Stability in Gagliardo-Nirenberg-Sobolev inequalities

Nikita Simonov

LaMMe-Université d'Évry Val d'essonne

Journées EFI

15th October 2021 Université Paris Dauphine

References and collaborators

Stability in Gagliardo-Nirenberg-Sobolev inequalities. M. Bonforte, J. Dolbeault, B. Nazaret, and N. S., **161 pages** Preprint https://arxiv.org/abs/2007.03674

Matteo Bonforte > Universidad Autónoma de Madrid and ICMAT

Bruno Nazaret > Université Paris 1 Panthéon-Sorbonne

Outline of the talk

Part I: Functional inequalities and stability

Critical Sobolev inequality: best constant and optimizers
 The stability issue: a question raised by Brezis and Lieb
 A family of Gagliardo-Nirenberg-(Sobolev) inequalities

Part II: A constructive result for the subcritical Gagliardo-Nirenberg inequality

- ▷ Stability for Gagliardo-Nirenberg
- ▷ Ideas and strategy of the proof: entropy methods and parabolic regularity

Part III: The Sobolev's inequality

- ▷ Why Sobolev's inequality is different?
- ▷ Constructive stability for Sobolev's inequality

Part I: functional inequalities and stability

Sobolev's inequality

Let $d \ge 3$, the *Sobolev inequality* states

$$\|\nabla f\|_2 \ge \mathsf{S}_d \|f\|_{2p^\star}$$
 for any $f \in W^{1,2}(\mathbb{R}^d)$

where $p^{\star} = d/(d-2)$ and $||f||_p = \left(\int_{\mathbb{R}^d} |f|^p dx\right)^{\frac{1}{p}}$

 \triangleright The optimal constant S_d has been computed by Aubin and Talenti (1976) (but also previous contribution by Rodemich (1966)) and it is achieved on

$$S_d = \frac{\|\nabla g\|_2}{\|g\|_{2p^{\star}}}$$
 where $g(x) = (1 + |x|^2)^{-\frac{d-2}{2}}$

> By scaling, homogeneity and translations, the constant is achieved also on the manifold

$$\mathcal{M} = \{ \mathsf{g}_{\lambda,\mu,y}(x) := \mu \, \lambda^{-\frac{d}{2^{\star}}} \, \mathsf{g}\left(\frac{x-y}{\lambda}\right) : (\lambda,\mu,y) \in (0,\infty) \times \mathbb{R} \times \mathbb{R}^d \}$$

Stability: a question raised by Brezis and Lieb (1985)

Is there a natural way to bound from below

$$\delta_{S}[f] = \|\nabla f\|_{2}^{2} - \mathsf{S}_{d}^{2} \|f\|_{2p^{\star}}^{2}$$

in terms of a "distance" to the manifold of the optimal Aubin-Talenti functions?

In other words: assume that $\delta_S[u]$ is small, can we prove that u is close (in some topology) to a Aubin-Talenti function?

> [Bianchi-Egnell (1991)] There is a positive constant C such that

$$\delta_{S}[f] \geq \mathsf{C} \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{L^{2}(\mathbb{R}^{d})}^{2},$$

and \mathcal{M} is the manifold of Aubin-Talenti functions. The constant C is NOT known!

Stability: a question raised by Brezis and Lieb (1985)

Is there a natural way to bound from below

$$\delta_{S}[f] = \|\nabla f\|_{2}^{2} - \mathsf{S}_{d}^{2} \|f\|_{2p^{\star}}^{2}$$

in terms of a "distance" to the manifold of the optimal Aubin-Talenti functions?

In other words: assume that $\delta_{S}[u]$ is small, can we prove that u is close (in some topology) to a Aubin-Talenti function?

▷ [Bianchi-Egnell (1991)] There is a positive constant C such that

$$\delta_{\mathcal{S}}[f] \ge \mathsf{C} \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{L^{2}(\mathbb{R}^{d})}^{2},$$

and \mathcal{M} is the manifold of Aubin-Talenti functions. The constant C is NOT known!

