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From drift-diffusion with non-linear diffusions and mean
field drift to reverse HLS inequalities

0
S5 = At + V- (u(VV + YW <))
@ Lecture 1: introduction to fast diffusion equations, large time and
linearization; ¢ € (0,1), V=W =0, or W =0 and V() = |z|?/2
o Lecture 2: a mean-field drift-diffusion model: flocking; ¢ = 1,
W =0 but V depends on the average
o Lecture 3: Keller-Segel: large time asymptotics; ¢ = 1,
W(z) = —5= loglz|, V =0or V(z) = |z|?/2
o Lecture 4: drift-diffusion equations and reverse HLS inequalities;
q€(0,1), V=0, W(x)=A"1|z|* with A >0
> Is the entropy bounded from below ?
Answer: reverse HLLS = Hardy-Littlewood-Sobolev inequalities
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Outline

o Reverse HLS inequality
>> The inequality and the conformally invariant case
> A proof based on Carlson’s inequality, the case A = 2
> Concentration and a relaxed inequality

o Existence of minimizers and relaxation
> Existence minimizers if ¢ > 2N/(2N + )
> Relaxation and measure valued minimizers
o Regions of no concentration and regularity of measure
valued minimizers
> No concentration results
> Regularity issues

o Free Energy
> Free energy: toy model, equivalence with reverse HLS ineq.
> Relaxed free energy, uniqueness
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Reverse Hardy-Littlewood-Sobolev inequality The inequality and the conformally invariant case

Existence of minimizers and relaxation A proof based on Carlson’s inequality
Regions of no concentration and regularity The case A = 2
Free energy point of view Concentration and a relaxed inequality

Reverse
Hardy-Littlewood-Sobolev
inequality

o (=] =
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Reverse Hardy-Littlewood-Sobolev inequality The inequality and the conformally invariant case
A proof based on Carlson’s inequality
The case A 2
Concentration and a relaxed inequality

The reverse HLS inequality

For any A > 0 and any measurable function p > 0 on RY, let

o= [[[ o= ole) plo) dedy

2N —q(2N +))
N>1, 0<g<l, a:=
N(1—-q)

Convention: p € LP(RY) if [,y [p(x)[P dz for any p > 0

Theorem

The inequality

I\[pl > Cnoxyg </RN Pd$>a </RN p? dﬂﬂ) e (1)

holds for any p € LL NLY(RYN) with €y x4 > 0 if and only if

qg> N/(N+))

If either N =1, 2 or if N > 3 and ¢ > min {1 — 2/N, 2N/(2N + \) },
then there is a radial nonnegative optimizer p € L' NLI(RY)
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Reverse Hardy-Littlewood-Sobolev inequality The inequality and the conformally invariant case

Existence of minimizers and relaxation A proof based on Carlson’s inequality
Regions of no concentration and regularity The case A = 2
Free energy point of view Concentration and a relaxed inequality
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N =4, region of the parameters (X, q) for which Cn x4 >0
Optimal functions exist in the light grey area
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Reverse Hmrdv thtlewood Soboley inequality The inequality and the conformally invariant case

Existence of minimizers and xation A proof based on Carlson’s inequality
f no concentration mmwm\\ The uax—z

Concentration and a relaxed inequality

The conformally 1nvar1ant case ¢ = 2N / (2N + )\)

2/q
=[] ool o) o dedy > exn, ( / pwx)
RN xRN RN

2N/2N+)) <= a=0
(Dou, Zhu 2015) (Ngo, Nguyen 2017)

The optimizers are given, up to translations, dilations and
multiplications by constants, by

plz)=(1+ |x|2)_N/q Vo eRY

and the value of the optimal constant is

1 T
CN AN = 37
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Reverse Hardy-Littlewood-Sobolev inequality The inequality and the conformally invariant case

Existence of minimizers and relaxation A proof based on Carlson’s inequality
Regions of no concentration and regularity The case A
Free energy point of view Concentration and a relaxed inequality
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N =4, region of the parameters (X, q) for which Cn x4 >0
The plain, red curve is the conformally invariant case o =0
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Reverse Hardy-Littlewood-Sobolev inequality The inequality and the conformally invariant case

