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Warning !

1 Literature is huge
2 Physics can be addressed in various ways: gravitation

(Smoluchowski-Poisson) and statistics of gravitating systems,
aggregation dynamics (sticky systems), biology (Patlak,
Keller-Segel)

3 Standard techniques have been reinvented many times: virial
estimates, cumulated mass densities, matched asymptotics

=⇒ some entry points in the literature

do not specialize to radial solutions
put emphasis on functional analysis
insist on nonlinear evolution
deal with the subcritical case: at least it gives some hint on how a

subcritical bubble appears in the critical limit

J. Dolbeault Flows, linearization, entropy methods
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The parabolic-elliptic Keller – Segel system


∂u

∂t
= ∆u−∇ · (u∇v) x ∈ R2 , t > 0

−∆v = u x ∈ R2 , t > 0

u(·, t = 0) = n0 ≥ 0 x ∈ R2

We make the choice:

v(t, x) = − 1
2π

∫
R2

log |x− y|u(t, y) dy

and observe that

∇v(t, x) = − 1
2π

∫
R2

x− y
|x− y|2

u(t, y) dy

Mass conservation: d

dt

∫
R2
u(t, x) dx = 0

J. Dolbeault Flows, linearization, entropy methods
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Blow-up: the virial computation

Collapse (S. Childress, J.K. Percus 1981) M =
∫
R2 n0 dx > 8π and∫

R2 |x|2 n0 dx <∞: blow-up in finite time
a solution u of

∂u

∂t
= ∆u−∇ · (u∇v)

satisfies

d

dt

∫
R2
|x|2 u(t, x) dx

= −
∫
R2

2x · ∇u dx︸ ︷︷ ︸
−4M

+ 1
2π

∫∫
R2×R2

2x·(y−x)
|x−y|2 u(t, x)u(t, y) dx dy︸ ︷︷ ︸
(x−y)·(y−x)
|x−y|2 u(t,x)u(t,y) dx dy

= 4M − M2

2π < 0 if M > 8π

J. Dolbeault Flows, linearization, entropy methods
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Blow-up and singular solutions: some results

1 Formal asymptotic expansions in R2

(Herrero, Velázquez 1997), (Chavanis, Sire 2002-2005), (Campos,
PhD thesis, 2012)
(Dejak, Lushnikov, Ovchinnikov, Sigal 2012), (Dejak, Egli,
Lushnikov, Sigal 2013)

2 Results in bounded domains: (Kavallaris, Souplet 2009)
3 A first rigorous result in R2 (radial case)

(Raphaël, Schweyer 2012-2013) stable chemotactic blow-up,
universality of the bubble

4 Other results in R2: (Montaru 2012-2013)
5 Measure valued solutions: (Herrero, Velázquez 1997), (Luckhaus,

Sugiyama, Velázquez 2012), (Seki, Sugiyama, Velázquez 2013)
(Haškovec, Schmeiser 2009) the particle system, Wasserstein’s
distance and free energy
(Bedrossian, Masmoudi 2012) spectral gap and free energy

J. Dolbeault Flows, linearization, entropy methods
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more results
1 (W. Jäger, S. Luckhaus), (A. Blanchet, JD, B. Perthame)
2 a review of related models: (D. Horstmann D, 2003: "From 1970 until

present...") Crowd modeling, social sciences
3 (L. Corrias et al.), (V. Calvez et al.) when other terms are taken into

account. Limits: (P. Biler, L. Brandolese)
4 The 8π case: (A. Blanchet, J.A. Carrillo, N. Masmoudi), (E.A. Carlen,

J. A. Carrillo, and M. Loss), (E.A. Carlen and A. Figalli),
5 Complex blow-up patterns (Y. Seki, Y. Sugiyama, J.J.L. Velázquez)
6 exploration of the blow-up by formal methods: (J.J.L. Velázquez,

M.A. Herrero), (J.J.L. Velázquez et al.)... (S. Luckhaus, Y. Sugiyama,
J.J.L. Velázquez 2012)

7 models with nonlinear diffusion terms: (Y. Sugiyama), (A. Blanchet
and P. Laurençot),

8 models with prevention of overcrowding: (C. Schmeiser et al.)
9 models with more than one species: (E.E Espejo, K. Vilches, C. Carlos

2013), (F. Dickstein 2013)
10 and many more !... e.g. in bounded domains...

J. Dolbeault Flows, linearization, entropy methods
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more recent results

1 Large mass and blow-up for the evolution problem (J. Bedrossian,
2015)

2 Rates (A. Montaru. 2015)
3 Regularity of the solutions (J. Bedrossian, N. Masmoudi, 2014), (P.

Biler, J. Zienkiewicz, 2015), (Y. Sugiyama, 2015)
4 Gradient flows, construction of the solutions (A. Blanchet, J. A.

Carrillo, D. Kinderlehrer, M. Kowalczyk, P. Laurençot, S. Lisini, 2015)
5 More on blow-up (L. Chen, H. Siedentop, 2017), (T.-E. Ghoul, N.