Stability: improvements for the Sobolev inequality

Since Bianchi-Egnell's result several improvements have been obtained \triangleright [Cianchi-Fusco-Maggi-Pratelli (2009)] and [Figalli-Maggi-Pratelli,2013] there are constants α and κ and $f \mapsto \lambda(f)$ such that

$$\|\nabla f\|_{L^{2}(\mathbb{R}^{d})}^{2} \geq \mathsf{S}_{d} (1 + \kappa \,\lambda(f)^{\alpha}) \,\|f\|_{L^{2^{\star}}(\mathbb{R}^{d})}^{2}, \quad \lambda(f) = \inf_{h \in \mathcal{M}} \frac{\|f - h\|_{L^{2^{\star}}(\mathbb{R}^{d})}^{2^{\star}}}{\|f\|_{L^{2^{\star}}(\mathbb{R}^{d})}^{2}}$$

 \triangleright [Dolbeault-Jankowiak (2009)] Assume that $d \ge 3$ and let $q = \frac{d+2}{d-2}$. There exists a constant C with $1 < C \le 1 + \frac{4}{d}$ such that

$$\delta_{S}[f] \geq \frac{\mathcal{C}}{\|f\|_{L^{2^{\star}}(\mathbb{R}^{d})}^{2(2^{\star}-2)}} \left(\|f^{q}\|_{L^{\frac{2d}{d+2}}(\mathbb{R}^{d})}^{2} - \mathsf{S}_{d} \int_{\mathbb{R}^{d}} |f|^{q} (-\Delta)^{-1} |f|^{q} dx \right)$$

Other contibutions: [Figalli-Neumayer, 2018], [Neumayer 2020], [Figalli, Ru-Ya Zhang 2020]

The problem of obtaining constructive results is widely open!

Stability of related families of inequalities

- ▷ Literature on stability of Sobolev type inequalities is huge:
- Weak L^{2*/2}-remainder term in bounded domains [Brezis, Lieb, 1985]
- Fractional versions and $(-\Delta)^s$ [Lu, Wei, 2000] [Gazzola, Grunau, 2001] [Bartsch, Weth, Willem, 2003] [Chen, Frank, Weth, 2013]
- Symmetrization [Cianchi, Fusco, Maggi, Pratelli, 2009] and [Figalli, Maggi, Pratelli, 2010] ▷

Literature on stability of related inequalities

- Hardy-Littlewood-Sobolev: [Chen, Frank, Weth, 2013], [Carlen-Figalli,2013]

– Log-Sobolev: [Fathi, Indrei, Ledoux, 2014], [Eldan, Lehec, Shenfeld 2020], [Indrei, Kim, 2019], [Kim 2021]

▷ Literature on stability of inequalities in geometry – [Frank, 2021], [Engelstein-Neumayer-Spolaor, 2021]

The Gagliardo-Nirenberg-Sobolev inequalities we consider

We consider the inequalities

$$\left\|\nabla f\right\|_{2}^{\vartheta} \left\|f\right\|_{p+1}^{1-\vartheta} \ge \mathcal{C}_{\text{GNS}}(p) \left\|f\right\|_{2p} \tag{GNS}$$

$$\theta = \frac{d (p-1)}{(d+2-p (d-2))p}, \quad p \in (1, +\infty) \text{ if } d = 1 \text{ or } 2, \quad p \in (1, p^*] \text{ if } d \ge 3, \quad p^* = \frac{d}{d-2}$$

Theorem (del Pino, Dolbeault (2002))

Equality case in (GNS) is achieved if and only if

$$f \in \mathcal{M} := \left\{ g_{\lambda,\mu,y} : (\lambda,\mu,y) \in (0,+\infty) imes \mathbb{R} imes \mathbb{R}^d
ight\}$$

Aubin-Talenti functions: $g_{\lambda,\mu,y}(x) := \mu g((x-y)/\lambda)$ where $g(x) = (1+|x|^2)^{-\frac{1}{p-1}}$

 \triangleright When $d \ge 3$ and $p = p^* = d/(d-2)$ we shall rename $\mathcal{C}_{GNS}(p^*)^{-1} = \mathsf{S}_d$

Stability for Gagliardo-Nirenberg inequalities?