Existence of minimizers and relaxation A proof based on Carlson’s inequality
Regions of no concentration and regularity The case A
Free energy point of view Concentration and a relaxed inequality
o (2—a)/q
A q
// lz—y|* p(z) p(y) dz dy > Cn xq pdx pldz
RN xRN RN RN
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Reverse Hardy-Littlewood-Sobolev inequality The inequality and the conformally invariant case
A proof based on Carlson’s inequality
The case A 2
Concentration and a relaxed inequality

A Carlson type inequality

Lemma

Let A\>0 and N/(N+ X)) <g<1
N (1-q) N(1-q) 1

1I-=3 Xq q
(forae) ™ (flepons) ™ zoma(f o)
RN RN RN

CN,A Zl((NJ”\)q_N)%( N (1-q) )¥1+«q r(F)r(s) 7
=3 BT 2n% D5 -4)1 (%)

Equality is achieved if and only if

p(z) = (1+]a])) ™0

up to dilations and constant multiples

(Carlson 1934) (Levine 1948)
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Reverse Hardy-Littlewood-Sobolev inequality The inequality and the conformally invariant case

Existence of minimizers and relaxation A proof based on Carlson’s inequality
Regions of no concentration and regularity The case A =
Free energy point of vie Concentration and a relaxed inequality

An elementary proof of Carlson s inequality

q q
/ pldr < (/ pdm> |BR|1—q =0, </ pdm) RN (-9
{lz|<R} RN RN

and
a e
/ pldr < (/ |x|’\pdm> / |z|” T4 dz
{lz|>R} RN {lz|>R}
a
= Cy (/ |x|>‘pda;> RN (1=9)
RN

and optimize over R > 0
. existence of a radial monotone non-increasing optimal function;
rearrangement; Euler-Lagrange equations
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Reverse Hardy-Littlewood-Sobolev inequality The inequality and the conformally invariant case

Existence of minimizers and relaxation A proof based on Carlson’s inequality
Regions of no concentration and regularity The case A = 2
Free energy point of view Concentration and a relaxed inequality

Proposition

Let A\> 0. If N/(N + X)) <q<1, then Cy 4 >0

By rearrangement inequalities: prove the reverse HLS inequality for
symmetric non-increasing p’s so that

/ |x—y|)‘p(y)dx2/ |z|* pdz for all z e RN
RN RN

Ix[p]Z/ IwIApd:v/ pdx
RN RN

In the range NL_M <g<l1

implies

2—«a

by Carlson’s inequality

J. Dolbeault Flows, linearization, entropy methods



Reverse Hardy-Littlewood-Sobolev inequality The inequality and the conformally invariant case
A proof based on Carlson’s inequality
The case A = 2

Concentration and a relaxed inequality

The case A = 2

Corolla;

|

Let A\=2 and N/(N 4+ 2) < ¢ < 1. Then the optimizers for (1) are
given by translations, dilations and constant multiples of

_a
p(x) = (L+[af*) T
and the optimal constant is

2q
_ 1 _ NQO-9
Cn2q =3 CN,2,q

By rearrangement inequalities it is enough to prove (1) for symmetric
non-increasing p’s, and so fRN x pdx = 0. Therefore

I>[p] =2/ pdm/ |z[*pdz
RN RN

and the optimal function is optimal for Carlson’s inequality

J. Dolbeault Flows, linearization, entropy methods



Reverse Hardy-Littlewood-Sobolev inequality
Existence of minimizers and relaxation
Regions of no concentration and regularity
Free energy point of view

The inequality and the conformally invariant case
A proof based on Carlson’s inequality

The case A 2

Concentration and a relaxed inequality
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N =4, region of the parameters (X, q) for which Cy x4 > 0. The
dashed, red curve is the threshold case ¢ = N/(N + )
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Reverse Hardy-Littlewood-Sobolev inequality The inequality and the conformally invariant case
A proof basec d on Carlson’s inequality
The cas; 2
Concentranon and a relaxed inequality

The threshold case ¢ = N/(N + \) and below

Proposition

If0<q¢ < N/(N+ ), thenGNAq—O—llmq_,N/(N+,\ Cn,r g

Let p, 0 > 0 such that [,y o dz =1, smooth (4 compact support)

pe(x) = p(z) + Me N o(x/e)
Then [,y pe dz = [pn pdx+ M and, by simple estimates,

/ pldr — pldxr as e — 04
RN RN

and
IA[pE]%IA[p]+2M/ |z} pdz as e — 04
RN

If0<q< N/(N+DN),ie,a>1, take p. as a trial function,
Ix|p] +2M x|} pdx
Cnoag < 7l . Jp 121 Carsyriat Qlp, M]
(Jen pdz + M)" ([ex p? dz)
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Reverse Hardy-Littlewood-Sobolev inequality The inequality and the conformally invariant case

stence of minimizers and relaxation A proof based on Carlson’s inequality
Regions of no concentration and regularity The case A\ =
Free energy point of view Concentration and a relaxed inequality