Masmoudi, 2018)

J. Dolbeault Flows, linearization, entropy methods
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The super-critical range: life after
blow-up
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Regularization

Regularize the Poisson kernel

(−∆)−1
ε ∗ ρ (x) = − 1

2π

∫
R2

log(|x− y|+ ε) ρ(y) dy

[F. Poupaud, Diagonal defect measures, adhesion dynamics and Euler
equations, Meth. Appl. Anal. 9 (2002), pp. 533–561]

Proposition (JD, C. Schmeiser 2009)
For every ε > 0, the regularized problem has a global solution
satisfying

‖ρε(·, t)‖L1(R2) = ‖ρI‖L1(R2) := M

‖ρε(t, ·)‖L∞(R2) ≤ c
(

1 + 1
ε2

)
with an ε-independent constant c

J. Dolbeault Flows, linearization, entropy methods
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The nonlinear term

mε(t, x) :=
∫
R2

Kε(x− y) ρε(t, x) ρε(t, y)dy with Kε(x) = x⊗2

|x|(|x|+ ε)

Lemma (Poupaud)
The families {ρε(t)}ε>0 and {mε(t)}ε>0 are tightly bounded locally
uniformly in t, and {ρε(t)}ε>0 is tightly equicontinuous in t

Tight boundedness and equicontinuity of ρε(t) =⇒ compactness∫
R2

∫
R2 ϕ(x, y) ρε(t, x) ρε(t, y) dx dy →

∫
R2

∫
R2 ϕ(x, y) ρ(t, x) ρ(t, y) dx dy∫ t2

t1

∫
R2 ϕ(t, x)mε(t, x) dx dt→

∫ t2
t1

∫
R2 ϕ(t, x)m(t, x) dx dt

for all ϕ ∈ Cb([t1, t2]× R2)
Defect measure

ν(t, x) = m(t, x)−
∫
R2

K(x− y) ρ(t, x) ρ(t, y) dy , K(x) = x⊗2

|x|2

J. Dolbeault Flows, linearization, entropy methods
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Atomic support
The limit is characterized by the pair (ρ, ν), the atomic support of ρ
is an at most countable set
Lemma (Poupaud 2002)
ν is symmetric, nonnegative, and satisfies

tr(ν(t, x)) ≤
∑

a∈Sat(ρ(t))

(ρ(t)({a}))2δ(x− a)

M: spaces of Radon measures
M+

1 : subset of nonnegative bounded measures

DM+(I;R2) =
{

(ρ, ν) : ρ(t) ∈M+
1 (R2) ∀t ∈ I, ν ∈M(I × R2)2×2

ρ is tightly continuous with respect to t
ν is a nonnegative, symmetric, matrix valued measure

tr(ν(t, x)) ≤
∑

a∈Sat(ρ(t))

(ρ(t)({a}))2δ(x− a)
}

J. Dolbeault Flows, linearization, entropy methods
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Limiting problem
∫ T

0

∫
R2
ϕ(t, x) j[ρ, ν](t, x) dx dt

= − 1
4π

∫ T

0

∫
R4

(ϕ(t, x)− ϕ(t, y))K(x− y) ρ(t, x) ρ(t, y) dx dy dt

− 1
4π

∫ T

0

∫
R2
ν(t, x)∇ϕ(t, x) dx dt

for ϕ ∈ C1
b ((0, T )× R2)

Theorem (JD, C. Schmeiser 2009)

For every T > 0, ρε converges tightly and uniformly in time to ρ(t)
and there exists ν(t) such that (ρ, ν) ∈ DM+((0, T );R2) is a
generalized solution of

∂tρ+∇ · (j[ρ, ν]−∇ρ) = 0

ρ(t = 0) = ρI holds in the sense of tight continuity
J. Dolbeault Flows, linearization, entropy methods
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Strong formulation (formal) : an ansatz
ρ = ρ+ ρ̂, ρ̂(t, x) =

∑
n∈N Mn(t) δn(t, x), δn(t, x) = δ(x− xn(t))

(ρ, ν) ∈ DM+((0, T );R2)
=⇒ ν(t, x) =

∑
n∈N νn(t) δn(t, x), tr(νn) ≤M2

n

j[ρ, ν] = ρ∇S0[ρ+ρ̂]+
∑
n

Mn δn∇S0

ρ+
∑
m 6=n

Mm δm

+ 1
4π
∑
n

Mn νn∇δn

∂tρ+∇ · (ρ∇S0[ρ]−∇ρ) +∇ρ · ∇S0[ρ̂]

+
∑
n

δn(Ṁn − ρMn)

−
∑
n

Mn∇δn
(
ẋn −∇S0

[
ρ+

∑
m 6=nMm δm

])
+
∑
n

( 1
4πνn : ∇2δn −Mn ∆δn

)
= 0

J. Dolbeault Flows, linearization, entropy methods
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νn = 4πMn id

As a consequence of tr(νn) = 8πMn ≤M2
n, point masses have to be at

least 8π (there is only a finite number of them)

