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Entropy methods without weigh
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Background references (partial)

o Rigidity methods, uniqueness in nonlinear elliptic PDE’s:

(B. Gidas, J. Spruck, ’81), (M.-F. Bidaut-Véron, L. Véron, '91)

@ Probabilistic methods (Markov processes), semi-group theory and
carré du champ methods (T'y theory): (D. Bakry, M. Emery,
1984), (Bakry, Ledoux, 1996), (Demange, 2008), (JD, Esteban,
Loss, 2014 & 2015) — D. Bakry, I. Gentil, and M. Ledoux.
Analysis and geometry of Markov diffusion operators (2014)

o Entropy methods in PDEs
> Entropy-entropy production inequalities: Arnold, Carrillo,
Desvillettes, JD, Jiingel, Lederman, Markowich, Toscani,
Unterreiter, Villani..., (del Pino, JD, 2001), (Blanchet, Bonforte,
JD, Grillo, Vazquez) — A. Jingel, Entropy Methods for Diffusive
Partial Differential Equations (2016)
> Mass transportation: (Otto) — C. Villani, Optimal transport.
Old and new (2009)
> Rényi entropy powers (information theory) (Savaré, Toscani,
2014), (Dolbeault, Toscani)
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Some preliminaries

> The Bakry-Emery method or carré du champ method
(or T'y method)

> Inequalities without weights and fast diffusion equations
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Figure: The Bakry-Emery method... Courtesy: Nassif Ghoussoub
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An interpolation inequality on the sphere

An example of interpolation by flows and entropy methods

J :
vl dnz [( / IUIpdu) -/ |u|2du]
sd p—2 sd sd

(W. Beckner, 1993), (M.-F. Bidaut-Véron, L. Véron,1991)
Conditions u € HY(S?), p>1,p#2, p < 2* if d > 3.

With p = |u|P

1 d g 2
/|VP”|2dMZ— [(/ pdu) —/ pr du]
§d p—2 g4 g
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The Bakry—Emery method on the sphere

Entropy functional
R [(fgd pdu)? — fsap? du} if p#2

Ea[p] := [sa p log (W) dp

Fisher information functional

1
|:= Jsa [V [* du
Bakry-Emery (carré du champ) method: use the heat flow

dp
9P _ A
o~ ~F
and compute £&,[p] = — I, [p] and £3,[p] < —dJ,[p] to get

— (Tplp] = d&ylp]) <0 = Tp[p] > d&plp]

with p= |u|p, lfp < 2# = 2d2+£

(d—1)
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The evolution under the fast diffusion flow

To overcome the limitation p < 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

dp
A m
ot
(Demange), (JD, Esteban, Kowalczyk, Loss): for any p € [1, 2]

d

Kylp) = < (9pl0) = d&,lp]) <0

(p,m) admissible region, d =5
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Cylindrical coordinates, Schwarz symmetrization,
stereographic projection...
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. and the ultra-spherical operator

Entropy methods without weights

Change of variables z = cosf, v(#) = f(2), dvg == v? 1 dz/Zg,
v(z) =1-2°

The self-adjoint ultraspherical operator is

Lf::(1722)f’/7dzf’:Vf”+gz/f’

which satisfies (f1,£ fa) = — [pa f1 f5 v dvg

Proposition

Letp € [1,2) U (2,2%], d > 1. For any f € HY([—1,1],dvy),

112, g0y — 1122 g0,
p—2

—<f,f»f>=/w|f'|2udud2d
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The Bakry-Emery method on the sphere

Enhopv 1nethod§ without weights e g M

ization

Weishted SYmmetry breaking and linearizatio Self-similar variables and relative entropies
: ’ S The role of the spectral gap
The heat equation E = L g for g = fP can be rewritten in terms of f
as
of |f'|2
-7 I
L pevan=2 L e = enepro-n (L vy
2 dt Jpa 2 dt ’ ’ o
d

Gt + 2400960 = 1 [ 7P vdvar2d [ 7P vy

_ " d |f/|4 _1|f/| f//
——2/Rd(|f |2+(P—1>m 72 —Z(P—l)m 7 )VQdVd

is nonpositive if
//2 |f/|4
—2(p—-1
R+ 0= Ty — 20

is pointwise nonnegative, which is granted if

2
d 2d? +1 2d
D) <(pml) e e p< 2T gt o 20 o
[(p )d+2} <-D753 P=a—1e S 42
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Bifurcation point of view