The threshold case: If « =1, i.e., ¢ = N/(N + \), by taking the limit
as M — + oo, we obtain

ey, < Lol s
Aq = (IRNpqu)l/q

For any R > 1, we take
pr() = |z|" NV 1y gy <p(2)

Then
/RN |z|* pr dx = /RN pRdx = |SN_1| log R

and, as a consequence,

Jan |z|* pr dx

(N+X)/
( - pg/(N-‘r)\) dx)

~ = (’SN_1’ logR)_A/N -0 as R— o0

This proves that Cy x4 = 0 for ¢ = N/(N + A)
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Reverse Hardy-Littlewood-Sobolev inequality The inequality and the conformally invariant case
A proof based on Carlson’s inequality
The case A = 2
Concentration and a relaxed inequality

A relaxed inequality

a (2—a)/q
I,\[p]—|—2M/ |z pdx > Cnoxg (/ pdm—i—M) </ pqdm>
RN RN RN

(2)

If g > N/(N + X), the relazed inequality (2) holds with the same
optimal constant Cn x4 as (1) and admits an optimizer (p, M)

Heuristically, this is the extension of the reverse HLS inequality (1)

o (2-a)/q
I[p] > Cnoag </ pdx) </ pqu>
RN RN

to measures of the form p+ M §
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Reverse Hardy-Littlewood-Sobolev inequality
Existence of minimizers and relaxation Above the curve of the conformally invariant case
Regions of no concentration and regularity

Below the curve of the conformally invariant case
ree energy point of view

Existence of minimizers and
relaxation

o (=] =
J. Dolbeault
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Existence of minimizers and relaxation Above the curve of the conformally invariant case
Below the curve of the conformally invariant case

Existence of a minimizer: first case

The o < 0 case: dark grey region

If A >0 and QJ%ZL\ < g <1, there is a minimizer p for Cn xq

The limit case « =0, ¢ = % is the conformally invariant case: see
(Dou, Zhu 2015) and (Ngo, Nguyen 2017)
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Existence of minimizers and relaxation Above the curve of the conformally invariant case
Below the curve of the conformally invariant case

A minimizing sequence p; can be taken radially symmetric
non-increasing by rearrangement, and such that

/ pj(x)dx :/ pj(x)fdr=1 foralljeN
RN RN

Since p;(z) < C min {|z|=V, |z[~N/9}, by Helly’s selection theorem
we may assume that p; — p a.e., so that

liminf Iy[p;] > I\[p] and 12/ p(z) dx
J—00 RN

by Fatou’s lemma. Pick p € (N/(N + \),q) and apply (1) with the
same A and « = «a(p):

Lps] = Crny ( / o dz
]RN

Hence the p; are uniformly bounded in LP(RY): p;(x) < C'|z|~N/P,

/p?dx%/ pldr =1
RN RN

by dominated convergence

)(Q—Q(p))/p

J. Dolbeault Flows, linearization, entropy methods



Existence of minimizers and relaxation Above the curve of the conformally invariant case
Below the curve of the conformally invariant case

Existence of a minimizer: second case

If N/(N+ X)) <q<2N/(2N + \) we consider the relazed inequality

IN[p) +2M [ |2 pda > Cnxg (Jpnw pdz+ M) (frn o7 dx)(zia)/q

<
<

The 0 < a < 1 case: dark grey region

If ¢ > N/(N + X), the relazed inequality holds with the same optimal
constant Cn x4 as (1) and admits an optimizer (p, M)

J. Dolbeault Flows, linearization, entropy methods



Existence of minimizers and relaxation Above the curve of the conformally invariant case
Below the curve of the conformally invariant case

Let (p;, M;) be a minimizing sequence with p; radially symmetric
non-increasing by rearrangement, such that