Let us consider the (homogeneous/scale invariant) deficit functional

$$\delta_{\textit{HGNS}}[f] = \left\| \nabla f \right\|_2^\vartheta \left\| f \right\|_{p+1}^{1-\vartheta} - \mathcal{C}_{\textit{GNS}} \left\| f \right\|_{2p} \ge 0$$

where for $d \ge 3, 1 , and for <math>d = 1, 2, 1 .$

Recall that $\delta_{HGNS}[\mathbf{g}] = 0$ if $\mathbf{g}(x) = (1 + |x|^2)^{-\frac{1}{p-1}}$

(Q): If $\delta_{HGNS}[f]$ is small, in what sense, if any, is f close to g?

▷ [Figalli-Carlen 2010] In \mathbb{R}^2 with p = 3. Let $f \in W^{1,2}(\mathbb{R}^2)$ be a nonnegative function such that $||f||_{L^6(\mathbb{R}^2)} = ||\mathbf{g}||_{L^6(\mathbb{R}^2)}$ (g being (an) Aubin-Talenti profile). Then there exist universal constants K_1 , $\delta_1 > 0$ such that, whenever $\delta_{HGN} \leq \delta_1$

$$\sqrt{\delta_{HGNS}}[f] \ge K_1 \inf_{\lambda > 0, x_0 \in \mathbb{R}^2} \|f^6 - \lambda^2 \mathsf{g}_{\lambda, x_0}^6\|_{L^1(\mathbb{R}^2)}$$

▷ Other results by [Seuffert 2017], [Nguyen 2019]

> Another improvement is due to [Dolbeault-Toscani]

Part II: a constructive stability result

Preliminaries: non scale invariant form of the inequality

The non scale invariant deficit functional

$$\delta_{GNS}[f] := a \|\nabla f\|_2^2 + b \|f\|_{p+1}^{p+1} - \mathcal{K}_{GNS} \|f\|_{2p}^{2p\gamma} \ge 0$$

where
$$a = \frac{1}{2} (p-1)^2$$
, $b = 2 \frac{d-p(d-2)}{p+1}$, $\mathcal{K}_{\text{GNS}} = \|\mathbf{g}\|_{L^{2p}(\mathbb{R}^d)}^{2 p(1-\gamma)}$ and $\gamma = \frac{d+2-p(d-2)}{d-p(d-4)}$

 \triangleright Take $f_{\lambda}(x) := \lambda^{\frac{d}{2p}} f(\lambda x)$ then

$$\delta_{GNS}[f_{\lambda}] = a \,\lambda^{\alpha} \|\nabla f\|_{L^{2}(\mathbb{R}^{d})}^{2} + b \,\lambda^{-\beta} \|f\|_{L^{p+1}(\mathbb{R}^{d})}^{p+1} - \mathcal{K}_{GNS}\|f\|_{L^{2p}(\mathbb{R}^{d})}^{2}$$

Optimizing in λ one finds $\|\nabla f\|_2^{\vartheta} \|f\|_{p+1}^{1-\vartheta} \ge C_{GNS}(p) \|f\|_{2p}$.

Preliminaries: Entropy and Fisher information

 \triangleright The *Relative entropy* recall that $g^{1-p} = 1 + |x|^2$

$$\mathcal{F}[f|g] := \frac{2p}{1-p} \int_{\mathbb{R}^d} \left(|f|^{p+1} - g^{p+1} - \frac{1+p}{2p} g^{1-p} \left(|f|^{2p} - g^{2p} \right) \right) dx$$

 $\triangleright A$ *Csiszár-Kullback inequality*. There exists a constant $C_p > 0$ such that

$$\||f| - \mathbf{g}\|_{L^{2p}}^{2p} \le \left\||f|^{2p} - \mathbf{g}^{2p}\right\|_{L^{1}} \le C_{p}\sqrt{\mathcal{F}[f|\mathbf{g}]} \quad \text{if} \quad \|f\|_{L^{2p}(\mathbb{R}^{d})} = \|\mathbf{g}\|_{L^{2p}(\mathbb{R}^{d})}$$

▷ The *Relative Fisher information*

$$\mathcal{J}[f|g] := \frac{p+1}{p-1} \int_{\mathbb{R}^d} \left| (p-1) \, \nabla |f| + |f|^p \, \nabla g^{1-p} \right|^2 dx$$