The interpolation inequality from the point of view of bifurcations
IVulltaey + Mulltess > pN) [[ullf s
Taylor expansion of u =1+ ¢ey; as € = 0 with — Ap; =d ¢

p(A) <X if (and only if) A > %
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Entropy mmhodq without weights ghe Eelep=ltimeny meied on the selhere
ényi entropy powers

Symmetry brea wind linearization
. ‘ Self-similar variables and relative entropies
TR sl Vo Ees Crel G fis \‘Hmh i
The role of the spectral gap

o FEuclidean space: Existence, classical results

Fuast diffusion and porous medium equation
=Au™ zeRY t>0

Self-similar (Barenblatt) function: U(t) = O(t~¢/(2=d1=m))) a5
t — +o0
(Friedmann, Kamin, 1980) |ju(t,-) — U(t,-)|| L = o(t~%/ (2=d(1=m))

heat equation

fast diffusion equation - -
porous media equation

— —> m

extinction in finite time

global existence in L'

Existence theory, critical values of the parameter m
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Inequalities without weights and fast
diffusion equations

> Rényi entropy powers
> Self-similar variables and relative entropies
> Equivalence of the methods ?

> The role of the spectral gap
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Rényi entropy powers and fast diffusion

> Rényi entropy powers, the entropy approach without rescaling:
(Savaré, Toscani): scalings, nonlinearity and a concavity property
inspired by information theory

> faster rates of convergence: (Carrillo, Toscani), (JD, Toscani)
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The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in R¢, d > 1

v

o Ap™

o~
with initial datum v(z,t = 0) = vo(x) > 0 such that [, vodz =1 and
Jga lz> vo dz < +o00. The large time behavior of the solutions is
governed by the source-type Barenblatt solutions

1 T
Ul @) := (ntl/ﬂ)d B*(mtl/u>
where 2 jim (1
pw:=2+d(m-—1), =
and B, is the Barenblatt profile
By o | O im>
(Co+ 12" itm <1
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The Rényi entropy power £

The entropy is defined by

E ::/ v dx
R4

and the Fisher information by

I ::/ v|Vp|*dr with p= ™t
Rd m—1
If v solves the fast diffusion equation, then
E=(1-m)l
To compute I, we will use the fact that
Ip
— =(m-1)pA 2
5 = (m—1)pAp+[Vp|
. I 2 1 2 1
F:=E° th = =1 -1 —
Ay ey Rl (d+m ) dl—m

has a linear growth asymptotically as t — 400
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o The concavity property

(Toscani-Savaré) Assume thatm >1— 3% ifd>1 andm >0 ifd=1.
Then F(t) is increasing, (1 —m)F"”(t) <0 and

1
lim —F(t)=(1-m)o lim E7"'1=(1-m)oE] "I,

t—+oo t t——+o00

(Dolbeault-Toscani) The inequality
E° 11> ET L,
is equivalent to the optimal Gagliardo-Nirenberg inequality

Vw3 lwlgyd = Con llwllzg

w 1

_ 1 m—=1/2 _ _w _ 1
if 1 < m < 1. Hint: v Twl 4= Zm=1
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elative entropies

sir
s wolle o (i el (5o

The proof

If v solves = Av™ with é <m <1, then

d
=2 | vlVpPde= _2/ o™ (D2l + (m — 1) (Ap)?) da
Rd R4

Explicit arithmetic geometric inequality

1 1
D% - § (a9)? = | D% - § ap1d

There are no boundary terms in the integrations by parts (! ?7)
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Entropy methods without weights The Bakry-Emery method on the sphere
> Rényi entropy powers
Self-similar variables and relative entropies
e Kol GF (e craeeiosl] G0

Remainder terms

F' = —o (1 —m)R[v]. The pressure variable is P = {7 L

P|?dz |
Rlel = (=) (1= m) 7 [ om ‘AP—fRdUW' d
R fRdvmdx

+ 2EH/ o™ | D?P - 1 APId || da
R4

Let

Glv] := a(lF[j]m) = (/Rd vmdx)al /Rdv\VPde

The Gagliardo-Nirenberg inequality is equivalent to G[vg] > Glvy]

Glvo] = Gl + /0 R, )] de
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What’s next 7

We redo the computation for the Rényi entropy power F' in terms of
self-similar variables using (in some sense) the less accurate notion of
relative entropie but...

