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Introduction
Stationary solutions and phase transition

Stability and coercivity

A simple version of the Cucker-Smale model
A model for bird flocking (simplified version)

∂f
∂t = D ∆vf +∇v · (∇vϕ(v) f − uf f )

where uf =
∫

v f dv is the average velocity
f is a probability measure

ϕ(v) = 1
4 |v|

4 − 1
2 |v|
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(J. Tugaut, 2014)
(A. Barbaro, J. Cañizo, J.A. Carrillo, and P. Degond, 2016)
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Introduction
Stationary solutions and phase transition

Stability and coercivity

Stationary solutions: phase transition
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d = 1: there exists a bifurcation point D = D∗ such that the only
stationary solution corresponds to uf = 0 if D > D∗ and there are
three solutions corresponding to uf = 0, ±u(D) if D < D∗

uf = 0 is linearly unstable if D < D∗

Notation: f (0)
? , f (+)

? , f (−)
?

J. Dolbeault Flows, linearization, entropy methods
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Stationary solutions and phase transition

Stability and coercivity

Dynamics
The free energy

F[f ] := D
∫
Rd

f log f dv +
∫
Rd

f ϕ dv − 1
2 |uf |2

decays according to

d
dtF[f (t, ·)] = −

∫
Rd

∣∣∣∣D ∇vf
f +∇vϕ− uf

∣∣∣∣2 f dv

d = 1: if F[f (t = 0, ·)] < F[f (0)
? ] and D < D∗, then

F[f (t, ·)]− F
[
f (±)
?

]
≤ C e−λ t

d = 1: λ is the eigenvalue of the linearized problem at f (±)
? in the

weighted space L2
(

(f (±)
? )−1

)
with scalar product

〈f , g〉± := D
∫
R

f g
(

f (±)
?

)−1
dv − uf ug

J. Dolbeault Flows, linearization, entropy methods
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The Cucker-Smale model
Results and proofs
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The critical noise
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An homogenous Cucker-Smale model

∂f
∂t = D ∆f +∇ ·

(
(v − uf ) f + α v

(
|v|2 − 1

)
f
)

Here t ≥ 0 denotes the time variable, v ∈ Rd is the velocity variable

uf (t) =
∫
Rd v f (t, v) dv∫
Rd f (t, v) dv

is the mean velocity

(J. Tugaut), (A. Barbaro, J. Canizo, J. Carrillo, P. Degond)

Theorem (X. Li)

Let d ≥ 1 and α > 0. There exists a critical D∗ > 0 such that
(i) D > D∗: only one stable stationary distribution with uf = 0
(ii) D < D∗: one instable isotropic stationary distribution with

uf = 0 and a continuum of stable non-negative non-symmetric
polarized stationary distributions (unique up to a rotation)

J. Dolbeault Flows, linearization, entropy methods
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Stability and coercivity

Stationary solutions and their stability
The critical noise
Relative entropy and related quantities

Any stationary solution can be written as

fu(v) = e−
1
D ( 1

2 |v−u|2+α
4 |v|

4−α2 |v|
2)∫

Rd e−
1
D ( 1

2 |v−u|2+α
4 |v|

4−α2 |v|
2) dv

where u = (u1, ..ud) ∈ Rd solves
∫
Rd (u− v) fu(v) dv = 0

Up to a rotation, u = (u, 0, ...0) = u e1 is given by

H(u) = 0

where

H(u) :=
∫
Rd

(v1 − u) e− 1
D (ϕα(v)−u v1) dv and ϕα(v) := α

4 |v|
4+ 1−α

2 |v|
2
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Stability and coercivity

Stationary solutions and their stability
The critical noise
Relative entropy and related quantities

A technical observation

H(u) = α

∫
Rd

(
1− |v|2

)
v1 e− 1

D (ϕα(v)−u v1) dv

because (integrate on Rd)

−D ∂

∂v1

(
e− 1

D (ϕα(v)−u v1)
)

=
(
v1 − u + α

(
|v|2 − 1

)
v1
)

e− 1
D (ϕα(v)−u v1)

(integrate on Rd) and

H′(u) = α
D
∫
Rd (1− |v|2) v2

1 e− 1
D (ϕα(v)−u v1) dv , H′(0) = α

D |S
d−1|

(
jd+1−jd+3

)
where jd(D) :=

∫∞
0 sd e− 1

D ϕα(s) ds + elementary manipulations

jn+5 − 2 jn+3 + jn+1 =
∫ ∞

0
sn+1 (s2 − 1

)2 e−
ϕα
D ds > 0

α jn+5 + (1− α) jn+3 =
∫ ∞

0
sn+2 ϕ′α e− 1

D ϕα ds = (n + 2) D jn+1

J. Dolbeault Flows, linearization, entropy methods
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Relative entropy and related quantities

