̄t‖L∞



Unif. in time
Prop. of Chaos

for the 2D vortex
model

Pierre Le Bris

I. Introduction
Motivation

Propagation of chaos

Results

II. Proof
Step one

Step two

Step three

Step four

Step five

On the assumptions

22/30

Step four : Uniform bounds and
logarithmic Sobolev inequality

Two goals :
• A logarithmic Sobolev inequality for ρ̄N : HN(t) ≤ CIN(t)
• Uniform in time bounds on ‖∇ρ̄t‖L∞ and ‖∇2ρ̄t‖L∞



Unif. in time
Prop. of Chaos

for the 2D vortex
model

Pierre Le Bris

I. Introduction
Motivation

Propagation of chaos

Results

II. Proof
Step one

Step two

Step three

Step four

Step five

On the assumptions

23/30

A logarithmic Sobolev inequality

Lemma (Tensorization)
If ν is a probability measure on Td satisfying a LSI with constant CLS

ν ,
then for all N ≥ 0, ν⊗N satisfies a LSI with constant CLS

ν

Lemma (Perturbation)
If ν is a probability measure on Td satisfying a LSI with constant CLS

ν ,
and µ is a probability measure with density h with respect to ν such that,
for some constant λ > 0, 1

λ
≤ h ≤ λ, then µ satisfies a LSI with constant

CLS
µ = λ2CLS

ν .

Lemma (LSI for the uniform distribution)
The uniform distribution u on Td satisfies a LSI with constant 1

8π2 .

For all N ∈ N, t ≥ 0 and all probability density µN ∈ C∞>0(TdN),

HN

(
µN , ρ̄

N
t

)
≤ λ2

8π2

1
N

N∑
i=1

∫
Td
µN

∣∣∣∣∇xi log
µN

ρ̄N
t

∣∣∣∣2 dXN
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Uniform in time bounds on the
derivatives

Lemma
For all n > 1 and α1, ..., αn ∈ J1, dK, there exist Cu

n ,C∞n > 0 such that for
all t > 0,

‖∂α1,...,αn ρ̄t‖L∞ ≤ Cu
n and

∫ t

0
‖∂α1,...,αn ρ̄s‖2

L∞ds ≤ C∞n

Thanks to Morrey’s inequality and Sobolev embeddings, it is sufficient to
prove such bounds in the Sobolev space Hm for all m, i.e in L2
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Uniform in time bounds on the
derivatives-2

By induction on the order of the derivative

1
2

d
dt
‖ρ̄t‖2

L2 + ‖∇ρ̄t‖2
L2 = 0,

1
2

d
dt
‖∂α1 ρ̄t‖2

L2 +
1
2

∑
α2

‖∂α1,α2 ρ̄t‖2
L2 ≤

1
2
‖K‖2

L1‖ρ̄t‖2
L∞‖∇ρ̄t‖2

L2 ,

1
2

d
dt
‖∂α1,α2 ρ̄t‖2

L2 +
1
2

∑
α3

‖∂α1,α2,α3 ρ̄t‖2
L2 ≤‖V‖2

L∞‖∂α1∇ρ̄t‖2
L2‖∇ρ̄t‖2

L2

+ ‖K‖2
L1‖ρ̄t‖2

L∞‖∂α1∇ρ̄t‖2
L2 ,

etc
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Assumptions?

Goal : K (x) = 1
2π

x⊥

|x|2 = 1
2π

(
− x2
|x|2 ,

x1
|x|2

)
Justifying the calculations

• There is λ > 1 such that ρ̄0 ∈ C∞λ (Td )
=⇒ ρ̄ ∈ C∞λ (R+ ×Td ) (Ben-Artzi ’94)

• ρN ∈ C∞λ (R+ ×TNd ) ( ???)

Dealing with the terms

• In the sense of distributions, ∇ · K = 0.

• There is a matrix field V ∈ L∞ such that K = ∇ · V , i.e for
1 ≤ α ≤ d , Kα =

∑d
β=1 ∂βVα,β (Phuc-Torres ’08).

Uniformity in time

• For all n ≥ 1, C0
n := ‖∇nρ̄0‖L∞ <∞

• ‖K‖L1 <∞ (also used to show regularity).
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Step five : Conclusion

There are constants C1,C∞2 ,C3 > 0 and a function t 7→ C2(t) > 0 with∫ t
0 C2(s)ds ≤ C∞2 for all t ≥ 0 such that for all t ≥ 0

d
dt
HN(t) ≤ −(C1 − C2(t))HN(t) +

C3

N
.

Multiplying by exp(C1t −
∫ t

0 C2(s)ds) and integrating in time we get

HN(t) ≤ e−C1t+
∫ t

0 C2(s)dsHN(0) +
C3

N

∫ t

0
eC1(s−t)+

∫ t
s C2(u)duds

≤ eC∞2 −C1tHN(t) +
C3

C1N
eC∞2 ,

which concludes.
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On ρN ∈ C∞λ (R+ × TNd)

Everything works for regularized kernels K ε, and the final result is
independent of ε.
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Assumptions

On the initial condition

• There is λ > 1 such that ρ̄0 ∈ C∞λ (Td )

• For all n ≥ 1, C0
n := ‖∇nρ̄0‖L∞ <∞

On the potential K

• ‖K‖L1 <∞.

• In the sense of distributions, ∇ · K = 0,

• There is a matrix field V ∈ L∞ such that K = ∇ · V , i.e for
1 ≤ α ≤ d , Kα =

∑d
β=1 ∂βVα,β .
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Thank you
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