> we can justify the integrations by parts
> a (very nice) spectral gap appears

> the spectral gap explains why the Bakry-Emery method is so
accurate
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Self-similar variables and relative entropies

The large time behavior of the solution of % = Av™ is governed by
the source-type Barenblatt solutions

1 T
Us(t, ) == /{d(,ut)d/NB*<n(ut)1/N) where p:=2+d(m-—1)

where B, is the Barenblatt profile (with appropriate mass)
B (x) = (1 + |x|2) L/(m=1)

A time-dependent rescaling: self-similar variables

_ 1 =z AR _ gy 1 R(t)
v(t,x) = prT u<7, HR) where T RF, 1(t) := 5 log ( o

Then the function u solves a Fokker-Planck type equation

%+v. [u(Vum_l— 23@)] =0

J. Dolbeault Flows, linearization, entropy methods
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3 The role of the spectral gap

Free energy and Fisher information

@_ The function u solves a Fokker-Planck type equation

g—:_t+V~ {u(Vum_l— 2x)} =0

@ (Ralston, Newman, 1984) Lyapunov functional:
Generalized entropy or Free energy

Flu) ::/ (_u + |x|2u> dx — F
Rd m

@_ Entropy production is measured by the Generalized Fisher
information

d

—Fu] = =Tu], Tu) ::/ u‘Vum_l + 233’2 dz
dt Rd

J. Dolbeault Flows, linearization, entropy methods
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a Relative entropy and entropy production

Q. Stationary solution: choose C such that [Jus||pr = ||uljlpr = M >0

use(x) = (C + |af2) [T

Relative entropy: Fix Fy so that Flus] =0
@ Entropy — entropy production inequality (del Pino, J.D.)

Theorem

d23,m€[%,+oo),m>%,m7é1

I[u] > 4F[u]

Corollary

(del Pino, J.D.) A solution u with initial data ug € L% (R?) such that
|z|? up € LY(RY), u* € LY(R?) satisfies

Flu(t, )] < Flule™**

J. Dolbeault Flows, linearization, entropy methods
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A computation on a large ball, with boundary terms

?—i-v [u(Vum_1—2x)}=O 7>0, x€Bpg

where Bp is a centered ball in R? with radius R > 0, and assume that
u satisfies zero-flux boundary conditions

(Vum'— 2z)- = =0 7>0, x€0Bx.

||
With z(7,z) := VQ(r,2) := Vu™ ! — 2z, the relative Fisher
information is such that

d
— u|z|2dx—|—4/ u|z|? da
dT Br Br

+2lm / ™ ([[P2Q]* = (1= m) (AQ)?) dx
Br
= / u™ (w- V|z[*) do < 0 (by Grisvard’s lemma)
OBr
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Another improvement of the GN inequalities

We recall the definitions of the relative entropy
Eu] = —— (u™ — B — mBP ! (u— B,))dx
Rd

the relative Fisher information
J[u] ::/ u|z|? dx :/ u [Vu™ ! — 2w’2dx
Rd Rd

and Rlu] := 27/ |D2QH —m) (AQ)2) dx

If1—-1/d<m <1 andd>2, then

Ilug] — 4E[ug] > /O ~ Rju(r, )] dr

J. Dolbeault Flows, linearization, entropy methods
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o Entropy — entropy production and GN inequality

4 Eu] < Tu)

2p m

Rewrite it with p = u=w?, ym = wPt! as

_ 1
2m—1"

L 2m 2/|V|d+1d/|””d K>0
o\2m—1) Jou. T 10 a1 AT B 2

e for some v, K = K ([paudz = [p, w? d:r)v

O W= Wy = voé P is optimal for the Gagliardo-Nirenberg inequality

Theorem

[Del Pino, J.D.] With 1 < p < 2% (fast diffusion case) and d > 3

lwllp2p(rey < Ca IVl Zaay lwll5 % gay

eGN_<y<p71>2)%<zy-d)%( r) ) §— __dp-) ptl
pd =\ 27d 2y Tw-9) 7~ pare-@-2p’ ¥ = p-1
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Sharp rates of convergence

Assumptions on the initial datum v
(H1) Vp, <wvy < Vp, for some Dy > Dy >0

(H2) if d > 3 and m < m., (vo — Vp) is integrable for a suitable
D e [D17 Do}

Theorem

(Blanchet, Bonforte, J.D., Grillo, Vézquez) Under Assumptions
(H1)-(H2), if m <1 and m # m, := the entropy decays
according to

d2’

Flo(t, )] < Ce 20-mAaat i >0

where Ay q > 0 is the best constant in the Hardy-Poincaré inequality

Ao | 1P dpas < / Vi dua Y f € B (duo)
R4 R4

with o :=1/(m —1) <0, dtg = ho dz, ho(z) := (1 + |2|?)®
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The linearized problem: exponential decay

