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1 Long-term policy-making.

1.1 What is the long term ?

These lectures deal with the economic aspects of long-term policy-making. As
the historical notes will show, this problem has been around for many years,
in fact since the beginnings of economic theory, and there is a vast literature
on this subject. To state it as simply as possible, a decision-maker, either an
individual or a collective entity (the government), is to make a decision today
(time t = 0), the consequences of which will kick in only at a (much) later time
t = T , and he/she has to weigh the immediate bene�t of that decision against
the future costs. Alternatively, the cost occurs today and the bene�ts at time
T , and the question is then how much cost the decision-maker is willing to bear
today in order to reap the bene�ts at time T .
What has changed, however, since these early days, is the time horizon.

Up to very recently, what the economist, the engineer or the politician would
consider long-term would be in the range 10 to 30 years (note for instance that
the US Treasury does not issue bonds with a maturity longer than 30 years).
Anything beyond that was considered beyond the horizon - just like accelerating
galaxies slip beyond the boundary of the observable universe. This has changed
in recent years, where the consequences of our actions beyond that horizon have
become part of the agenda. Here are two examples:
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� the lifetime of a nuclear plant is 40 to 60 years, after which it will have to
be decommissioned and the site reclaimed, at a considerable cost, which
has to be factored in the investment decision

� the Stern Review on Climate Change states that the course for the next 50
years is set: the inertia of the physical and biological system governing the
Earth climate is such that the consequences of any policy we enact today
will not be felt before 50 years have elapsed. The question is what happens
after that, and the Stern Review depicts alternate scenarios spanning the
50 to 200 years period.

In these lecture notes, we will de�ne the long term as the 50 to 200 years
range.

1.2 What are the di¢ culties of long-term policy-making
?

There are two main features which set long-term decisions apart from short and
middle-term ones. The �rst one is high uncertainty. This comes in two di¤erent
guises:

� the predictable outcomes, that is those for which probabilities can be set,
have a very high dispersion. For instance, the Stern Review states that,
with a probability of 95%, under the business as usual scenario, the loss
of GDP to the world econony 200 years from now will be in the range 2%
to 35%

� but there also non-predictable events, which Stern calls "bifurcations",
such as the cessation or the thermo-haline convector which runs the Gulf
Stream. or the melting of the West Antarctic ice sheet. We are in no
position to assign probabilities to such event but we know (a) that they
can occur,and (b) that their consequences would be catastrophic

Let me mention "en passant" that the fact of global warming as such no
longer is part of the uncertainty: it is now certain that it is occuring. At the
time of this writing, there is a 50% chance that, for the �rst time in recorded
history, the North Pole will be on open water.
The second di¢ culty is non-commitment. Whatever policy we enact to-

day will presumably have to be adhered to until the desired consequences are
achieved, 50 to 200 years from now, when we (or whoever has decided on these
policies) no longer is there to carry them out. This means that we have to rely
on future generations (and future governments) to carry them out when we are
gone. There is no way we can commit unborn generations and whoever rules the
planet one hundred from now to anything: they will do as they please. What-
ever policy we design now for the long term has to answer the question: one
hundred years from now, when the powers that be are supposed to implement
these policies, is there a reasonable chance that they will do it ?
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1.3 Is economic theory relevant ?

There are, of course, the economic approach to these problems is not the only
possible or relevant one. Clearly, there are ethical considerations. As Keynes
famously said, in the long term we are all dead. Do we care what happens after
that ? Some people don�t: this is the "après moi le déluge" philosophy, which
has quite a number of proponents in academic and government circles. Most
people do because of ethical considerations towards future generations and the
planet itself. Adam Smith himself wrote that "the Earth and the fullness thereof
belongs to all generations". There are also political agendas, with immediate
gains or losses for decision-makers which preempt any long-term concern.
Even in the presence of ethical or political considerations, traditional cost-

bene�t analysis has shown itself to be a useful tool, if only to clarify the issues.
To attach �gures to policies does make a lot of di¤erence. Part of the impact
of the Stern Review is due to the fact that it came up with the conclusion that,
under a policy of business as usual, climate change would cost 10% of GDP
per year, while the cost of prevention stood at less than 1%. This is the kind
of argument to which politicians and business leaders pay attention, and the
scienti�c community should make every e¤ort to speak to them in their own
language.
Even so, applying cost-bene�t analysis to long-term policies is by no means

straightforward. In practice, this means discounting future bene�ts at a certain
rate, say r. A natural choice for r would be the market rate of interest, es-
pecially for the longest maturity, which today stands at 4:6% (rate of 30-years
US Treasury bond at the time of writing). In the following table, we give the
present value of 1; 000; 000 $ at 50; 100; and 200 years, for interest rates of 10%,
4:6% and 1:4%, which is the value that the Stern Review took:

50 ys 100 ys 200 ys
10% 8; 519 73 < 0:00
4:6% 105; 540 11; 140 124
1; 4% 499; 000 249; 000 62; 000

Clearly, an interest rate of 10% just wipes out the long term. The current
market rate of 4:6% does somewhat better, but the rate of 1; 4% really make
future events loom large. It is evident that the conclusions of the Stern report
heavily depend on this choice of the interest rate, and that they would have
been entirely di¤erent if, for instance, Stern had chose to discount at market
rates. So the question now is: what justi�cation, if any, is there for choosing
such a low rate ? This is the question which we will address now.

1.4 Some historical notes

From the beginning of economics as a separate science, it was apparent that
individual choices between present and future rewards were driven by some kind
of time preference: individuals prefer to enjoy goods sooner rather than later.
That theme was developed by John Rae (1834, [29]), Boehm-Bawerk (I884 [?]),
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Irving Fisher (1930, [14]), as a psychological trait of human nature. In 1960,
Tjalling Koopmans [22] showed that impatience can be derived from benign
assumptions on preferences. In other words, preferences in economic theory
are usually ascribed to immediate consumption c; resulting in utility functions
u (c). If one now considers consumption schedules, c (t) for t � 0 (possibly
discrete), and tries to write down a reasonable set of axioms that preferences
should satisfy, one is inevitably led to time preference as a logical consequence.
Since time preference is well established, the next question is how to translate

it into a mathematical model. It is a natural idea to discount future utilities at a
constant rate � > 0: the larger �, the more impatient the consumer. If � = 0, the
consumer is indi¤erent between immediate and deferred consumption; in other
words, he exhibits no impatience at all. The idea of setting up the question
of economic growth as an optimisation problem is due to Frank Ramsey (1928,
[30]). Interestingly, he chose � = 0 as his preferred option: "we do not discount
later enjoyments in comparison with earlier ones, a practice that is ethically
indefensible and arises merely from the weakness of the imagination". He did,
however, treat the case % > 0 as well, and that became the standard of the
industry, following Samuelson (1937, [31])

1.5 Structure of the paper

We will proceed by �rst giving a detailed exposition of the standard model of
economic growth. This is the topic of the next section; this model has very
stringent assumptions (a single good in the economy, and constant discount
rate), but as a result explicit formulas can be derived, including a formula for
the long-term interest rate:

r = �+ �g

which serves as the basis for much of the present discussions among economists.
This formula is derived and explained in Section 3, and then discussed; suitable
modi�cations are proposed to take into account the known de�ciencies of the
standard model and some of the current discussions about environmental issues
and climate change. Many of these modi�cations lead us to non-constant interest
rates.
Finally, we turn to concerns of intergenerational equity. In the standard

model, there is a single in�nitely-live individual, who stands as a proxy for
people alive today and all future generations, which is clearly very simplistic.
Following an idea of Sumaila and Walters [32], we separate the utility of people
alive today and that of future generations, and we aggregate them in a single
intertemporal criterion. This leads to a model similar to the standard one, but
with non-constant interest rate.
At the end of this investigation, we have built an overwhelming case for

considering non-constant interest rates, and this is the topic of the last sec-
tion. It turns out that handling time-varying interest rates requires a change of
paradigm and a new mathematical theory. Indeed, non-constant interest rates
lead to time inconsistency, so that the notion of optimality changes with time.
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The problem then becomes a game between successive generations, which was
solved by Ekeland and Lazrak [10], [11], and we describe the main results of
these papers.

2 The standard model of economic growth

2.1 Firms, consumers and growth

This model originates with the seminal paper of Ramsey in 1928. It is described
in the opening chapters of most graduate textbooks in macroeconomics: see for
instance [6] and [34]. or [4] for a more detailed treatment. There is a single
good in the economy, which can be either consumed (in which case it is denoted
by C) or used to produce more of the same good (in which case it is called
capital and denoted by K) . This good is produced by a large (�xed) number
of identical �rms in perfect competition, so that they function as a single �rm
which is a price-taker. The global production function is:

Y = F (K;AL)

where K is the total capital invested in the economy, L is the labour force, and
A is the productivity of labour (which will eventually depend on time, A (t),
to re�ect technological progress). It will be assumed that there are constant
returns to scale, so that setting y = Y=AL (production per unit of e¤ective
labour) and k = K=AL (capital per unit of productive labour), we have:

y = f (k)

where f (k) := F (k; 1) is the reduced production function. It will be assumed
to be concave, increasing, and satisfying the Inada conditions:

k � 0; f (k) > 0; f (0) = 0

f 0 (0) = +1; f 0 (k) �! 0 when k �!1

The population consists of identical individuals. Total consumption is C;
up to a constant factor, it is also the consumption of each individual. Using
the same scaling for production and for consumption, we �nd that the rele-
vant variable is c = C=AL, the consumption per unit of e¤ective labour. The
consumption per individual is C=L = Ac, and this is the variable which enters
the individual�s utility function u. In the sequel, we will take the following
speci�cation:

u (x) =
x1��

1� � for � > 0; � 6= 1 (1)

u (x) = lnx for � = 1 (2)
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so that the utility of each individual alive at time t is:

u (A (t) c (t)) =
A (t)

1��

1� � c (t)
1��

We will consider (and compare) di¤erent consumption scenarios C (t). To
do that, we will treat the population as a single 1 , in�nite-lived individual (the
so-called representative consumer), who consumes A (t) c (t) = C (t) =L (t) at
time t. Note that this is not the total consumption of society at time t, but the
average consumption of its members; the di¤erence is quite signi�cant, since we
will assume exponential growth of the population.
This single, in�nite-lived individual, has a pure rate of time preference �.

This means that, given the choice between consuming c (0) at time t = 0 and
c (t) at time t > 0, he/she will be indi¤erent if and only if:

u (c (0)) = e��tu (c (t))

Let us note right now (and we will expand on this later) that � is NOT an
interest rate.
The economy is driven exogeneously by technological progress and popula-

tion growth, both of which happen at constant rates g and n. We set:

A (t) = A (0) egt

L (t) = L (0) ent

so that the utility of the representative consumer at time t is:

A (0)
1��

1� � c1��eg(1��)t

2.2 The planner�s problem

2.2.1 Statement

We now imagine a benevolent and omniscient planner, who wants to maximize
the intertemporal welfare of the representative consumer. He/she will consider
the following problem:

max
c

1

1� �

Z 1

0

c1��eg(1��)te��tdt (Ramsey)

dk

dt
= f (k)� c� (n+ g) k; k (0) = k0

k (t) � 0; c (t) � 0
1A slight variant of the model, which leads to the same results, consists of assuming that

the population consists of N identical dynasties, each of which will be treated as a single,
in�nite-lived individual.
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The second equation represent the balance equation between savings and
consumption. It states that at every moment t, (scaled) production f (k) is
fully allocated between immediate (scaled) consumption c and (scaled) capital
investment dk=dt, the correction term (n+ g) k being there to take into account
growth of population and technological progress. Of course k0 is the initial
capital.
Solving this problem leads to the following result, which will be proved in the

next subsections. Assuming that � > g (1� �) (the pure rate of time preference
is high enough) we �nd that:

(a) There is a single k1, called the equilibrium value of capital, which solves
the following equation, known as the golden rule:

f 0 (k1) = �+ �g + n (3)

(b) The problem has a single solution k (t), which has the property:

k (t) �! k1 when t �!1

(c) The corresponding consumption c (t) along the optimal path also converges:

c (t) �! c1 = f (k1)� (n+ g) k1

In equilibrium, when k (0) = k1 and c (0) = c1, we have C (t) = C (0) e(n+g)t,
K (t) = K (0) en+g and C (t) =L (t) = A (0) egt, so that total consumption and
total production are growing at the rate n + g, while consumption per head is
growing at the rate g.

2.2.2 Existence and uniqueness

The Ramsey problem appears as a control problem, where the control is c (t)
and the state is k (t). Substituting c = f (k)� (n+ g) k � dk

dt in the integrand,
we reduce it to a problem in the calculus of variations, where the only unknown
is k:

max
k2A

Z 1

0

1

1� �

�
f (k)� (n+ g) k � dk

dt

�1��
e��tdt (4)

k (0) = k0; k (t) � 0 (5)

f (k)� (n+ g) k � dk
dt
� 0 (6)

We have set � := �� g (1� �) > 0, and A is the set of admissible functions,
will be discussed later. For the sake of convenience, we also set:

I (k) =

Z 1

0

1

1� �

�
f (k)� (n+ g) k � dk

dt

�1��
e��tdt
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Note that, since u and f are strictly concave, strictly increasing, and positive,
I is a strictly concave function of k with values in R[f+1g. As a consequence,
if the maximum is attained on A, and A is convex, it is attained at a single
point (which will usually depend on the set A).
Does the optimal solution exist ? Of course, the answer will depend on the

de�nition of admissibility, that is, on the choice of A. An appropriate choice for
A would incorporate both regularity conditions (how smooth is k (t)) and growth
conditions (how does k (t) behave when t �! 1). One would then consider a
minimising sequence ki (t) ; show that a subsequence converges to some �k (t),
and prove that �k (t) is the minimizer. This is called the direct method in the
calculus of variations. Unfortunately, I do not know of this method being applied
successfully in the case at hand. The main di¢ culty is that the integrand u (c)
has slow growth when c �! 1 (it grows like a power �, with a < 1); as a
consequence, there is nothing to prevent k (t) from being discontinuous at some
point t0, as long as the jump is downwards (in other words, the consumer can
consume instantaneously a non-zero quantity of good.
In the sequel, we shall prove existence in the class A = C2 by another route

(the royal road of Caratheodory)

2.2.3 A necessary condition: the Euler-Lagrange equation

Suppose there is a solution k (t) for A = C2. The classical Euler-Lagrange equa-
tion then holds for k (t) (see any texbook on the calculus of variations), yielding
a second-order equation:

d

dt

�
�u0

�
f (k)� (n+ g) k � dk

dt

�
e��t

�
= u

�
f (k)� (n+ g) k � dk

dt

�
(f 0 (k)� (n+ g)) e��t

(with u (c) = (1� �)�1 c1��), which is valid as long as we do not hit the bound-
aries, that is, for k (t) > 0 and c (t) > 0. We simplify this expression by setting
c := f (k)� (n+ g) k � dk

dt , so that it becomes:

dc

dt

u00 (c)

u0 (c)
+ f 0 (k)� �� �g � n = 0 (7)

We can reduce this second-order equation to a system of �rst-order equations:

dk

dt
= f (k)� (n+ g) k � c (8)

dc

dt
= �1

�
(�+ �g + n� f 0 (k)) c (9)

All the solutions of this system can be represented on a two-dimensional
phase diagram. The vertical line � + �g + n = f 0 (k) and the curve f (k) �
(n+ g) k = c divide the positive orthant R2+ in four regions, which have a
common boundary point (k1; c1), where:

f 0 (k1) = �+ �g + n

c1 = f (k1)� (n+ g) k1
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We can �nd out the sign of dk=dt and dc=dt in each region, and draw the
phase diagram. It follows that (k1; c1) is the unique �xed point, and that it is
unstable. There is a unique solution

�
�k (t) ; �c (t)

�
, which converges to that �xed

point:

�k (t) �! k1 and �c (t) �! c1 when t �!1

all the others go one of the boundaries, c = 0 or k = 0.
Of course, we strongly suspect that

�
�k (t) ; �c (t)

�
is the optimal solution to

the problem when A = C2. We can try to compare it directly with the other
solutions of the Euler-Lagrange equation (7), but this is quite ponderous (one
has to investigate separately all the four regions in the phase space) and will not
generalize to more general situations (for instance, with several goods). In the
literature, one points points out that the Euler equation should be supplemented
by two boundary conditions, one of which is known, namely k (t0) = k0, while
the other should describe the behaviour of k (t) when t �! 1 . This is the
celebrated "transversality condition at in�nity", several versions of which have
been given, either in discrete (see [[?]], [[12]]) or in continuous (see [[2]], [[24]],
[??]) time. Unfortunately, none of them applies to the present situation, where
the candidate solution is the only one which does not go to the boundary.
So we will prove that

�
�k (t) ; �c (t)

�
is the optimal solution by a very di¤erent

method, using the Hamilton-Jacobi equation, which we now introduce.