/pjdx—l-Mj:/ pj=1
RN RN

Local estimates + Helly’s selection theorem: p; — p almost
everywhere and M := L+ lim;_,o, Mj, so that [,y pdz + M =1, and

Jew p(2)Tde =1
We cannot invoke Fatou’s lemma because o € (0,1): let du; := p; dx
dz i
pi (RN \ Br(0)) :/ pjdwgc/ ¢/ RN 00
{le|>R} (21> Ry 2]

; are tight: up to a subsequence, p; — p weak * and du = pdx + L
liminf Iy [p;] > I\[p] + 2M/ |z pda
J—0o0 RN

lim inf |:E|’\pjdx2/ |z|* p dx
RN RN

J—00

Conclusion: liminf; . Q[p;, M;] > Q[p, M]

J. Dolbeault Flows, linearization, entropy methods



Existence of minimizers and relaxation Above the curve of the conformally invariant case
Below the curve of the conformally invariant case

Optimizers are positive

Ip] +2M [on |2]* pda
(Jiw pdz + M)* (fon p1 da) e

Qp, M] :=

Let A >0 and N/(N 4+ )\) < g <1. If p > 0 is an optimal function for
some M > 0, then p is radial (up to a translation), monotone
non-increasing and positive a.e. on RV

If p vanishes on a set £ C RY of finite, positive measure, then

2—« |E|
q  Jan p(x)?de

Q[p,MJrE]lE} = Q[p, M] <1 6q+0(5q)>

as € — 04, a contradiction if (p, M) is a minimizer of Q

J. Dolbeault Flows, linearization, entropy methods



Reverse Hardy-Littlewood-Sobolev inequalit
Existence of minimizers and I‘(_ldxdt]()n Above the curve of the conformally invariant case
Regions of nc ntration and regularity Below the curve of the conformally invariant case
Yree oneray point of view

Euler-Lagrange equation

Euler-Lagrange equation for a minimizer (p., M.)

2 fon lz =yt puly) dy + Mz a 2—a)pu(x)
Ipe] +2M, on WP pedy  Jon pedy+ M, [on pi(y)2dy

We can reformulate the question of the optimizers of (1) as: when is
it true that M, = 0 7 We already know that M, = 0 if

2N

v 1
N+ ~¢<

J. Dolbeault Flows, linearization, entropy methods



Reverse Hardy-Littlewood-Sobolev inequality No concentration: first result
Existence of minimiz and relaxation Regularity and concentration
Regions of no concentration and regularity No concentration: further results
Free energy point of view More on regularity

Regions of no concentration
and regularity of measure
valued minimizers
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Reverse Hardy-Littlewood

Sobolev inequality No concentration: first result

Existence of minimizers and relaxation Regularity and concentration
Regions of no concentration and regularity No concentration: further results
Free energy point of view More on regularity
L B\
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N ~
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L =
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0.6 oS
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L g=q(\,N)
L, — N—-2
9=-N — _2N
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No concentration: first result
Regularity and concentration

Regions of no concentration and regularity No concentration: further results
More on regularity

No concentration 1
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00 L L L L L ,

Let N >1, A >0 and 2N

i <qg<
N+r 9San1a

N -2
If N >3 and A > 2N/(N — 2), assume further that g > N

If (p«, M) is a minimizer, then M, =

J. Dolbeault Flows, linearization, entropy methods



No concentration: first result
Regularity and concentration

Regions of no concentration and regularity No concentration: further results
More on regularity

Two ingredients of the proof

@ Based on the Brézis—Lieb lemma

Lemma

Let 0 < g <p, let f € LPNLYRYN) be a symmetric non-increasing
function and let g € LY(RN). Then, for any 7 >0, as e — 04,

/RN ‘f(x) +E_N/p7'g(x/€)‘q dx = /RN fldx

+ eN(=a/p) Tq/ lgl9dz + o (EN(l—q/p) Tq)
RN

v

aly[p.+ 67NTJ(~/5)] +2 (M, — T)/ [z (pu(z) + e Nro(x/e)) do

RN

RIS
:IA[P*]+2M*/|x|AP*dJC+ 27 v pe(@) (fo =yl = J2l7) =5~ de dy
RN +er 2 I\[o] + 2 (M, — )7 [ |zt o da

=0(efr) with B:=min{2,7}

J. Dolbeault Flows, linearization, entropy methods



No concentration: first result
Regularity and concentration

Regions of no concentration and regularity No concentration: further results
More on regularity