The Hardy—Poincaré inequality

Ao [ /2 dptas < / VP dpe Y f € H'(dp)
Rd Rd

is the entropy — entropy production inequality associated with the
evolution equation after linearization around the Barenblatt profile
If we consider the scalar product

<f17f2> = /]Rd f1 f2d,ua—1

where dy,_1 = (14 |2]?)*~tdz = h_1 dz and the linearized operator
Lf:=hi1_a V- (ha V)
then the solution of 9, f = £ f is such that

d
G ==2@r ) = =2 [ IV < =200a (5. 0)
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Entropy methods without weights
Symmetry breaking and linearization
Weighted nonlinear flows and CKN inequalities

Plots (d = 5)

M A Spectrum of £os
A
*‘%\1/’

The Bakry-Emery method on the sphere
Rényi entropy powers
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A= —8a—4(d+2)

Spectrum of
(1=m) £y fonorya

Mt =60 -2(d-+2)

(@=5

(d=5)
6
dap A
o 5 ~4a-2d
4
Essential spectrum of Lo.g
AP = Hd+2a -2
. Essential spectrum

Of (1 =m) L1fom-1,a

7 4
e

o o =
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Improved asymptotic rates

(Bonforte, J.D., Grillo, Vdzquez) Assume that m € (mq,1), d > 3.
Under Assumption (H1), if v is a solution of the fast diffusion
equation with initial datum vg such that fRd xvgdzr = 0, then the
asymptotic convergence holds with an improved rate corresponding to
the improved spectral gap.
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Higher order matching asymptotics

(J.D., G. Toscani) For some m € (me,1) with m. := (d —2)/d, we
consider on R? the fast diffusion equation

0
8—2‘ 4V (Ve =0
Without choosing R, we may define the function v such that
u(t,y +x0) = R %v(t,z), R=R(r), t= 1logR, z= %

Then v has to be a solution of

0
(,7: +V. {v (U%(m_m“) Vo™l —23:)] =0 t>0, zeR?

with (as long as we make no assumption on R)
1-m) IR
dr

20_7%(m7mc) _ Rl*d(
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Refined relative entropy

Consider the family of the Barenblatt profiles

B,(z):=0 —% (Cn + L) ™ T ygeRY (1)

Note that o is a function of ¢: as long as E # 0, the Barenblatt
profile B, is not a solution (it plays the role of a local Gibbs state) but

we may still consider the relative entropy
1
Fov] := 71/ [0 = B —m B! ' (v— B,)] dx

The time derivative of this relative entropy is

d _do ([ d m me1l m—1) OV
@ga(t)[v(t’ )] B E (da'?g[v]>a o A (U B“(t ) dx

t) m—1 Rd 8t

choose it =0
<= Minimize F,[v] wr.t. 0 < [p.|2]> By de = [y |2]* vdz
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The entropy / entropy production estimate

Using the new change of variables, we know that

d mo(t)s(m—me) me1_ pm
iTeolett) == [ ofe [t - [

Let w := v/ B, and observe that the relative entropy can be written as

Folv] = % y [w— 1- %(wm - 1)] B dx

(Repeating) define the relative Fisher information by

Is[v] := /Rd

so that %S"U(t)[v(t, N=—m(1—m)olt) T lot,)] Vi 0

1

2
—— V[ =) By Y| Bowda

When linearizing, one more mode is killed and o(t) scales out
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Improved rates of convergence

Theorem (J.D., G. Toscani)

Let m € (mq,1), d > 2, vo € LY (R?) such that v§', |y|* vo € L*(R?)
Flo(t,)] < Ce 27t vi>0

((d=2) m—(d—4))*
where 1(1—m)

Y(m) =4 4(d+2)m—4d
4

me S (ﬁll,mg]
me € [ﬁlg,mg]

if m € [mg, 1)
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v(m)
4
my = %
4
a+6
2
[E— TN |
— Case 2
e Cage 3
0 m
1
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Comments

o A result by (Denzler, Koch, McCann)Higher order time
asymptotics of fast diffusion in Fuclidean space: a dynamical
systems approach

@ The constant C' in
Flo(t,)] < Ce 27t yi>0

can be made explicit, under additional restrictions on the initial
data (Bonforte, J.D., Grillo, Vazquez) + work in
progress(Bonforte, J.D., Nazaret, Simonov)
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Symmetry and symmetry breaking
results
I The critical Caffarelli-Kohn-Nirenberg inequality
> A family of sub-critical Caffarelli-Kohn-Nirenberg inequalities

> Linearization and spectrum
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Critical Caffarelli-Kohn-Nirenberg inequality

