STABILITY IN FUNCTIONAL INEQUALITIES

JEAN DOLBEAULT

Obtaining explicit stability estimates in classical functional inequalities like the Sobolev inequality has been an essentially open question 30 years, after the celebrated but non-constructive result [1] of G. Bianchi and H. Egnell in 1991. Recently, new methods have emerged which provide some clues on these fascinating questions. The goal of the course is to give a general overview on stability in some fundamental functional inequalities and introduce methods that can be used to obtain explicit estimates.

Program

- (1) The Sobolev inequality and the non-constructive stability result of Bianchi–Egnell using concentration-compactness methods [1, 13]
- (2) Duality and stability in Hardy-Littlewood-Sobolev inequalities [7]
- (3) Entropy methods on the Euclidean space [14, 3]
- (4) Stability results for Gagliardo-Nirenberg inequalities on the Euclidean space [2, 3]
- (5) Stability results on the sphere and on the Gaussian space seen as an infinite dimensional limit of spheres [11, 8, 10, 6, 4, 5]
- (6) A constructive stability result for the Sobolev and the logarithmic Sobolev inequalities [9]

Course 1. (26/3/2024)

(1) Some history of the Sobolev inequality. One can refer to R. Frank's course given in Cetraro [13] for a detailed overview and many references. One of the issues is to identify all optimal functions. The entropy methods (see [3, Chapters 1 & 2]) give an alternative strategy to symmetrization methods. The concentration-compactness methods (see for instance [18, Chapter 4]) is the key tool in the result [1] of G. Bianchi and H. Egnell but the proof is non-constructive.

(2) The duality between Sobolev and Hardy-Littlewood-Sobolev (HLS) inequalities is known for instance from [15]. It can be used as in [7] to produce a stability result in (HLS). Again the proof is non-constructive. A simpler, constructive result can be obtained in a weaker norm as in [12], which moreover identifies the optimal functions for the optimal stability result using an improved version of the inequality based on a nonlinear flow.

Course 2. (28/3/2024)

(3) An introduction to Rényi entropy powers and relative entropies for the fast diffusion flow associated to a family of Gagliardo-Nirenberg inequalities: see [3, Chapter 2] for details. How to connect the Gagliardo-Nirenberg inequalities with Sobolev's inequality by Bakry's trick is detailed in [3, Section 1.2.1.2]. As a consequence, one can use as in [17] the result of Bianchi–Egnell (conveniently adapted, also see [16]) to produce a non-constructive stability result for the Gagliardo-Nirenberg inequalities.

(4) Stability results for Gagliardo-Nirenberg inequalities on the Euclidean space: the strategy [2].

Course 3. (2/4/2024)

(4) Stability results for Gagliardo-Nirenberg inequalities on the Euclidean space (continued) the method is detailed, with the spectral expansion in the large time asymptotics [2, Chapter 2], regularity results to control the threshold time [3, Chapters 3 & 4], and a backward-in-time argument

based on the *carré du champ method*. Stability result are obtained, where the distance to the optimal functions is measured by the relative Fisher information in the subcritical case [2, Chapter 5] and in the critical case of the logarithmic Sobolev inequality [2, Chapter 6]. The method is constructive and explains how a global problem can be reduced to a local analysis, to the price of a decay condition on the tails of the function.

(5) Note treated

(6) Detailed results will be exposed in the Workshop *Nonlinear Analysis: Geometric, Variational and Dispersive aspects* on April 5, 2024. In the case of the logarithmic Sobolev inequality, stability results in strong norms can be achieved (see [4]) using moment conditions that control the behaviour of the tails of the functions.

REFERENCES

- [1] G. BIANCHI AND H. EGNELL, A note on the Sobolev inequality, J. Funct. Anal., 100 (1991), pp. 18–24.
- [2] M. BONFORTE, J. DOLBEAULT, B. NAZARET, AND N. SIMONOV, Constructive stability results in interpolation inequalities and explicit improvements of decay rates of fast diffusion equations, Discrete and Continuous Dynamical Systems, 43 (2023), pp. 1070–1089.
- [3] ——, Stability in Gagliardo-Nirenberg-Sobolev inequalities: Flows, regularity and the entropy method, arXiv: arXiv: 2007.03674 and hal-03160022, Memoirs of the AMS, (to appear).
- [4] G. BRIGATI, J. DOLBEAULT, AND N. SIMONOV, Stability for the logarithmic Sobolev inequality, arXiv: 2303.12926.
- [5] —, Logarithmic Sobolev and interpolation inequalities on the sphere: constructive stability results, Ann. Inst. H. Poincaré C Anal. Non Linéaire, arXiv: 2211.13180, (to appear).
- [6] _____, On Gaussian interpolation inequalities, arXiv: 2302.03926, C.R. Mathématique, (to appear).
- [7] E. A. CARLEN, *Duality and stability for functional inequalities*, Ann. Fac. Sci. Toulouse Math. (6), 26 (2017), pp. 319–350.
- [8] J. DOLBEAULT AND M. J. ESTEBAN, *Improved interpolation inequalities and stability*, Advanced Nonlinear Studies, 20 (2020), pp. 277–291.
- [9] J. DOLBEAULT, M. J. ESTEBAN, A. FIGALLI, R. L. FRANK, AND M. LOSS, *Sharp stability for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence,* Preprint arXiv: 2209.08651 and hal-03780031, (2023).
- [10] J. DOLBEAULT, M. J. ESTEBAN, M. KOWALCZYK, AND M. LOSS, *Improved interpolation inequalities on the sphere*, Discrete and Continuous Dynamical Systems Series S (DCDS-S), 7 (2014), pp. 695–724.
- [11] J. DOLBEAULT, M. J. ESTEBAN, AND M. LOSS, Interpolation inequalities on the sphere: linear vs. nonlinear flows (inégalités d'interpolation sur la sphère : flots non-linéaires vs. flots linéaires), Annales de la faculté des sciences de Toulouse Sér. 6, 26 (2017), pp. 351–379.
- [12] J. DOLBEAULT AND G. JANKOWIAK, Sobolev and Hardy–Littlewood–Sobolev inequalities, J. Differential Equations, 257 (2014), pp. 1689–1720.
- [13] R. L. FRANK, *The sharp Sobolev inequality and its stability: an introduction*, Lecture Notes in Mathematics (Springer), C.I.M.E. Foundation Subseries, arXiv: 2304.03115, (2023, to appear).
- [14] A. JÜNGEL, *Entropy methods for diffusive partial differential equations*, SpringerBriefs in Mathematics, Springer, [Cham], 2016.
- [15] E. H. LIEB, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), pp. 349–374.
- [16] V. H. NGUYEN, *The sharp Gagliardo-Nirenberg-Sobolev inequality in quantitative form*, J. Funct. Anal., 277 (2019), pp. 2179–2208.
- [17] F. SEUFFERT, An extension of the Bianchi-Egnell stability estimate to Bakry, Gentil, and Ledoux's generalization of the Sobolev inequality to continuous dimensions, J. Funct. Anal., 273 (2017), pp. 3094–3149.
- [18] M. STRUWE, Variational methods, vol. 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Springer-Verlag, Berlin, fourth ed., 2008. Applications to nonlinear partial differential equations and Hamiltonian systems.

E-mail address: dolbeaul@ceremade.dauphine.fr

J. DOLBEAULT: CEREMADE (CNRS UMR N° 7534), PSL UNIVERSITY, UNIVERSITÉ PARIS-DAUPHINE, PLACE DE LATTRE DE TASSIGNY, 75775 PARIS 16, FRANCE