Regularity and concentration

10

08}

06}

04t

02}

00 L L L L L ,

IfN >3, A>2N/(N —2) and

N -2 2N }

<q<mm{7vm

N+

and (p., M) € LN O=0/2(RN) x [0, + 00) is a minimizer, then M, = 0
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No concentration: first result
chular]ty and conccntrat]on

Regions of no concentration and regularity No conc ation: further results
Moro on egula

Regularity

Proposition

Let N>1, A>0 and N/(N + X)) < g <2N/(2N + \)
Let (p«, M) be a minimizer

Q If [pnpudr > § % then M, = 0 and p., bounded and
RN

|z|* ps d
p (0) _ (2704)1)\[/)*]]‘11@1\1 Px dx e
(Jow pEdz) (2 fon (2 pucdz fon pudz — aly[ps])
Q If f]RN pxdr = 5 % then M, = 0 and p, is unbounded

Q If [pnpudr < § %, then p. is unbounded and
R

. ad[ps] = 2 Jon |2 puda [on psdx -
* 200~ ) [on |2 pr do

J. Dolbeault Flows, linearization, entropy methods




No concentration: first result
Regularity and concentration

No concentration: further results
More on regularity

Regions of no concentration and regularity

An ingredient of the proof

Lemma

For constants A, B >0 and 0 < a < 1, define

A+M

Then f attains its minimum on [0,00) at M =0 if « A < B and at
M=(aA-B)/(1-a)>0ifaA>B

J. Dolbeault Flows, linearization, entropy methods



Reverse Hardy-Littlewood-Sobolev inequality

Existence of minimizers

1 relaxation

Regions of no concentration and regularity
Free energy point of view

No concentration 2

No concentration: first result
Regularity and concentration

No concentration: further results
More on regularity

For any A > 1 we deduce from

=y < (o] + ) < 2271 (J2 + )

that

Bl <2 [ el pdo [ pla)da
RN RN

For all o < 2771 we infer that M, = 0 if

2N (1-277)

>
I=ON 2N+

J. Dolbeault
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Reverse Hardy-Littlewood-Sobolev inequality No concentration: first result

Existence of minimizers and relaxation Regularity and concentration
Regions of no concentration and regularity No concentration: further results
Free energy point of view More on regularity

No concentration 3

Layer cake representation (superlevel sets are balls)

ja pde / ple) dz
RN

A ) sup ffBRxBS |z — y|’\ dz dy
N =
0<Rr,S<oc | Br| [, |#[* dz +|Bs| [, y|* dy

Lp] < 2AN,,\/
RN

08 ~

04}

02

00 L L L L
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No concentration: first result

Regularity and concentration
Regions of no concentration and regularity No concentration: further results
More on regularity

Proposition

Assume that N > 3 and X > 2N/(N — 2) and observe that

N 2N (1-27%) 2N
<q(\,N) < <

Naa <IAN < o T S IN A

for X > 2 large enough. If

N N -2
max{(j()\,N),N—H} <g< T

and if (p«, M,) is a minimizer, then M, = 0 and p, € L=(RY)

J. Dolbeault Flows, linearization, entropy methods



No concentration: first result

Regularity and concentration
Regions of no concentration and regularity No concentration: further results
More on regularity

More on regularity

Lemma

Assume that p. is an unbounded minimizer

Q if A <2, there is a constant ¢ > 0 such that
pe(z) > clz| V"D a5 250
Q if A > 2, there is a constant C' > 0 such that

pu(z) = C || ~2/(-9) (1+0(1)) as z—0

Corollary

| \

2N

N N—2
1 and q>
17 5N n Naa @<l end g2

ifN >3

If p« is a minimizer for Cy x4, then p. € L°(RY)

J. Dolbeault Flows, linearization, entropy methods
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Reverse Hardy-Littlewood-Sobolev inequality

Existence of minimizers and relaxation
Regions of no concentration and regularity

Free energ;
ree energy point of view

Relaxed free energy
Uniqueness

ree energy point of view
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Free energy
Relaxed free energy

] . } Uniqueness
Free energy point of view

A toy model

Assume that u solves the fast diffusion with external drift V given by

8u
i q V- vV
; Au + (U )

To fix ideas: V(z) =1+ % |z|> + 1 |#|*. Free energy functional
1
Flu] := Vude — —— u? dz
RN 1—q Jrn