Let Dy = {v € L7 (RY, |z| ™0 da) : |o|~|Vo| € L2 (RY, dx) }

P 2/p 2
(/ i dm) <o [ ML voeo,,
R

a |xfbr ra T2

holds under the conditions that a < b<a+1ifd>3,a<b<a+1if
d=2,a+1/2<b<a+1lifd=1,and a < a.:=(d—2)/2
2d

P=a=2120—a)

(critical case)

> An optimal function among radial functions:
v 17

— ae.—a _%2 *
R e N

Question: Cop, = Cj (symmetry) or Cop > C7 ) (symmetry breaking) ?
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Critical CKN: range of the parameters

Figure: d =3 b b—at

P 2/p 2
/ |U|b dx < Cmb/ @dl‘
Re |z[°P e |z[2® L P

0
[~

-1 a

— ! .

b=a

[
¥

a<b<a+1ifd>3
a<b<a+lifd=2,a+1/2<b<a+1lifd=1
and a < a. = (d —2)/2
B 2d (Glaser, Martin, Grosse, Thirring (1976))
P= 05 +2(b—a) (Caffarelli, Kohn, Nirenberg (1984))
(F. Catrina, Z.-Q. Wang (2001))
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Linear instability of radial minimizers:
the Felli-Schneider curve

The Felli & Schneider curve b
d(a.—a)

brg(a) = +a— a.
rs(a) o0/(ac—aP +d—1

/ 0

(Smets), (Smets, Willem), (Catrina, Wang), (Felli, Schneider)

The functional
2 D 2/p
CZb/ ﬂdw— / id dx
Y Jra |z[?® Ra |z]P

is linearlv instable at v = v..
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Symmetry versus symmetry breaking:
the sharp result in the critical case

(JD, Esteban, Loss (Inventiones 2016))

Let d > 2 and p < 2*. If either a € [0,a.) and b > 0, or a < 0 and
b > brs(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric
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The Emden-Fowler transformation and the cylinder

> With an Emden-Fowler transformation, critical the
Caffarelli- Kohn-Nirenberg inequality on the Fuclidean space are
equivalent to Gagliardo-Nirenberg inequalities on a cylinder
x
v(r,w) =r""% p(s,w) with r=lz|, s=—logr and w=-—
r

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as the subcritical interpolation inequality

10s0E2(e) + IVwillEa(ey + AllelEaie) = n) l@lioe) Yo € HI(C)

where A := (a. — a)?, € = R x S?~! and the optimal constant u(A) is

1
,u(A):C with a=a.+ VA and bzg:t\/x
a,b
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Linearization around symmetric critical points

Up to a normalization and a scaling
0« (s,w) = (cosh s)fplfz
is a critical point of
H'(€) 3 ¢ = [10s9llT2(e) + Vullfze) + Allelize

under a constraint on [[¢|[f, ¢
s 1s not optimal if the Poschl-Teller operator
1

—02 A AP =02 A+ A ——
(cosh )

has a negative eigenvalue
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Subcritical Caffarelli-Kohn-Nirenberg inequalities

_ 1/
Norms: [[wllg,y := (fga lw|? 277 dz) ™, JJwllg = [[wllg,0
(some) Caffarelli-Kohn-Nirenberg interpolation inequalities (1984)
lwll2p,y < Coyp IV0ll3 6 101357 (CKN)

Here Cg,,, denotes the optimal constant, the parameters satisfy

d>2, y—2<B<%PZy, ye(-oo,d), pe(lp] withp, =752

and the exponent ¥ is determined by the scaling invariance, i.e.,

9 = (d—v) (p—1)
P (d+6+2—2 y—p (d—ﬂ—2))

@ Ts the equality case achieved by the Barenblatt / Aubin-Talenti
type function

w,(zr) = (1+ |x\2+577)71/(p71) VeeRY ?

@ Do we know (symmetry) that the equality case is achieved among
radial functions?
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Range of the parameters
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o Symmetry and symmetry breaking

(JD, Esteban, Loss, Muratori, 2016)

Let us define fps(7) :=d —2 —/(d — )2 —4(d — 1)

Symmetry breaking holds in (CKN) if

d—2
~v<0 and Bps(7)<ﬁ<7'y

In the range Brs(y) < 8 < %%2 ~
w,(z) = (1+ |w|2+ﬁ*7)71/<p7])

s mot optimal
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A

B=Prs(y)

The grey area corresponds to the admissible cone. The light grey area
is the region of symmetry, while the dark grey area is the region of
symmetry breaking. The threshold is determined by the hyperbola