2.2.4 Another necessary condition: the Hamilton-Jacobi-Bellman
equation

If there is an optimal solution for every initial point k0, depending smoothly on
k0, the function:

V (k0) := max
�
I (k) j k 2 C2; k (0) = k0

	
satis�es the following relation at every point where it is di¤erentiable:

V 0 (k) � 0 and
�

1� �V
0 (k)

1�1=�
+ V 0 (k) (f (k)� (n+ g) k)� �V (k) = 0

(HJB)
and the optimal consumption is given by a feedback strategy:

c (t) = V 0 (k (t))
�1=� (10)

An informal proof is as follows. De�ne:

V (k0) := max
c(�)

�Z 1

0

u (c (t)) e��tdt j k (0) = k0
�
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(with u (c) = (1� �)�1 c1��). Using optimality, we have:

V (k0) = max
x;c(�)

�
"u (x) +

Z 1

"

u (c (t)) e��tdt j k (") = k0 + " (f (k0)� x� (n+ g) k0)
�

= max
x;c(�)

�
"u (x) + e��"

Z 1

0

u (c (t)) dt j k (") = k0 + " (f (k0)� x� (n+ g) k0)
�

= max
x

�
"u (x) + e��"V (k0 + " (f (k0)� x� (n+ g) k0))

	
= max

x
f"u (x) + (1� �") (V (k0) + V 0 (k0) (f (k0)� x� (n+ g) k0))g

= V (k0) + "max
x
fu (x)� xV 0 (k0)� �V (x0) + V 0 (k0) (f (k0)� (n+ g) k0)g

We end with:

0 = max
x
fu (x)� xV 0 (k0)� �V (x0) + V 0 (k0) (f (k0)� (n+ g) k0)g (11)

The right-hand side splits in two terms, yielding the desired equation:

0 = ~u (V 0 (k0))� �V (k0) + V 0 (k0) (f (k0)� (n+ g) k0)

where:

~u (y) : = max
x
fu (x)� xyg

= max
x

�
1

1� �x
1�� � xy j y = x��

�
=

�
1

1� � � 1
�
x1�� =

�

1� � y
� 1��

�

and the maximum is achieved for y = u0 (x) = x��, yielding x = y�1=�, and
hence formula (10).

2.2.5 A su¢ cient condition: the royal road of Caratheodory

Theorem 2 Suppose (HJB) has a C2 solution V (k) such that, for any k0 > 0,
the solution �k (t) of the Cauchy problem:

dk

dt
= f (k)� (n+ g) k � i (V 0 (k)) ; k (0) = k0 (12)

converges to k1 and e��tV
�
�k (t)

�
�! 0 when t �!1. Then, for any starting

point k0 > 0, the path given by (12) is optimal among all C2 paths k (t) such
that

lim sup
T�!1

e��tV ((k (T ))) � 0

In particular, it is optimal among all interior paths (that is, paths along which
k (t) is bounded away from 0 and 1).
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Proof. Consider any path c (t) ; k (t) starting from k0. Because of equation
(11), we have:Z T

0

e��t [u (c (t))� c (t)V 0 (k (t)) + V 0 (k (t)) (f (k (t))� (n+ g) k (t)� �V (k (t)))] dt � 0 for every T > 0

The left-hand side can be rewritten as follows:Z T

0

e��tu (c (t)) dt+

Z T

0

e��t
�
dk

dt
V 0 (k (t))� �V (k (t))

�
dt � 0Z T

0

e��tu (c (t)) dt+ e��tV (k (t)) jT0 � 0Z T

0

e��tu (c (t)) dt+ lim sup
T�!1

e��tV ((k (T ))) � V (k (0))

Letting T �!1, we �nd:Z 1

0

e��tu (c (t)) dt � V (k0)

. On the other hand, setting �c (t) = i
�
V 0
�
�k (t)

��
, we get the path �k (t) and the

equality is achieved because of equation (HJB). Hence the result.
Note that the C2 regularity of V (k) everywhere (including at �k) has played

a crucial role in the proof

Theorem 3 There is a C2 solution of the HJB equation such that all solutions
of (12) converge to the point k1 de�ned by:

f 0 (k1) = �+ �g + n

This will be proved much later in the lectures. As a consequence, we have:

Corollary 4 The Ramsey problem has a unique solution k (t) in the class C2,
with k (t) �! k1 when t �!1.

2.2.6 Local analysis

Linearizing equations (8) (9) near the stationary point, with y = k � k1 and
x = c� c1, we get:

dy

dt
= (f 0 (k1)� (n+ g)) y � x = �y � x

dx

dt
= f 00 (k1)

c1
�
y

where we have taken into account the fact that dc
dt = 0 at the stationary point.