The bifurcation point D∗

If d = 1, let us consider a continuous positive function ψ on R+ such
that the function s 7→ ψ(s) es2 is integrable and define

H (u) :=
∫ +∞

0

(
1− s2) ψ(s) sinh(s u) ds ∀ u ≥ 0

For any u > 0, H ′′(u) < 0 if H (u) ≤ 0. As a consequence, H changes
sign at most once on (0,+∞)

If d ≥ 2, consider a series expansion

Lemma

H(u) = 0 has as a solution u = u(D) > 0 if and only if D < D∗ and
limD→(D∗)− u(D) = 0

J. Dolbeault Flows, linearization, entropy methods
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Figure: Plot of u 7→ H(u) when d = 2, α = 2, and D = 0.2, 0.25, . . . 0.45
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Relative entropy and related quantities
Free energy

F[f ] := D
∫
Rd

f log f dv +
∫
Rd

f ϕα dv − 1
2 |uf |2

Relative entropy with respect to a stationary solution fu

F[f ]− F[fu] = D
∫
Rd

f log
(

f
fu

)
dv − 1

2 |uf − u|2

Relative Fisher information

I[f ] :=
∫
Rd

∣∣∣∣D ∇f
f + α v |v|2 + (1− α) v − uf

∣∣∣∣2 f dv

Non-equilibrium Gibbs state

Gf (v) := e−
1
D ( 1

2 |v−uf |2+α
4 |v|

4−α2 |v|
2)∫

Rd e−
1
D ( 1

2 |v−uf |2+α
4 |v|

4−α2 |v|
2) dv

J. Dolbeault Flows, linearization, entropy methods
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Gibbs state vs. stationary solution

F[f ] is a Lyapunov function in the sense that

d
dtF[f (t, ·)] = − I[f (t, ·)]

where F[f ]− F[fu] = D
∫
Rd

f log
(

f
fu

)
dv − 1

2 |uf − u|2 and

I[f ] = D2
∫
Rd

∣∣∣∣∇ log
(

f
Gf

)∣∣∣∣2 f dv

d
dtF[f (t, ·)] = 0 if and only if f = Gf is a stationary solution

J. Dolbeault Flows, linearization, entropy methods
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Stability and coercivity

Two quadratic forms
Coercivity
Rates of convergence

Stability and coercivity

Q1,u[g] := lim
ε→0

2
ε2 F

[
fu(1 + ε g)

]
= D

∫
Rd

g2 fu dv −D2 |vg|2

where vg := 1
D
∫
Rd v g fu dv

Q2,u[g] := lim
ε→0

1
ε2 I

[
fu (1 + ε g)

]
= D2

∫
Rd
|∇g − vg|2 fu dv

Stability: Q1,u ≥ 0 ?
Coercivity: Q2,u ≥ λQ1,u for some λ > 0 ?

J. Dolbeault Flows, linearization, entropy methods
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Stability and coercivity

Two quadratic forms
Coercivity
Rates of convergence

Stability of the isotropic stationary solution

Q1,0[g] = D
∫
Rd

g2 f0 dv −D2 |vg|2

We consider the space of the functions g ∈ L2(f0 dv) such that∫
Rd

g f0 dv = 0

Lemma (X. Li)

Q1,0 is a nonnegative quadratic form if and only if D ≥ D∗ and

Q1,0[g] ≥ η(D)
∫
Rd

g2 f0 dv

for some explicit η(D) > 0 if D > D∗

J. Dolbeault Flows, linearization, entropy methods
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Coercivity
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Stability of the polarized stationary solution

Corollary (X. Li)

F has a unique nonnegative minimizer with unit mass, f0, if D ≥ D∗.
Otherwise, if D < D∗, we have

minF[f ] = F[fu] < F[f0]

for any u ∈ Rd such that |u| = u(D).