(d=7)?=(B~-d+2)?~4(d-1)=0
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A useful change of variables

With

d—n
B+2—7v’
(CKN) can be rewritten for a function v(|z|* 1 z) = w(zx) as

azl—i—% and n=2

[v]l2p,a—n < Ka,np HQ(W||2(1 n ||U| p+1 d—n

with the notations s = |z|, Dav = (a 92,1 V,v). Parameters are in
the range

n
n—2

d>2, a>0, n>d and pe (1,ps], ps:=
By our change of variables, w, is changed into
ve(z) = (1+ |a:|2)_”+1 Yz eR?
The symmetry breaking condition (Felli-Schneider) now reads

d—1
n—1

a < apg  with  apg :=

J. Dolbeault Flows, linearization, entropy methods
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The second variation

d[v] == 9 log ([ Davll2,d—n) + (1 = 9) log ([|v][p+1,d-n)
+ 10g Ka,n,p - IOg (”v”?Pad—n)

Let us define dus := us(z) dz, where pus(z) := (14 |2|?)7?. Since v, is
a critical point of J, a Taylor expansion at order €2 shows that

||©04U*||§,d—n3[v*+€,u6/2 f] 25 ﬂQ[f] (82)

. 2
with § = prl and

2
f1= Jaa DafPlal" = dps — 225 [ou | [~ dpisin
We assume that [, f |[2|" " dpsi1 = 0 (mass conservation)
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o Symmetry breaking: the proof

Proposition (Hardy-Poincaré inequality)

Let d > 2, a € (0,400), n > d and 6 > n. If f has 0 average, then
/ 1Daf? ||~ dps zA/ 12 12"~ dptsr
R4 R4

with optimal constant A = min{2a? (28 —n),2a?dn} where 7 is the
unique positive solution to n (n+mn —2) = (d — 1)/a®. The
corresponding eigenfunction is not radially symmetric if

d—1) 62
& > oo (2(5—73 =S

Q>0iff 4pp_°i2 < A and symmetry breaking occurs in (CKN) if

4pa?

p—1

2026 < —= n<l1

d—1
= s =n1m+n-2)<n-1 <= a>ars
(8%
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Weighted nonlinear flows:
Caffarelli-Kohn-Nirenberg

inequalities
> Entropy and Caffarelli-Kohn-Nirenberg inequalities

> Large time asymptotics and spectral gaps

> Optimality cases
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CKN and entropy — entropy production inequalities

When symmetry holds, (CKN) can be written as an entropy — entropy
production inequality

L (24 8 =) F[v] < 9]
and equality is achieved by Bg . Here the free energy and the
relative Fisher information are defined by
1 m m 1 dx
Tl = m/ﬂw (” —B5, —mBg " (v— ‘Bm)) R

2 dx
. m—1 _

If v solves the Fokker—Planck type equation
v+ |z|TV - [|x|7ﬁ vV ("t — \x|2+ﬁ77)} =0 (WFDE-FP)

then p
@ so(t,9] =~ T2 3le(r, )

1—m
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Let m = ”2—';1 and consider a solution to (WFDE-FP) with

nonnegative initial datum ug € L7 (R?) such that ||uZ||1 and
Jga wo |x|*TP=27 dz are finite. Then

Flu(t, )] < Flug) e A1 wir>0

if one of the following two conditions is satisfied:
(i) either ug is a.e. radially symmetric
(ii) or symmetry holds in (CKN)

J. Dolbeault Flows, linearization, entropy methods
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A useful change of variables

With d
- -7
a=14—— and n=2——-—,
2 B+2—v
(CKN) can be rewritten for a function v(|z|*~!z) = w(z) as
[vll2p,d—n < Kayn,p HQQUHQ d—n ||U||p+1 d—n

with the notations s = |z], Dav = ( gz, 1V,v). Parameters are in
the range

d>2, a>0, n>d and pe (1,ps], ps:= 5
n—

By our change of variables, w, is changed into
ve() := (1+||)1/p1) VzeR?
The symmetry breaking condition (Felli-Schneider) now reads
d—1
n—1

a > aps with  apg =
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Towards a parabolic proof

Large time asymptotics and spectral g

aps

Forany a>1,let 2D, W = (a OW, r—1 VwW) so that

Do =V+(a—1) (z-V)=V+(a—1)wor

[
and define the diffusion operator L, by
-1 A,
Ly = —D:D, = a? <6f+ n ar> +
r

r2

where A,, denotes the Laplace-Beltrami operator on S¢~!
% = Log™ is changed into

Ou =D (uz), 2:=04q, q:=u" =B B, (z): <
or

by the change of variables
4 =R R(0) =

T
u<T, —) where
v \" kR (1) = 4 log (™)

g(tvx) -

J. Dolbeault Flows, linearization, entropy methods
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If the weight does not introduce any singularity at = 0...