@ Under the mass constraint M = fRN u dx, smooth minimizers are

u(x) = (p+V(z) =
@ The equation can be seen as a gradient flow

d 2
— )N =— A v L Sl S v A Ve
dt.’f[u(t, )] /}RNu‘lquu Y ‘ dx

J. Dolbeault Flows, linearization, entropy methods



Free energy
Relaxed free energy

] . } Uniqueness
Free energy point of view

A toy model (continued)

If A = 2, the so-called Barenblatt profile u,, has finite mass if and only

if
N —2

q>QC::T

@ For A > 2, the integrability condition is ¢ > 1 — A/N but ¢ = ¢. is
a threshold for the regularity: the mass of u,, = (u + V)19 is

1
MG = [ e <M= [ (Gl 31 e

Q@ If one tries to minimize the free energy under the mass contraint
fRN udx = M for an arbitrary M > M,, the limit of a minimizing
sequence is the measure

(M*M*)(S#»u_l

J. Dolbeault Flows, linearization, entropy methods



Free energy
Relaxed free energy

] . } Uniqueness
Free energy point of view

A model for nonlinear springs: heuristics

V=pxWy, Wi(z):=1%|z]

is motivated by the study of the nonnegative solutions of the
evolution equation

P
a—';):qu—&- V- (p VW, * p)

Optimal functions for (1) are energy minimizers (eventually measure
valued) for the free energy functional

1

1 1 1
Flp] = = Wkp) do— ——— Cdg = — Iy [p]——— a4
(0] 2/RN,0( A*p) dx T fon 0= 53 Alp] g fon

under a mass constraint M = f]R ~ pdz while smooth solutions obey to

d 2
7)) = —/ p |7 Vit = VW) p‘ dx
RN

J. Dolbeault Flows, linearization, entropy methods



Free energy
Relaxed free energy

] . } Uniqueness
Free energy point of view

Free energy or minimization of the quotient

1 q 1
Flp] = TTog Jan dx + ﬁj)\[p]
Q@ If0< ¢ < N/(N+ M), then Cy,» 4 = 0: take test functions
pn € LY NLI(RYN) such that [|pp|[11@y) = Ix[pn] = 1 and
S~ P dx =neN
lim Flp,] = — o0

n—-+oo
Q If N/(N+X) <q<1,pe(z) = p(x/)]plles vy
Flpe) = — ("IN A+ B

has a minimum at ¢ = ¢, and

Flo = Flpe.] = — ku (Qualp]) =¥ om0

JF is bounded from below if and only if Cyxq > 0
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1 1 M
Frelp, M] := — —— pldr+ — I\[p] + —/RN 2| pda

Corollary

Let ¢ € (0,1) and N/(N+X) <g<1

inf{fr”‘ﬂ[p,M] :0< pe L NLYRY), MZO,/ pdr + M = 1}
RN
is achieved by a minimizer of (2) such that [y psdx+ M, =1 and

IA[p*]+2M*/ \x|>‘p*dx:2N/ pldx
RN RN
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Uniqueness

Proposition

Let N/(N 4+ \) < g <1 and assume either that (N —1)/N < ¢ <1
and A > 1, or 2 < A < 4. Then the minimizer of

. 1 M 1
Tl M) = 55 o+ [ el pdo— = [ pras

is unique up to tramslation, dilation and multiplication by a positive
constant
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@ If (N—-1)/N <g<1and X > 1, the lower semi-continuous
extension of JF to probability measures is strictly geodesically convex
in the Wasserstein-p metric for p € (1,2)

@_ By strict rearrangement inequalities a minimizer (p, M) such that
M € [0,1) of the relaxed free energy F*! is (up to a translation) such
that p is radially symmetric and [,y zpdz =0
Let (p, M) and (p’, M) be two minimizers and

0,1] 3t f(t):=F[(L—t)p+tp,(1—t) M +tM']

£ =3Bl -+ o =) |

[ el ! = p)da

+q/RN (1- t)p+tp’)q72(p’ —p)?dx

(Lopes, 2017) I [h] > 0 if 2 < XA < 4, for all h such that
Jan (L4 |2z*) [h| dz < oo with [on hdx =0 and [ox xhdz =0
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These slides can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Lectures/
> Lectures
The papers can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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