The minimum is taken on L1
+
(
Rd , (1 + |v|4) dv

)
such that

∫
Rd f dv = 1

Corollary (X. Li)

Let D < D∗, |u| = u(D) 6= 0. Then

Q1,u[g] ≥ 0

Hint: fu minimizes the free energy

J. Dolbeault Flows, linearization, entropy methods
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A coercivity result
Poincaré inequality: if

∫
Rd h fu dv = 0∫

Rd
|∇h|2 fu dv ≥ ΛD

∫
Rd
|h|2 fu dv

Let f ∈ L1(Rd) with
∫
Rd f dv = 1, g = (f − fu)/fu and let

u[f ] = u(D)
|uf | uf if D < D∗ and uf 6= 0. Otherwise take u[f ] = 0

Proposition (X. Li)

Let d ≥ 1, α > 0, D > 0. If u = 0, then

Q2,u[g] ≥ CD Q1,u[g]

Otherwise, if |u| = u(D) 6= 0 for some D ∈ (0,D∗), then

Q2,u[g] ≥ CD
(
1− κ(D)

) (vg · u)2

|vg|2 |u|2
Q1,u[g]

J. Dolbeault Flows, linearization, entropy methods
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Coercivity
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Recall that vg := 1
D
∫
Rd (v − u) g fu dv

Q2,u[g] ≥ CD
(
1− κ(D)

) (vg · u)2

|vg|2 |u|2
Q1,u[g]

κ(D) < 1 and as a special case, if u = u[f ], then

Q2,u[g] ≥ CD
(
1− κ(D)

)
Q1,u[g]

J. Dolbeault Flows, linearization, entropy methods
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Coercivity
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Apply Poincaré to h(v) = g(v)− (v − u) · vg

1
D2 Q2,u[g] =

∫
Rd
|∇g − vg|2 fu dv

≥ ΛD

∫
Rd

(
g2 + |vg · (v − u)|2 − 2vg · (v − u) g

)
fu dv

= ΛD

[∫
Rd
|g|2 fu dv +

∫
Rd
|vg · (v − u)|2 fu dv − 2D |vg|2

]

J. Dolbeault Flows, linearization, entropy methods
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Coercivity
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Lemma (X. Li)

Assume that d ≥ 1, α > 0 and D > 0.
(i) In the case u = 0, we have that

∫
Rd |v|2 f0 dv > d D if and only if

D < D∗
(ii) In the case d ≥ 2, D ∈ (0,D∗) and u 6= 0, we have that∫

Rd

∣∣(v − u) · u
∣∣2 fu dv < D |u|2

∫
Rd

∣∣(v − u) ·w
∣∣2 fu dv = D |w|2 ∀w ∈ Rd such that u ·w = 0

1
D

∫
Rd

∣∣(v − u) ·w
∣∣2 fu dv = κ(D) (w · e)2 + |w|2 − (w · e)2 ∀w ∈ Rd

J. Dolbeault Flows, linearization, entropy methods
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Coercivity
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High noise: convergence to the isotropic solution

Theorem (X. Li)

For any d ≥ 1 and any α > 0, if D > D∗, then for any solution f with
nonnegative initial datum fin of mass 1 such that F[fin] <∞, there is
a positive constant C such that, for any time t > 0,

0 ≤ F[f (t, ·)]− F[f0] ≤ C e−CD t

J. Dolbeault Flows, linearization, entropy methods
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Coercivity
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An exponential rate of convergence for radially
symmetric solutions

Logarithmic Sobolev inequality∫
Rd

∣∣∣∣∇ log
(

f
f0

)∣∣∣∣2 f dv ≥ K0

∫
Rd

f log
(

f
f0

)
dv = F[f ]− F[f0] (1)

Proposition (X. Li)

A solution f ∈ C 0 (R+,L1(Rd)
)

of with radially symmetric initial
datum fin ∈ L1

+(Rd) such that F[fin] <∞. Then

0 ≤ F[f (t, ·)]− F[f0] ≤ C e−λ t

for some λ > 0

The Gibbs state and the stationary solution coincide

J. Dolbeault Flows, linearization, entropy methods
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Stability and coercivity

Two quadratic forms
Coercivity
Rates of convergence

Continuity and convergence of the velocity average

Proposition (X. Li)

Let α > 0, D > 0 and consider a solution f ∈ C 0 (R+,L1(Rd)
)

with
initial datum fin ∈ L1

+(Rd) such that F[fin] <∞. Then t 7→ uf (t) is a
Lipschitz continuous function on R+ such that limt→+∞ uf (t) = 0 if
D ≥ D∗ and limt→+∞ |uf (t)| = u with either u = 0 or u = u(D) if
D ∈ (0,D∗)

duf

dt = −α
∫
Rd

v
(
|v|2 − 1

)
f dv

Csiszár-Kullback inequality∫
Rd

f log
(

f
Gf

)
dv ≥ 1

4 ‖f −Gf ‖2
L1(Rd)∫

Rd
v
(
f −Gf

)
dv = uf −

∫
Rd

v Gf dv =
∫
Rd

(uf − v) Gf dv = − H(uf )
C(uf )