∂tρ+∇ · (ρ∇S0[ρ]−∇ρ)− 1
2π∇ρ ·

∑
n

Mn
x− xn
|x− xn|2

= 0

Ṁn = ρ(x = xn)Mn

ẋn = ∇S0[ρ](x = xn)− 1
2π
∑
m6=n

Mm
xn − xm
|xn − xm|2

Note that d
dt

(∫
R2 ρ dx+

∑
nMn

)
= 0

... Comparison with Velázquez’ results

J. Dolbeault Flows, linearization, entropy methods
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Long time behaviour
Assume again

ν(t, x) = 4π id
∑

a∈Sat(ρ(t))

ρ(t)({a}) δ(x− a)

and ∫
R2
|x|2ρI dx <∞

With M̂ =
∑
a∈Sat(ρ(t)) ρ(t)({a}) and M̄ = M − M̂

d

dt

∫
R2
|x|2 ρ dx = 4M − 1

2π

∫
R4

(1− χD)ρ⊗ ρ dy dx− 1
2π

∫
R2

tr(ν) dx

= M̄

(
4− M

2π −
M̂

2π

)
− 1

2π
∑

a 6=b, a,b∈Sat(ρ(t))

ρ(t)({a}) ρ(t)({b})

... compatible with Wasserstein’s framework
(Haškovec, Schmeiser 2009)

J. Dolbeault Flows, linearization, entropy methods
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Local density profiles

For fixed t and a ∈ Sat(ρ(t)), let εξ = x− a and ε2ρε = Rε

ε2∂tR
ε +∇ξ · (Rε∇ξS1[Rε]−∇ξRε) = 0

Rε is uniformly bounded, implying compactness of ∇ξS1[Rε]. The
L∞-weak* limit R of Rε (take subsequences, formal) satisfies

∇ξ · (R∇ξS1[R]−∇ξR) = 0

Observe that∫
R2
R(ξ)dξ = 1

8π

∫
R4

|ξ − η|
|ξ − η|+ 1R(ξ)R(η)dηdξ ≤ 1

8π

(∫
R2
R(ξ)dξ

)2

This shows that either R vanishes or its mass is not smaller than 8π

J. Dolbeault Flows, linearization, entropy methods
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Free energy (1/2)

Fε[ρ] :=
∫
R2

(
ρ log ρ− 1

2ρSε[ρ]
)
dx

=
∫
R2
ρ log ρ dx+ 1

4π

∫
R4

log(|x− y|+ ε)ρ(x)ρ(y)dy dx

and
d

dt
Fε[ρε] = −

∫
R2
ρε|∇(log ρε − Sε[ρε])|2dx

With an arbitrary a ∈ R2 and R(ξ) = ε2ρ(a+ εξ) we have

Fε[ρ] =
(

2M − M2

4π

)
log 1

ε
+ F1[R]

J. Dolbeault Flows, linearization, entropy methods
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Free energy (2/2)

Lemma

Let R ∈ L1
+(R2) be radial,

∫
R2 log(1 + |x|)R(x) dx <∞, M =

∫
R2 Rdx

1
4π

∫
R2

log(1 + |x− y|)R(y) dy ≥ M

4π log |x| ∀ x ∈ R2

L1
+,M := {R ∈ L1

+(R2) :
∫
R2 Rdξ = M},

JM := infR∈L1
+,M

F1[R] ≥ −∞

Theorem
JM = −∞ for M > 8π, and JM > −∞ for M ≤ 8π. If M > 8π, there
exists a radial nonincreasing minimizer

J. Dolbeault Flows, linearization, entropy methods
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Existence and free energy
M =

∫
R2 n0 dx ≤ 8π: global existence (W. Jäger, S. Luckhaus 1992),

(JD, B. Perthame 2004), (A. Blanchet, JD, B. Perthame 2006)

If u solves
∂u

∂t
= ∇ · [u (∇ (log u)−∇v)]

the free energy

F [u] :=
∫
R2
u log u dx− 1

2

∫
R2
u v dx

satisfies
d

dt
F [u(t, ·)] = −

∫
R2
u |∇ (log u)−∇v|2 dx

(log HLS) inequality (E. Carlen, M. Loss 1992):
F is bounded from below if M ≤ 8π

... M = 8π the critical case (A. Blanchet, J.A. Carrillo, N. Masmoudi
2008), (A. Blanchet et al.)

J. Dolbeault Flows, linearization, entropy methods
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The existence setting for the subcritical regime


∂u

∂t
= ∆u−∇ · (u∇v) x ∈ R2 , t > 0

−∆v = u x ∈ R2 , t > 0

u(·, t = 0) = n0 ≥ 0 x ∈ R2

Initial conditions

n0 ∈ L1
+(R2, (1+|x|2) dx) , n0 logn0 ∈ L1(R2, dx) , M :=

∫
R2
n0(x) dx < 8π

Global existence and mass conservation: M =
∫
R2 u(x, t) dx ∀ t ≥ 0

v = − 1
2π log | · | ∗ u

J. Dolbeault Flows, linearization, entropy methods
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Time-dependent rescaling

u(x, t) = 1
R2(t) n

(
x

R(t) , τ(t)
)

and v(x, t) = c

(
x

R(t) , τ(t)
)

with R(t) =
√

1 + 2t and τ(t) = logR(t)
∂n

∂t
= ∆n−∇ · (n (∇c− x)) x ∈ R2 , t > 0

c = − 1
2π log | · | ∗ n x ∈ R2 , t > 0

n(·, t = 0) = n0 ≥ 0 x ∈ R2

(A. Blanchet, JD, B. Perthame) Convergence in self-similar variables

lim
t→∞

‖n(·, ·+ t)− n∞‖L1(R2) = 0 and lim
t→∞

‖∇c(·, ·+ t)−∇c∞‖L2(R2) = 0

means intermediate asymptotics in original variables:

‖u(x, t)− 1
R2(t) n∞

(
x

R(t) , τ(t)
)
‖L1(R2) ↘ 0

J. Dolbeault Flows, linearization, entropy methods
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The stationary solution in self-similar variables

n∞ = M
e c∞−|x|

2/2∫
R2 ec∞−|x|

2/2 dx
= −∆c∞ , c∞ = − 1

2π log | · | ∗ n∞

Radial symmetry (Y. Naito)
Uniqueness (P. Biler, G. Karch, P. Laurençot, T. Nadzieja)
As |x| → +∞, n∞ is dominated by e−(1−ε)|x|2/2 for any ε ∈ (0, 1)
(A. Blanchet, JD, B. Perthame)
Bifurcation diagram of ‖n∞‖L∞(R2) as a function of M

lim
M→0+

‖n∞‖L∞(R2) = 0

(D.D. Joseph, T.S. Lundgren) (JD, R. Stańczy)
(The bifurcation diagram will be shown later)

J. Dolbeault Flows, linearization, entropy methods
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The stationary solution when mass varies

0.5 1.0 1.5 2.0

2

4

6

8

Figure: Representation of the solution appropriately scaled so that the 8π
case appears as a limit (in red)
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The free energy in self-similar variables

∂n

∂t
= ∇

[
n (logn− x+∇c)

]
F [n] :=

∫
R2
n logn dx+

∫
R2

1
2 |x|

2 n dx− 1
2

∫
R2
n c dx

satisfies
d

dt
F [n(t, ·)] = −

∫
R2
n |∇ (logn) + x−∇c|2 dx

A last remark on 8π and scalings: nλ(x) = λ2 n(λx)

F [nλ] = F [n]+
∫
R2
n log(λ2) dx+

∫
R2

λ−2−1
2 |x|2 n dx+ 1

4π

∫
R2×R2

n(x)n(y) log 1
λ
dx dy

F [nλ]− F [n] =
(

2M − M2

4π

)
︸ ︷︷ ︸
>0 ifM<8π

log λ+ λ−2 − 1
2

∫
R2
|x|2 n dx

J. Dolbeault Flows, linearization, entropy methods



An introduction
Functional framework and sharp asymptotics

Extensions, consequences

The super-critical range: life after blow-up
The subcritical range
Self-similar variables and a first convergence result

Keller-Segel with subcritical mass in self-similar
variables


∂n

∂t
= ∆n−∇ · (n (∇c− x)) x ∈ R2 , t > 0

c = − 1
2π log | · | ∗ n x ∈ R2 , t > 0

n(·, t = 0) = n0 ≥ 0 x ∈ R2

lim
t→∞

‖n(·, ·+ t)− n∞‖L1(R2) = 0 and lim
t→∞

‖∇c(·, ·+ t)−∇c∞‖L2(R2) = 0

n∞ = M
e c∞−|x|

2/2∫
R2 ec∞−|x|

2/2 dx
= −∆c∞ , c∞ = − 1

2π log | · | ∗ n∞

J. Dolbeault Flows, linearization, entropy methods
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First result: small mass case

Theorem (A. Blanchet, JD, M. Escobedo, J. Fernández)

There exists a positive constant M∗ such that, for any initial data
n0 ∈ L2(n−1

∞ dx) of mass M < M∗ satisfying the above assumptions,
there is a unique solution n ∈ C0(R+, L1(R2)) ∩ L∞((τ,∞)× R2) for
any τ > 0
Moreover, there are two positive constants, C and δ, such that∫

R2
|n(t, x)− n∞(x)|2 dx

n∞
≤ C e− δ t ∀ t > 0

As a function of M , δ is such that limM→0+ δ(M) = 1

J. Dolbeault Flows, linearization, entropy methods
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Four steps proof

The condition M ≤ 8π is necessary and sufficient for the global
existence of the solutions, but there are two extra smallness
conditions in our proof:

Uniform estimate: the method of the trap
Lp and H1 estimates in the self-similar variables
Spectral gap of a linearized operator L
Duhamel formula and nonlinear estimates

J. Dolbeault Flows, linearization, entropy methods
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The super-critical range: life after blow-up
The subcritical range
Self-similar variables and a first convergence result

Linearization

We can introduce two functions f and g such that

n = n∞ (1 + f) and c = c∞(1 + g)

and rewrite the Keller-Segel model as

∂f

∂t
= L f + 1

n∞
∇(f n∞∇(c∞ g))

where the linearized operator is

L f = 1
n∞
∇ ·
(
n∞∇(f − c∞ g)