_m_ i/ 2| dpn
Br

1—mdr

= / u™ (w-Dalz?) |2]"“do (< 0 by Grisvard’s lemma)
OBr
-2 (m—14 1) / u™ |Lag|? dpin,
Br

—/ u™ (a4m1
Br

_ (n _ 2) (O‘%S - QQ)/ |qu| djin
Br

7,4

_d _ __Awg
q T a2 (n—1)r2

/ \4 2
_1_% ‘qu _qu‘ )dﬂn

A formal computation that still needs to be justified

(singularity at x =0 ?)

@ Other potential application: the computation of Bakry, Gentil and
Ledoux (chapter 6) for non-integer dimensions; weights on manifolds

[..]
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Fast diffusion equations with
weights: large time asymptotics

o Relative uniform convergence
e Asymptotic rates of convergence

o From asymptotic to global estimates

Here v solves the Fokker-Planck type equation

v+ |z V- [|x|*5 vV (- \x|2+f5*7)} —0  (WFDE-FP)

Joint work with M. Bonforte, M. Muratori and B. Nazaret
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Relative uniform convergence

L- (1- q505) =150 0)

U=m) 2+8-7) ¢ ip the range 0 < 6 < —;:Z <1

0= myermiersa

Theorem

For “good” initial data, there exist positive constants K and tg such
that, for all q € [2_—m oo] , the function w = v/B satisfies

1-m?

5 (1-m)? .
llw(t) — 1||qu(Rd) <Ke 2 Fm Ac(t=to) ¢ > to

in the case v € (0,d), and

CEEEAG—) vy >

lw(®) = o gey < Ke™?

in the case v <0
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Essential spectrum

Essential spectrum

The spectrum of £ as a function of § = ﬁ7 with n = 5. The
essential spectrum corresponds to the grey area, and its bottom is
determined by the parabola 0 — Aegs(). The two eigenvalues Ag 1
and Ap o are given by the plain, half-lines, away from the essential
spectrum. The spectral gap determines the asymptotic rate of
convergence to the Barenblatt functions
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Main steps of the proof:

@ Existence of weak solutions, L contraction, Comparison
Principle, conservation of relative mass

Q@ Self-similar variables and the Ornstein-Uhlenbeck equation in
relative variables: the ratio w(t, x) := v(¢, z)/B(x) solves

2| T wy = — 5 V- (\w\_ﬂ BwV (wmt—1)B8m1) ) in Rt x R¢

w(0,-) = wp := v /B in R?

Q@ Regularity, relative uniform convergence (without rates) and
asymptotic rates (linearization)

Q@ The relative free energy and the relative Fisher information:
linearized free energy and linearized Fisher information

@ A Duhamel formula and a bootstrap

J. Dolbeault Flows, linearization, entropy methods
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a Regularity (1/2): Harnack inequality and Holder

We change variables: x + |2|*~! x and adapt the ideas of
F. Chiarenza and R. Serapioni to

up + DZ[a(@au—i—Bu)} =0 in Rt xRY

Proposition (A parabolic Harnack inequality)

Letd>2, a>0 andn > d. If u is a bounded positive solution, then
for all (tg, o) € RT x R and r > 0 such that Q,(to,zo) C R x By,
we have
sup u< H inf wu
Q7 (to,0) QF (to,20)
The constant H > 1 depends only on the local bounds on the

; . 2(d=)
coefficients a, B and on d, a, and n := Fra—y

By adapting the classical method a la De Giorgi to our weighted
framework: Holder regularity at the origin
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a Regularity (2/2): from local to global estimates

Lemma

If w is a solution of the the Ornstein- Uhlenbeck equation with initial

datum wy bounded from above and from below by a Barenblatt profile
(+ relative mass condition) = “good solutions”, then there exist

v € (0,1) and a positive constant K > 0, depending on d, m, B, ~, C,
C4, C5 such that:

@

T
Ao Tl

||Vv(t)||Lw(BzA\Bk) < Vi>1, VA>1,

il>111) ||’w||ck((t7t+1)><B§) <oo VkeN, Ve>0

sup [[w(t)||cv ey < 00
t>1

sup [w(T) = 1w ey <X sup [w(7) = e gay VE=1
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Asymptotic rates of convergence

Assume that m € (0,1), with m # m, := 2=. Under the relative
mass condition, for any “good solution” v there exists a positive
constant C such that

Flo(t)] < e~ 2(-mIAL yi >,

@ With Csiszar-Kullback-Pinsker inequalities, these estimates provide
a rate of convergence in L7 (R?)