 \triangleright We can rewrite the $\delta_{GNS}[f]$ as

$$\frac{p+1}{p-1}\,\delta_{GNS}[f] = \mathcal{J}[f|g] - 4\,\mathcal{F}[f|g]$$

Constructive stability for Gagliardo-Nirenberg

The relative entropy

$$\mathcal{F}[f|\mathbf{g}] := \frac{2p}{1-p} \int_{\mathbb{R}^d} \left(|f|^{p+1} - \mathbf{g}^{p+1} - \frac{1+p}{2p} \, \mathbf{g}^{1-p} \left(|f|^{2p} - \mathbf{g}^{2p} \right) \right) dx$$

The deficit functional

$$\delta_{GNS}[f] = a \|\nabla f\|_2^2 + b \|f\|_{p+1}^{p+1} - \mathcal{K}_{GN} \|f\|_{2p}^{2p \gamma} \ge 0$$

Theorem (M. Bonforte, J. Dolbeault, B. Nazaret, N.S.) Let $d \ge 1$, $p \in (1, p^*)$, A > 0. There is a (computable) $\mathcal{C} > 0$ such that $\delta_{GNS}[f] = \mathcal{J}[f|g] - 4 \mathcal{F}[f|g] \ge \mathcal{C} \mathcal{F}[f|g]$ for any $f \in \mathcal{W} := \{f \in L^1(\mathbb{R}^d, (1+|x|)^2 dx) : \nabla f \in L^2(\mathbb{R}^d, dx)\}$ such that $\|f\|_{2p} = \||g\|_{2p}$, $\int_{\mathbb{R}^d} x |f|^{2p} dx = 0$ $\sup_{r>0} r^{\frac{d-p(d-4)}{p-1}} \int_{|x|>r} |f|^{2p} dx \le A$

 \triangleright As a consequence we get $\delta_{GNS}[f] \ge C ||f| - g||_{2p}^{4p}$ and $\delta_{GNS}[f] \ge ||\nabla |f| - \nabla g||_{2p}^{8}$

A general stability result

Theorem (M. Bonforte, J. Dolbeault, B. Nazaret, N. S.)

Let $d \ge 1$ and $p \in (1, p^*)$. For any $f \in W$, such that $A[f] < \infty$, $E[f] < \infty$, we have

 $\|\nabla f\|_{L^{2}(\mathbb{R}^{d})}^{\theta} \|f\|_{L^{p+1}(\mathbb{R}^{d})}^{1-\theta} - \mathcal{C}_{\mathrm{GNS}} \|f\|_{L^{2\,p}(\mathbb{R}^{d})} \geq \mathfrak{S}[f] \,\mathsf{E}[f]$

The constant $\mathfrak{S}[f]$ *is computable!*

$$\begin{split} \lambda[f] &:= \left(\frac{2 d \kappa[f]^{p-1}}{p^2 - 1} \frac{\|f\|_{p+1}^{p+1}}{\|\nabla f\|_2^2} \right)^{\frac{2p}{d-p(d-4)}} \kappa[f] := \frac{\mathcal{M}^{\frac{1}{2p}}}{\|f\|_{2p}} \\ \mathbf{A}[f] &:= \frac{\mathcal{M}}{\lambda[f]} \frac{d-p(d-4)}{p-1} \sup_{\|f\|_{2p}^2} \sup_{r>0} r^{\frac{d-p(d-4)}{p-1}} \int_{|x|>r} |f(x+x_f)|^{2p} dx \\ \mathbf{E}[f] &:= \frac{2p}{1-p} \int_{\mathbb{R}^d} \left(\frac{\kappa[f]^{p+1}}{\lambda[f]^{\frac{d-p-1}{2p}}} |f|^{p+1} - \mathbf{g}^{p+1} - \frac{1+p}{2p} \, \mathbf{g}^{1-p} \left(\frac{\kappa[f]^{2p}}{\lambda[f]^2} |f|^{2p} - \mathbf{g}^{2p} \right) \right) dx \end{split}$$