)
and

−∆(c∞ g) = n∞ f
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Keller-Segel model: functional
framework and sharp asymptotics
bifurcation diagrams
spectrum of the linearized operator
symmetrization
nonlinear estimates
rates of convergence for subcritical masses

... some preliminaries are needed
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A parametrization of the solutions and the linearized
operator

(J. Campos, JD)
−∆c = M

e−
1
2 |x|

2+c∫
R2 e
− 1

2 |x|2+c dx

Solve
−ϕ′′ − 1

r
ϕ′ = e−

1
2 r

2+ϕ , r > 0

with initial conditions ϕ(0) = a, ϕ′(0) = 0 and get with r = |x|

M(a) := 2π
∫
R2
e−

1
2 r

2+ϕa dx

na(x) = M(a) e−
1
2 r

2+ϕa(r)

2π
∫
R2 r e

− 1
2 r

2+ϕa dx
= e−

1
2 r

2+ϕa(r)

J. Dolbeault Flows, linearization, entropy methods



An introduction
Functional framework and sharp asymptotics

Extensions, consequences

Stationary solutions and linearization
Scalar product and spectrum
Rates of convergence for the nonlinear model

Mass
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0.2

0.4
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1.0

Figure: The mass can be computed as M(a) = 2π
∫∞

0 na(r) r dr. Plot of
a 7→M(a)/8π
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Bifurcation diagram

1.5 2.0 2.5 3.0 3.5 4.0

5

10

15

Figure: The bifurcation diagram can be parametrized by
a 7→ ( 1

2π M(a), ‖ca‖∞) with ‖ca‖∞ = ca(0) = a− b(a) (cf. Keller-Segel
system in a ball with no flux boundary conditions)
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Spectrum of L (lowest eigenvalues only)

5 10 15 20 25

1

2

3

4

5

6

7

Figure: The lowest eigenvalues of −L = (−∆)−1(na f) (shown as a function
of the mass) are 0, 1 and 2, thus establishing that the spectral gap of −L is
1

(A. Blanchet, JD, M. Escobedo, J. Fernández), (J. Campos, JD),
(V. Calvez, J.A. Carrillo), (J. Bedrossian, N. Masmoudi)
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Spectral analysis in the functional
framework determined by the

relative entropy method
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Simple eigenfunctions

Kernel Let f0 = ∂
∂M c∞ be the solution of

−∆ f0 = n∞ f0

and observe that g0 = f0/c∞ is such that

1
n∞
∇ ·
(
n∞∇(f0 − c∞ g0)

)
=: L f0 = 0

Lowest non-zero eigenvalues f1 := 1
n∞

∂n∞
∂x1

associated with
g1 = 1

c∞
∂c∞
∂x1

is an eigenfunction of L, such that −L f1 = f1

With D := x · ∇, let f2 = 1 + 1
2 D logn∞ = 1 + 1

2n∞ Dn∞. Then

−∆ (D c∞) + 2 ∆c∞ = Dn∞ = 2 (f2 − 1)n∞

and so g2 := 1
c∞

(−∆)−1(n∞ f2) is such that −L f2 = 2 f2
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Functional setting...

Lemma (A. Blanchet, JD, B. Perthame)
Sub-critical HLS inequality (A. Blanchet, JD, B. Perthame)

F [n] :=
∫
R2
n log

(
n

n∞

)
dx− 1

2

∫
R2

(n− n∞) (c− c∞) dx ≥ 0

achieves its minimum for n = n∞

Q1[f ] = lim
ε→0

1
ε2 F [n∞(1 + ε f)] ≥ 0

if
∫
R2 f n∞ dx = 0. Notice that f0 generates the kernel of Q1

Lemma (J. Campos, JD)
Poincaré type inequality. For any f ∈ H1(R2, n∞ dx) such that∫
R2 f n∞ dx = 0, we have∫
R2
|∇(−∆)−1(f n∞)|2 n∞ dx =

∫
R2
|∇(g c∞)|2 n∞ dx ≤

∫
R2
|f |2 n∞ dx
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... and eigenvalues

With g such that −∆(g c∞) = f n∞, Q1 determines a scalar product

〈f1, f2〉 :=
∫
R2
f1 f2 n∞ dx−

∫
R2
f1 n∞ (g2 c∞) dx

on the orthogonal space to f0 in L2(n∞ dx)

Q2[f ] :=
∫
R2
|∇(f − g c∞)|2 n∞ dx with g = − 1

c∞

1
2π log |·|∗(f n∞)

is a positive quadratic form, whose polar operator is the self-adjoint
operator L

〈f,L f〉 = Q2[f ] ∀ f ∈ D(L2)

Lemma (J. Campos, JD)
L has pure discrete spectrum and its lowest eigenvalue is 1
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Linearized Keller-Segel theory

L f = 1
n∞
∇ ·
(
n∞∇(f − c∞ g)

)
Corollary (J. Campos, JD)

〈f, f〉 ≤ 〈L f, f〉

The linearized problem takes the form

∂f

∂t
= L f

where L is a self-adjoint operator on the orthogonal of f0 equipped
with 〈·, ·〉. A solution of

d

dt
〈f, f〉 = − 2 〈L f, f〉

has therefore exponential decay
J. Dolbeault Flows, linearization, entropy methods
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More on functional inequalities
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A subcritical logarithmic HLS inequality