@ Improved estimates can be obtained using “best matching
techniques”
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From asymptotic to global estimates

When symmetry holds (CKN) can be written as an entropy — entropy
production inequality

2+ 8- <
so that
Flo)] < Fw(0)] e 20 At v >0 with A, = %
Let us consider again the entropy — entropy production inequality
K(M)F[v] <Iw] VoveL™(RY) such that |v]j;, =M,

where K(M) is the best constant: with A(M) := 2 (1 —m) 2K (M)

Flo(t)] < Fv(0)] e~ 20" ABMDE yi >
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o Symmetry breaking and global entropy — entropy
production inequalities

o In the symmetry breaking range of (CKN), for any M > 0, we have
0<K(M)<2(1-—m)?Aoy

o If symmetry holds in (CKN) then
K(M) = 52 (2+ 8 —7)?

(JD, Simonov) In the whole symmetry range,

K(M) =52 (246 - )
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Linearization and optimality

Joint work with M.J. Esteban and M. Loss

o (=] =
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Linearization and scalar products

With u,. such that
u, = B, (1+€f317m) and / u. dx = M,
Rd

at first order in ¢ — 0 we obtain that f solves

0
8—{ =Lf where Lf:=(1-m)B " 2|z|" D} (|2| 7 BiDaf)
Using the scalar products

<f1,f2> :/d fl f2 .Bz_mﬁ and <<f1’f2>> :/Rd gafl'gafé.B*é%

[

2q dx
s =L n == [ PurPr s = - ()

for any f smooth enough, and

50 = [ Daf Dale Huss =~ (. £)
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Linearization of the flow, eigenvalues and spectral gap

Now let us consider an eigenfunction associated with the smallest
positive eigenvalue \; of £

-Lfi=Mh

so that f; realizes the equality case in the Hardy-Poincaré inequality
(g.9) == (fLNH =Mlg—gll*, g=1(9.1)/(L1)

—{9.£9) =X (g,9)
Proof: expansion of the square :
—(9-9),L(g-9)=(L(9-9),L(g-9)=£(g-9I?
@ Key observation:

d—1
n—1

J. Dolbeault Flows, linearization, entropy methods
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Symmetry breaking in CKN inequalities

@ Symmetry holds in (CKN) if J[w] > J[w,] with

Iw] =9 log ([[Dawll,s) + (1 = ¥) log (]

[w|lp+1,5) — log ([[wll2p,s)
with 6 :=d — n and

Jlw, +eg] = 2 Q[g] + o(e?)
where
2 |Daw.ll3,4-n Q9]

_ wn—d
= Dagll3 a-n + PG [d =7 —p(d =2 B)] /d 9P P da

1+[z[?
Y ||~
~p(p=1) S [ (o i do

is a nonnegative quadratic form if and only if a < apg

@ Symmetry breaking holds if a > apg

J. Dolbeault Flows, linearization, entropy methods
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Information — production of information inequality

Let X[u] be such that
d
—1J
dr

If o« < apg, then A\ > 4 and

[u(T, )] = = K[u(r, )] = — (sum of squares)

K[u]

I[u]

is a nonnegative functional
With u. = B, (1 +ef Bi_m), we observe that

K] K] (RLF) | (ALA)
tsC=ntgr ity =G G

@ if A\ =4, that is, if & = apg, then inf X/J = 4 is achieved in the
asymptotic regime as u — B, and determined by the spectral gap of £
@ if A\; >4, that is, if @ < aFg, then X/J > 4
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Symmetry in Caffarelli-Kohn-Nirenberg inequalities

If a < apg, the fact that K/J > 4 has an important consequence.
Indeed we know that
d
5, Qlu(r )] = 45u(r, )])) <0
so that
Ju] — 4F[u] > J[B,] — 4F[B,] =0

This inequality is equivalent to J[w] > J[w,], which establishes that
optimality in (CKN) is achieved among symmetric functions. In other
words, the linearized problem shows that for a < agg, the function

7= Ju(r, )] — 4 Flu(r, )]

is monotone decreasing
@ This explains why the method based on nonlinear flows provides
the optimal range for symmetry
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http://www.ceremade.dauphine.fr/~dolbeaul/Conferences/
> Lectures
The papers can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/list/
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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