Idea of the proof in the non-critical case

Stability by the fast diffusion flow

(CP)
$$\begin{cases} \partial_t u = \Delta u^m & \text{in } (0, \infty) \times \mathbb{R}^d, \\ u(0, x) = u_0(x) & \text{in } \mathbb{R}^d, \end{cases}$$

Parameters and main features:

▷ *m* in the range
$$m_1 := \frac{d-1}{d} \le m < 1$$
, with $d \ge 3$, $u_0 \in L^1_+(\mathbb{R}^d)$

 \triangleright Existence and uniqueness in L¹_{loc} are settled, solutions are C^{∞} , see Herrero-Pierre '85.

$$\int_{\mathbb{R}^d} u(t,x) \, \mathrm{d}x = \int_{\mathbb{R}^d} u_0(x) \, \mathrm{d}x \quad \int_{\mathbb{R}^d} x \, u(t,x) \, \mathrm{d}x = \int_{\mathbb{R}^d} x \, u_0(x) \, \mathrm{d}x \quad \forall t > 0 \, .$$

▷ (CP) admits the self-similar solution (called **Barenblatt**)

$$\mathcal{B}_{M}(t,x) = \frac{t^{\frac{1}{1-m}}}{\left[b_{0}\frac{t^{2\vartheta}}{M^{2\vartheta(1-m)}} + b_{1}|x|^{2}\right]^{\frac{1}{1-m}}} = t^{-d\vartheta} \mathsf{B}_{M}(x t^{-\vartheta}).$$

where $\vartheta^{-1} = 2 - d(1 - m) > 0$, and

$$\mathsf{B}_{M}(x) = \left[\frac{b_{0}}{M^{2\vartheta(1-m)}} + b_{1}|x|^{2}\right]^{\frac{1}{m-1}}$$

Self-similar variables: entropy-entropy production method

Let $d \ge 3$, (d-1)/d < m < 1, the a Fokker-Planck type equation

$$\frac{\partial v}{\partial t} + \nabla \cdot \left[v \left(\nabla v^{m-1} - 2x \right) \right] = 0$$

can be obtained from $u_t = \Delta u^m$ and admits a stationary solution

$$\mathcal{B}(x) = \left(1 + |x|^2\right)^{-\frac{1}{1-m}} = g^{2p}(x)$$

when $p = \frac{1}{2m-1}$. A Lyapunov functional [Ralston,Newman 1984]

Generalized entropy or Free energy

$$\mathcal{F}[v] := -\frac{1}{m} \int_{\mathbb{R}^d} \left(v^m - \mathcal{B}^m - m \mathcal{B}^{m-1} \left(v - \mathcal{B} \right) \right) \, \mathrm{d}x$$

Entropy production is measured by the Generalized Fisher information

$$\frac{d}{dt}\mathcal{F}[v] = -\mathcal{I}[v] , \quad \mathcal{I}[v] := \int_{\mathbb{R}^d} v \left| \nabla v^{m-1} + 2x \right|^2 dx$$

The entropy - entropy production inequality

Recall $\mathcal{B}(x) := (1 + |x|^2)^{-\frac{1}{1-m}}$, $I[v] = \int_{\mathbb{R}^d} v \left| \nabla v^{m-1} + 2x \right|^2 dx$, $F[v] = \int_{\mathbb{R}^d} \left(\frac{\mathcal{B}^m}{m} - \frac{v^m}{m} + |x|^2 (v - \mathcal{B}) \right) dx$

By del Pino, Dolbeault (2002) we have

$$\mathcal{I}[v] - 4 \mathcal{F}[v] = C_p \left(a \|\nabla f\|_{L^2(\mathbb{R}^d)}^2 + b \|f\|_{L^{p+1}(\mathbb{R}^d)}^{p+1} - \mathcal{K}_{\text{GNS}} \|f\|_{L^{2p}(\mathbb{R}^d)}^{2p \gamma} \right) = \frac{p+1}{p-1} \delta_{\text{GNS}}[f]$$

where $C_p > 0$, $\gamma = \gamma(p, d) > 0$, $p = \frac{1}{2m-1}$, $\frac{d-1}{d} < m < 1$ and $v = |f|^{2p}$.