Recall that

Lemma (A. Blanchet, JD, B. Perthame)
Sub-critical HLS inequality (A. Blanchet, JD, B. Perthame)

F [n] :=
∫
R2
n log

(
n

n∞

)
dx− 1

2

∫
R2

(n− n∞) (c− c∞) dx ≥ 0

achieves its minimum for n = n∞

Lemma (J. Campos, JD)
Poincaré type inequality For any f ∈ H1(R2, n∞ dx) such that∫
R2 f n∞ dx = 0, we have∫
R2
|∇(−∆)−1(f n∞)|2 n∞ dx =

∫
R2
|∇(g c∞)|2 n∞ dx ≤

∫
R2
|f |2 n∞ dx

... Legendre duality
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An Onofri type inequality

Theorem (J. Campos, JD)

For any M ∈ (0, 8π), if n∞ = M ec∞− 1
2 |x|

2∫
R2 e

c∞− 1
2 |x|

2
dx

with

c∞ = (−∆)−1 n∞, dµM = 1
M n∞ dx, we have the inequality

log
(∫

R2
eϕ dµM

)
−
∫
R2
ϕ dµM ≤

1
2M

∫
R2
|∇ϕ|2 dx ∀ ϕ ∈ D

1,2
0 (R2)

Corollary (J. Campos, JD)

The following Poincaré inequality holds∫
R2

∣∣ψ − ψ∣∣2 n∞ dx ≤
∫
R2
|∇ψ|2 dx where ψ =

∫
R2
ψ dµM
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An improved interpolation inequality (coercivity
estimate)

Lemma (J. Campos, JD)

For any f ∈ L2(R2, n∞ dx) such that
∫
R2 f f0 n∞ dx = 0 holds, we

have

− 1
2π

∫∫
R2×R2

f(x)n∞(x) log |x− y| f(y)n∞(y) dx dy

≤ (1− ε)
∫
R2
|f |2 n∞ dx

for some ε > 0, where g c∞ = G2 ∗ (f n∞) and, if
∫
R2 f n∞ dx = 0

holds, ∫
R2
|∇(g c∞)|2 dx ≤ (1− ε)

∫
R2
|f |2 n∞ dx
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Equivalence of the norms

As a consequence

〈f, f〉 :=
∫
R2
|f |2 n∞ dx−

∫
R2
f n∞ (g c∞) dx

is equivalent to ∫
R2
|f |2 n∞ dx

under the condition that
∫
R2 f f0 n∞ dx = 0

A similar result is true in the critical case:
(J. Bedrossian, N. Masmoudi), (P. Raphaël, R. Schweyer)
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A spectral gap estimate

Theorem (J. Campos, JD)

For any function f ∈ D(L2), we have

〈f, f〉 = Q1[f ] ≤ Q2[f ] = 〈f, L f〉 .
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The nonlinear Keller-Segel model,
a functional analysis approach

J. Dolbeault Flows, linearization, entropy methods



An introduction
Functional framework and sharp asymptotics

Extensions, consequences

Stationary solutions and linearization
Scalar product and spectrum
Rates of convergence for the nonlinear model

Exponential convergence for any mass M ≤ 8π

If n0,∗(σ) stands for the symmetrized function associated to n0,
assume that for any s ≥ 0

(H) ∃ ε ∈ (0, 8π−M) such that
∫ s

0
n0,∗(σ) dσ ≤

∫
B
(

0,
√
s/π
) n∞,M+ε(x) dx

Theorem (J. Campos, JD)

Under the above assumption, if n0 ∈ L2
+(n−1

∞ dx) and
M :=

∫
R2 n0 dx < 8π, then any solution with initial datum n0 is such

that ∫
R2
|n(t, x)− n∞(x)|2 dx

n∞(x) ≤ C e
− 2 t ∀ t ≥ 0

for some positive constant C, where n∞ is the unique stationary
solution with mass M
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Sketch of the proof

(J. Campos, JD) Uniform convergence of n(t, ·) to n∞ can be
established for any M ∈ (0, 8π) by an adaptation of the
symmetrization techniques of (J.I. Díaz, T. Nagai, J.M. Rakotoson)

Uniform estimates (with no rates) easily result

Estimates based on Duhammel’s formula inspired by
(M. Escobedo, E. Zuazua) allow to prove uniform convergence

Spectral estimates can be incorporated to the relative entropy
approach

Exponential convergence of the relative entropy follows
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Step 1: symmetrization (1/2)
To any measurable function u : R2 7→ [0,+∞),
we associate the distribution function defined by µ(t, τ) := |{u > τ}|
and its decreasing rearrangement given by

u∗ : [0,+∞) → [0,+∞] , s 7→ u∗(s) = inf{τ ≥ 0 : µ(t, τ) ≤ s} .