J. Dolbeault Flows, linearization, entropy methods
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Coercivity
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A non-local scalar product for the linearized evolution
operator

In terms of f = f0 (1 + g) the evolution equation is

f0
∂g
∂t = D∇ ·

(
(∇g − vg) f0 − vg g f0

)
with vg = 1

D
∫
Rd v g f0 dv and Q1,0[g] = 〈g, g〉 where

〈g1, g2〉 := D
∫
Rd

g1 g2 f0 dv −D2 vg1 · vg2

is a scalar product on the space X :=
{

g ∈ L2(f0 dv) :
∫
Rd g f0 dv = 0

}
∂g
∂t = L g − vg ·

(
D∇g − (v +∇ϕα) g

)
L g := D ∆g − (v +∇ϕα) · (∇g − vg)

J. Dolbeault Flows, linearization, entropy methods



Introduction
Stationary solutions and phase transition

Stability and coercivity

Two quadratic forms
Coercivity
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Lemma (X. Li)

Assume that D > D∗ and α > 0. The norm g 7→
√
〈g, g〉 is equivalent

to the standard norm on L2(f0 dv) according to

η(D)
∫
Rd

g2 f0 dv ≤ 〈g, g〉 ≤ D
∫
Rd

g2 f0 dv ∀ g ∈ X

The linearized operator L is self-adjoint on X and

−〈g,L g〉 = Q2,0[g]

J. Dolbeault Flows, linearization, entropy methods
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Coercivity
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The scalar product 〈·, ·〉 is well adapted to the linearized evolution
operator in the sense that a solution of the linearized equation

∂g
∂t = L g

with initial datum g0 ∈ X is such that

1
2

d
dt Q1,0[g] = 1

2
d
dt 〈g, g〉 = 〈g,L g〉 = −Q2,0[g]

and has exponential decay. According to Proposition 3.4, we know
that

〈g(t, ·), g(t, ·)〉 = 〈g0, g0〉 e−2 CD t ∀ t ≥ 0

J. Dolbeault Flows, linearization, entropy methods
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Proof of the exponential rate of convergence

∂g
∂t = L g − vg ·

(
D∇g − (v +∇ϕα) g

)
A Grönwall estimate

1
2

d
dt Q1,0[g] + Q2,0[g] = D2 vg ·

∫
Rd

g (∇g − vg) f0 dv

based on

d
dt Q1,0[g] ≤ − 2CD

(
1− |uf (t)|

√
CD
η(D)

)
Q1,0[g]

We know that limt→+∞ |uf (t)| = 0, which proves that

lim sup
t→+∞

e2 (CD−ε) t Q1,0[g(t, ·)] < +∞

for any ε ∈ (0,CD)

J. Dolbeault Flows, linearization, entropy methods
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Symmetric and non-symmetric stationary states

Without limitation on D but without rates...

Lemma (X. Li)

For any d ≥ 1 and any α > 0, if D < D∗, then for any solution
f ∈ C 0(R+,L1(Rd)

)
with initial datum fin ≥ 0 of mass 1 such that

F[fin] < F[f0]. Then limt→+∞ |uf (t)| = u(D) and
limt→+∞ F[f (t, ·)] = F[fu] for some u ∈ Rd such that |u| = u(D) and

f (t + n, ·) −→ fu in L1(R+ × Rd) as n → +∞

if limt→+∞ uf (t) = u

J. Dolbeault Flows, linearization, entropy methods
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An exponential rate of convergence for partially
symmetric solutions in the polarized case

Proposition (X. Li)

Let α > 0, D > 0 and consider a solution f ∈ C 0 (R+,L1(Rd)
)

with
initial datum fin ∈ L1

+(Rd) such that F[fin] < F[f0] and
ufin = (u, 0 . . . 0) for some u 6= 0. We further assume that
fin(v1, v2, . . . vi−1, vi , . . .) = fin(v1, v2, . . . vi−1,− vi , . . .) for any i = 2,
3,. . . d. Then

0 ≤ F[f (t, ·)]− F[fu] ≤ C e−λ t ∀ t ≥ 0

holds with λ = CD
(
1− κ(D)

)
> 0

Without symmetry assumption, the question of the rate of convergence
to a solution / to the set of polarized solutions sis still open

J. Dolbeault Flows, linearization, entropy methods
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These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Lectures/
B Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/
B Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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