Also, if v solves $\frac{\partial v}{\partial \tau} + \nabla \cdot \left[v \left(\nabla v^{m-1} - 2x \right) \right] = 0$ $\frac{d}{dt} \left(\mathcal{I}[v(t)] - 4 \mathcal{F}[v(t)] \right) \le 0$

Our goal: $\mathcal{I}[v(t)] - (4 + \eta)\mathcal{F}[v(t)] \ge 0$ along the flow

The asymptotic time layer improvement: ideas

In the *large time asymptotic* (where $v \sim B$) we can "linearize" the quantities $\mathcal{F}[v]$ and $\mathcal{I}[v]$ we get

 $\mathcal{F}[v] \sim \mathsf{F}[g]$ and $\mathcal{I}[v] \sim \mathsf{I}[g]$.

where $g = v \mathcal{B}^{m-2} - \mathcal{B}^{m-1}$ and

$$\mathsf{F}[g] := \frac{m}{2} \int_{\mathbb{R}^d} |g|^2 \,\mathcal{B}^{2-m} \,dx \quad \text{and} \quad \mathsf{I}[g] := m \,(1-m) \int_{\mathbb{R}^d} |\nabla g|^2 \,\mathcal{B} \,dx$$

In [Blanchet, Bonforte, Dolbeault, Grillo and Vazquez, 2009] the authors proved that

 $I[g] \ge 4 \alpha F[g]$ where $\alpha = 2 - d(1 - m)$

and $\alpha > 1$ if $m \in ((d-1)/d, 1)$, which is an improvement with respect to

$$\mathcal{I}[v] \geq 4\mathcal{F}[v] \,.$$

If $(1 - \varepsilon) \mathcal{B} \le v \le (1 + \varepsilon) \mathcal{B}$ then $\mathcal{Q}[v] := \frac{\mathcal{I}[v]}{\mathcal{F}[v]} \ge 4 + \eta$

The initial time layer improvement: backward estimate

Consider, $\mathcal{Q}[v] := \frac{\mathcal{I}[v]}{\mathcal{F}[v]}$, by the *Entropy-Entropy production inequality* we have that

$$\frac{d\mathcal{Q}}{dt} \leq \mathcal{Q}\left(\mathcal{Q}-4\right)$$

Lemma

Assume that $m > m_1$ and v is a solution to R-FDE with nonnegative initial datum v_0 . If for some $\eta > 0$ and T > 0, we have $\mathcal{Q}[v(T, \cdot)] \ge 4 + \eta$, then

$$Q[v(t)] \ge 4 + \frac{4\eta e^{-4T}}{4 + \eta - \eta e^{-4T}} \quad \forall t \in [0, T]$$

Q): when can we gurantee that $Q[v(t_*)] \ge 4 + \eta$ for some $\eta > 0$?

or equivalently that
$$\left\|\frac{v(t_{\star})}{B} - 1\right\|_{L^{\infty}(\mathbb{R}^d)} \leq \varepsilon$$

The strategy

Uniform convergence in relative error: statement

Theorem (M. Bonforte, J. Dolbeault, B. Nazaret, N. S. (2020) and M. Bonforte, N.S (2019))

Under the current assumptions, let $\varepsilon \in (0, 1/2)$, small enough, A > 0, and G > 0. There exists an explicit time $t_* \ge 0$ such that, if v is a solution of

$$\frac{\partial v}{\partial t} + \nabla \cdot \left[v \left(\nabla v^{m-1} - 2x \right) \right] = 0$$

with nonnegative initial datum $v_0 \in L^1(\mathbb{R}^d)$ satisfying

$$\sup_{r>0} r^{\frac{2-d(1-m)}{(1-m)}} \int_{|x|>r} v_0 \, dx \le A < \infty \tag{H}_A$$

 $\int_{\mathbb{R}^d} v_0 \, dx = \int_{\mathbb{R}^d} \mathcal{B} \, dx = M \text{ and } \mathcal{F}[u_0] \le G, \text{ then}$ $\sup_{x \in \mathbb{R}^d} \left| \frac{v(t, x)}{\mathcal{B}(x)} - 1 \right| \le \varepsilon \quad \forall t \ge T := \log\{\tau_\star \frac{1 + A^{1-m} + G^{\frac{\alpha}{2}}}{\varepsilon^{\mathbf{a}}}\}$