1 For every measurable function F : R+ 7→ R+, we have∫
R2
F (u) dx =

∫
R+
F (u∗) ds

2 If u ∈W 1,q(0, T ;Lp(RN )) is a nonnegative function, with
1 ≤ p <∞ and 1 ≤ q ≤ ∞, then u∗ ∈W 1,q(0, T ;Lp(0,∞)) and
the formula∫ µ(t,τ)

0

∂u∗
∂t

(t, σ) dσ =
∫
{u(t,·)>τ}

∂u

∂t
(t, x) dx

holds for almost every t ∈ (0, T ) (J.I. Díaz, T. Nagai,
J.M. Rakotoson)
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Step 1: symmetrization (2/2)

Lemma

If n is a solution, then the function

k(t, s) :=
∫ s

0
n∗(t, σ) dσ

satisfies k ∈ L∞ ([0,+∞)× (0,+∞)) ∩H1
(

[0,+∞);W 1,p
loc (0,+∞)

)
∩ L2

(
[0,+∞);W 2,p

loc (0,+∞)
)
and

∂k
∂t − 4π s ∂

2k
∂s2 − (k + 2 s) ∂k∂s ≤ 0 a.e. in (0,+∞)× (0,+∞)

k(t, 0) = 0 , k(t,+∞) =
∫
R2 n0 dx for t ∈ (0,+∞)

k(0, s) =
∫ s

0 (n0)∗ dσ for s ≥ 0
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Step 2: Uniform estimates

Proposition (J.I. Díaz, T. Nagai, J.M. Rakotoson)

Let f , g be two continuous functions on Q = R+ × (0,+∞) such that
...
∂f
∂t − 4π s ∂

2f
∂s2 − (f + 2 s) ∂f∂s ≤

∂g
∂t − 4π s ∂

2g
∂s2 − (g + 2 s) ∂g∂s a.e. in Q

f(t, 0) = 0 = g(t, 0) and f(t,+∞) ≤ g(t,+∞) for any t ∈ (0,+∞)

f(0, s) ≤ g(0, s) for s ≥ 0 , and g(t, s) ≥ 0 in Q

then f ≤ g on Q

Corollary

Assume that n0 ∈ L2
+(n−1

∞ dx) satisfies (H) and M :=
∫
R2 n0 dx < 8π.

Then there exist positive constants C1 = C1(M,p) and C2 = C2(M,p)
such that

‖n‖Lp(R2) ≤ C1 and ‖∇c‖L∞(R2) ≤ C2
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Step 3: Estimates based on Duhammel’s formula
Consider the kernel associated to the Fokker-Planck equation

K(t, x, y) := 1
2π (1− e− 2 t) e

− 1
2
|x−e−ty|2

1−e− 2 t x ∈ R2 , y ∈ R2 , t > 0

If n is a solution, then

n(t, x) =
∫
R2
K(t, x, y)n0(y) dy+

∫ t

0

∫
R2
∇xK(t−s, x, y)·n(s, y)∇c(s, y) dy ds

Corollary

Assume that n is a solution. Then

lim
t→∞

‖n(t, ·)− n∞‖p = 0 and lim
t→∞

‖∇c(t, ·)−∇c∞‖q = 0

for any p ∈ [1,∞] and any q ∈ [2,∞]
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Step 4: Spectral estimates can be incorporated

With Q1[f ] = 〈f, f〉 and Q2[f ] = 〈f, L f〉

1 For any function f in the orthogonal of the kernel of L, we have

Q1[f ] ≤ Q2[f ]

2 For any radial function f ∈ D(L2), we have

2 Q1[f ] ≤ Q2[f ]

Cf. (V. Calvez, J.A. Carrillo) in the radial case
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Step 5: Exponential convergence of the relative entropy

∂f

∂t
= L f − 1

n∞
∇ [n∞ f ∇(g c∞)]

d

dt
Q1[f(t, ·)] = − 2 Q2[f(t, ·)] +

∫
R2
∇(f − g c∞) f n∞ · ∇(g c∞) dx

d

dt
Q1[f(t, ·)] ≤ − 2 Q2[f(t, ·)] + δ(t, ε)

√
Q1[f(t, ·)] Q2[f(t, ·)]

Q1[f(t, ·)] ≤ Q ∀ t ≥ 0
d

dt
Q1[f(t, ·)] ≤ −Q1[f(t, ·)]

[
2− δ(t, ε)

(
Q1[f(t, ·)])

1−ε
2−ε + Q1[f(t, ·)])

1
2+ε

)]
As a consequence, we finally get that

lim sup
t→∞

e2 t Q1[f(t, ·)] <∞
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Some key ideas

1 Lyapunov / Entropy functionals and functional inequalities
2 Linearization and best constants
3 Functional framework for linearized operators can be deduced

from the entropy functional

(G. Fernández, S. Mischler, 2013)
- weak notion of solution (based on free energy estimates)
- uniqueness, smoothing
- linearized and nonlinear stability in rescaled variables and
exponential convergence under weaker assumptions - sharp rates in
L4/3(R2)
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Extensions, consequences
parabolic-parabolic models
(JD, G. Jankowiak, P. Markowich)
(G. Jankowiak)
improved functional inequalities
(JD, G. Jankowiak)
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Parabolic-parabolic models
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Parabolic-parabolic models for crowd motion
(JD, G. Jankowiak, P. Markowich) A model for crowd motion