Back to Improved entropy-entropy production inequality

Theorem

Let $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/2, 1)$ if d = 1, A > 0 and G > 0. Then there is a positive number ζ such that

 $\mathcal{I}[v] \ge (4+\zeta) \,\mathcal{F}[v]$

for any nonnegative function $v \in L^1(\mathbb{R}^d)$ such that $\mathcal{F}[v] = G$, $\int_{\mathbb{R}^d} v \, dx = M$, $\int_{\mathbb{R}^d} x \, v \, dx = 0$ and v satisfies (H_A)

We have the *asymptotic time layer estimate*

$$(1-\varepsilon)\mathcal{B} \le v(t,\cdot) \le (1+\varepsilon)\mathcal{B} \quad \forall t \ge T$$

and, as a consequence, the initial time layer estimate

$$\mathcal{I}[v(t,.)] \ge (4+\zeta) \mathcal{F}[v(t,.)] \quad \forall t \in [0,T], \quad \text{where} \quad \zeta = \frac{4 \eta e^{-4T}}{4+\eta-\eta e^{-4T}}$$

Part III: The Sobolev inequality

Why Sobolev is different?

The scaklee invariant deficit functional:

$$\delta_{HGNS}[f] = \left\|\nabla f\right\|_{2}^{\vartheta} \left\|f\right\|_{p+1}^{1-\vartheta} - \mathcal{C}_{GNS} \left\|f\right\|_{2p} \ge 0$$

where for $d \ge 3$, $1 , and for <math>d = 1, 2, 1 and <math>\delta_{HGNS}[f] = 0$ iff

$$f \in \{g_{\lambda,\mu,y}(x) := \mu g((x-y)/\lambda)\}$$
 where $g(x) = (1+|x|^2)^{-\frac{1}{p-1}}$

The non scale invariant deficit functional:

$$\begin{split} \delta_{GNS}[f] &:= a \|\nabla f\|_2^2 + b \|f\|_{p+1}^{p+1} - \mathcal{K}_{GN} \|f\|_{2p}^{2 p \, \gamma} = 0\\ \text{where } a &= \frac{1}{2} \, (p-1)^2, \, b = 2 \, \frac{d-p \, (d-2)}{p+1}, \, \mathcal{K}_{GN} = \|\mathbf{g}\|_{L^{2p}(\mathbb{R}^d)}^{2 \, p \, (1-\gamma)} \text{ and } \gamma &= \frac{d+2-p \, (d-2)}{d-p \, (d-4)} \text{ iff } f = g_{\lambda,\mu,y}\\ \text{such that} \\ \lambda[f] \, \mu[f]^{\frac{p-1}{d-p \, (d-4)}} &= \sqrt{\frac{d \, (p-1)}{d+2-p \, (d-2)}} \,. \end{split}$$

$$\|\nabla f\|_{2}^{2} - \mathsf{S}_{d} \|f\|_{2n^{\star}}^{2} = C(\mathcal{I}[f] - 4\mathcal{F}[f])$$

Constructive Stability for the Sobolev's inequality

The *relative entropy*

$$\mathcal{F}[f|\mathbf{g}] := \frac{2p}{1-p} \int_{\mathbb{R}^d} \left(|f|^{p+1} - \mathbf{g}^{p+1} - \frac{1+p}{2p} \, \mathbf{g}^{1-p} \left(|f|^{2p} - \mathbf{g}^{2p} \right) \right) dx = \int_{\mathbb{R}^d} \left(\mathbf{g}^2 \frac{d-1}{d-2} - f^2 \frac{d-1}{d-2} \right) dx$$

Theorem

Let $d \geq 3$ and A > 0. Then for any nonnegative function $f \in W_{p^*}(\mathbb{R}^d)$ such that

$$\int_{\mathbb{R}^d} (1, x, |x|^2) f^{2^*} dx = \int_{\mathbb{R}^d} (1, x, |x|^2) g dx \quad and \quad \sup_{r>0} r^d \int_{|x|>r} f^{2p^*} dx \le A,$$

we have

$$\|\nabla f\|_{2}^{2} - \mathsf{S}_{d}^{2} \|f\|_{2p^{\star}}^{2} \ge \mathcal{C}_{\star}(A) \mathcal{F}[f|g]$$

The stability constant is $C_{\star}(A) = \mathfrak{C}_{\star}(1+A^{1/(2d)})^{-1}$ where $\mathfrak{C}_{\star} > 0$ depends only on d.