∂tρ = ∆ρ−∇ ·
(
ρ (1− ρ)∇D

)
∂tD = κ∆D − δ D + g(ρ)

on a bounded domain Ω with no-flux boundary conditions(
∇ρ− ρ (1− ρ)∇D

)
· ν = 0 on ∂ Ω

Model (I): g(ρ) = ρ (1− ρ) or Model (II): g(ρ) = ρ
Any stationary solution solves

∇ρ− ρ (1− ρ)∇D = 0 on Ω ⇐⇒ ρ = 1
1 + e−ϕ

where ϕ = D − ϕ0 and
∫

Ω
1

1+eϕ0−D dx = M

−κ∆ϕ+ δ (ϕ+ ϕ0)− f(ϕ) = 0 on Ω

with homogeneous Neumann boundary conditions
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Model (I), d = 1, δ = 10−3
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Model (I), κ = 5× 10−4, δ = 10−3

M

ϕ(0
)
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Model (II), κ = 10−2, δ = 10−3

M

ϕ(0
)
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Parabolic-parabolic Keller-Segel model

(G. Jankowiak) Analysis of the stability of self-similar solutions,
including for masses larger than 8π
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Logarithmic
Hardy-Littlewood-Sobolev and

Onofri inequalities: duality, flows
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Critical case: the logarithmic HLS inequality
The classical logarithmic Hardy-Littlewood-Sobolev (logHLS) in R2∫
R2
n log

( n
M

)
dx+ 2

M

∫
R2×R2

n(x)n(y) log |x−y| dx dy+M (1 + log π) ≥ 0

Equality is achieved by

µ(x) := 1
π (1 + |x|2)2 ∀ x ∈ R2

Notice that −∆ logµ = 8π µ can be inverted as

(−∆)−1µ = 1
8π log (π µ)

With M = 8π and n∞ = 8π µ (logHLS) can be rewritten as∫
R2
n log

(
n

n∞

)
dx ≥ 1

2

∫
R2

(n− n∞) (−∆)−1(n− n∞) dx
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Subritical case: the logarithmic HLS inequality

The minimum of∫
R2
n log

( n
M

)
dx+ 2

M

∫
R2×R2

n(x)n(y) log |x−y| dx dy+1
2

∫
R2
|x|2 n dx

is achieved by the stationary solution n∞ of the Keller-Segel model
and can again be written as∫

R2
n log

(
n

n∞

)
dx ≥ 1

2

∫
R2

(n− n∞) (−∆)−1(n− n∞) dx
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Critical case: Legendre duality

Onofri’s inequality

F1[u] := log
(∫

Rd

eu dµ

)
≤ 1

16π

∫
R2
|∇u|2 dx+

∫
R2
uµ dx =: F2[u]

By duality: F ∗i [v] = sup
(∫

Rd v u dµ− Fi[u]
)
we can relate Onofri’s

inequality with (logHLS)

For any v ∈ L 1
+(R2) with

∫
R2 v dx = 1, such that v log v and

(1 + log |x|2) v ∈ L 1(R2), we have

F ∗1 [v]−F ∗2 [v] =
∫
R2
v log

(
v

µ

)
dx−4π

∫
R2

(v − µ) (−∆)−1(v − µ) dx ≥ 0

(E. Carlen, M. Loss 1992 & V. Calvez, L. Corrias 2008)
The same property holds in the subcritical case
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The two-dimensional case: (logHLS) and flows
(E. Carlen, J. Carrillo, M. Loss 2010)

H2[v] :=
∫
R2

(v − µ) (−∆)−1(v − µ) dx− 1
4π

∫
R2
v log

(
v

µ

)
dx

is related to Gagliardo-Nirenberg inequalities if vt = ∆
√
v

Alternatively, assume that v is a positive solution of
∂v

∂t
= ∆ log

(
v

µ

)
t > 0 , x ∈ R2

Proposition (JD 2011)

If v is a solution with nonnegative initial datum v0 in L 1(R2) such
that

∫
R2 v0 dx = 1, v0 log v0 ∈ L 1(R2) and v0 logµ ∈ L 1(R2), then

d

dt
H2[v(t, ·)] = 1

16π

∫
R2
|∇u|2 dx−

∫
Rd

(
e

u
2 − 1

)
u dµ ≥ F2[u]− F1[u]

with log(v/µ) = u/2
J. Dolbeault Flows, linearization, entropy methods
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Hierarchies of inequalities, improved inequalities

Theorem (JD, Jankowiak 2013)

If d ≥ 3, with q = d+2
d−2

Sd ‖uq‖22 d
d+2
−
∫
Rd

uq (−∆)−1uq dx

≤ Sd ‖u‖
8

d−2
2∗

[
Sd ‖∇u‖22 − ‖u‖22∗

]
∀u ∈ H1(Rd)

and, when d = 2, for any function f ∈ D(R2)

(∫
Rd

e f dµ

)2
− 4π

∫
Rd

ef µ (−∆)−1 ef µdx

≤
(∫

Rd

e f dµ

)2 [ 1
16π ‖∇f‖

2
2 +

∫
Rd

f dµ− log
(∫

Rd

e f dµ

)]
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Thank you for your attention !
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