 \triangleright As a consequence we get $\delta_{GNS}[f] \ge C |||f| - g||_{2p}^{4p}$ and $\delta_{GNS}[f] \ge ||\nabla|f| - \nabla g||_{2p}^{8}$

The Sobolev case-I

Let us consider the *fast diffusion equation*, which we recall for convenience:

$$\frac{\partial v}{\partial t} + \nabla \cdot \left(v \,\nabla v^{m-1} \right) = 2 \,\nabla \cdot \left(x \,v \right), \quad v(t=0,\cdot) = v_0 \,. \tag{FDE}$$

For any $x \in \mathbb{R}^d$, let us consider the Barenblatt profile \mathcal{B}_{λ} defined by

$$\mathcal{B}_{\lambda}(x) = \lambda^{-\frac{d}{2}} \mathcal{B}\left(\frac{x}{\sqrt{\lambda}}\right) \text{ where } \mathcal{B}(x) = \left(1 + |x|^2\right)^{1/(m-1)}$$

We are interested in the specific choice of λ corresponding to

$$\lambda(t) := \frac{1}{\mathcal{K}_{\star} \mathfrak{R}(t)^2} \int_{\mathbb{R}^d} |x|^2 v(t, x) \, dx \quad \text{with} \quad \mathcal{K}_{\star} := \int_{\mathbb{R}^d} |x|^2 \, \mathcal{B} \, dx \,,$$

where *v* solves (FDE) and $t \mapsto \Re(t)$ is obtained by solving

$$\frac{\mathrm{d}\tau}{\mathrm{d}t} = \left(\frac{1}{\mathcal{K}_{\star}}\int_{\mathbb{R}^d} |x|^2 \, v \, dx\right)^{-\frac{d}{2}\,(m-m_c)} - 1\,, \quad \tau(0) = 0 \quad \text{and} \quad \mathfrak{R}(t) = e^{2\,\tau(t)} \quad \forall \, t \ge 0\,.$$

With these definitions, let us consider the change of variables

$$v(t,x) = \frac{1}{\Re(t)^d} w\left(t + \tau(t), \frac{x}{\Re(t)}\right) \quad \forall (t,x) \in \mathbb{R}^+ \times \mathbb{R}^d.$$

The Sobolev Case-II

>Let us consider the change of variables

$$v(t,x) = \frac{1}{\Re(t)^d} w\left(t + \tau(t), \frac{x}{\Re(t)}\right) \quad \forall (t,x) \in \mathbb{R}^+ \times \mathbb{R}^d.$$

 \triangleright If *w* is obtained by the above change of variables, then *w* solves

$$\frac{\partial w}{\partial s} + \lambda_{\star}(s)^{\frac{d}{2}(m-m_c)} \nabla \cdot \left(w \nabla w^{m-1} \right) = 2 \nabla \cdot (x w), \quad w(t=0,\cdot) = v_0,$$

where the function $t \mapsto s(t) := t + \tau(t)$ is monotone increasing on \mathbb{R}^+ , λ_{\star} is defined by

$$\lambda_{\star}(s(t)) = \lambda(t) \quad \forall t \ge 0$$

and the function $\mathcal{B}_{\star}(s,x) := \mathcal{B}_{\lambda_{\star}(s)}(x)$ is such that for all $s \geq 0$

$$\int_{\mathbb{R}^d} \left(1, x, |x|^2 \right) w(s, x) \, dx = \int_{\mathbb{R}^d} \left(1, x, |x|^2 \right) \mathcal{B}_{\star}(s, x) \, dx$$

Same strategy as before but considering the best matching quantities

$$\mathcal{F}[w, \mathcal{B}_{\star}]$$
 and $\mathcal{I}[w, \mathcal{B}_{\star}]$

Thank you for your attention!

Thank you EFI!