The corresponding matrix is:�
� �1

c1
� f

00 (k1) 0

�
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which has two real roots, one positive and one negative. Along the "optimal"
trajectory, we have:�

k � k1
c� c1

�
~ exp

"
1

2

 
��

r
�2 +

4

�
c1f 00 (k1)

!
t

#�
k (0)� k1
c (0)� c1

�

2.3 The equilibrium problem

What if there is no planner, or if the planner has no means of implementing
his/her policy ? In that case, we will be looking for an equilibrium interest rate,
that is, an interest rate r (t) for which markets clear. By de�nition, if the spot
rate is r (t), the price today of one unit of consumption available at time t is
exp (�R (t)), where:

R (t) =

Z t

0

r (s) ds

Note that, if the interest rate is constant, r (t) = r, we �nd the usual formula,
R (t) = exp (�rt), but, as we shall see, there is no particular reason that this
should be the case in equilibrium.
Assume the yield curve is r (t), which is common knowledge and let us write

the market-clearing conditions. There is only one because the representative
consumer and the representative �rm enter forward contracts at time t = 0. On
the supply side, the interest rate (spot rate on the money market) should be
equal to the marginal return on investment (between t and t+ dt):

r (t) = f 0 (k (t))� n� g

Since the �rm makes no pro�t, its revenue is shared between labor and
capital, so that the wage must be:

w (t) = f (k)� kf 0 (k) + n+ g

Recall that the representative citizen consumes A (t) c (t) = A (0) egtc (t) at
time t. He/she maximizes intertemporal utility:

max
c

Z 1

0

1

1� � c (t)
1��

e��tdt

(with � = ��(1� �) g, as above) subject to the budget constraint (intertemporal
borrowing and lending is allowed):Z 1

0

e�R(t)c (t) e(g+n)tdt � k (0) +
Z 1

0

e�R(t)w (t) e(g+n)tdt

Introducing a Lagrange mutiplier �, this problem becomes (with u (c) =
(1� �)�1 c1��):

max
c

Z 1

0

h
u (c (t)) e��t + �e�R(t) [w (t)� c (t)] e(n+g)t

i
dt (13)
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where R (t) and w (t) are known. Note for future reference that the exponent
R (s) is non-constant. The optimal solution to the consumer�s problem, as seen
from time t = 0, is:

u0 (c (t)) e��t = �e�R(t)+(n+g)t

Let us transform this equation a little bit:

lnu0 (c (t))� �t = ln��R (t) + (n+ g) t

��
c

dc

dt
� � = n+ g � f 0 (k) (14)

This is just the Euler-Lagrange equation, which is satis�ed by the solution
to the planner�s problem. Hence:

Proposition 5 The solution to the planner�s problem is also a solution to the
equilibrium problem. They are both e¢ cient (Pareto optimal).

There is another way to retrieve the Euler-Lagrange equation. Consider
the marginal return on consumption. In equilibrium, it should be equal to the
interest rate (and hence to the marginal return on investment). More precisely,
consider the representative consumer at time t = 0, and his/her intertemporal
consumption path ~c (t) = egtc (t); let us ask ourselves how much consumption
�~c (0) he/she would be willing to forgo at time 0 in other to increase his/her
consumption by �~c (t) at time t. The balance equation can be written (with
u (c) = (1� �)�1 c1�� and � = �� (1� �) g)

e��tu0 (~c (t))�~c (t)� u0 (~c (0))�~c (0) = 0
�~c (t)

�~c (0)
=
u0 (~c (0))

u0 (~c (t))
e�t = exp

Z t

0

r (s) ds

with

r (t) = � � d

dt
lnu0 (~c (t)) = � +

�

~c

d~c

dt
(t)

Writing r (t) = f 0 (k (t))� (n+ g), and plugging in ~c (t) = egtc (t), so that:

1

~c

d~c

dt
= g +

1

c

dc

dt

we �nd the Euler-Lagrange equation. It expresses that, in equilibrium, the
interest rate in the economy is equal to the marginal return on investement,
and also to the marginal return on consumption.

2.4 Bibliography

As mentioned in the introduction, the standard model can be found in the text-
books, for instance [6] , [34] or [4], although not in a way that would fully satisfy
a mathematician. The problem of �nding the right transversality condition at
in�nity is still open: there are many versions around (see [2], [12], [24], [20]),
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but none which applies to the standard model (where the optimal solution is
isolated, all the other ones being either unbounded or hitting the boundary).
For the Hamilton-Jacobi-Bellman equation, and an introduction to the royal
road of Caratheodory, see [8] or [7]

3 Determinants of the interest rate.

We shall use the standard model as a benchmark, and introduce successive
modi�cations.

3.1 The classical theory

In the preceding section, we have proved that in the framework of the standard
model, where:

� the rate of growth of average consumption is constant and equal to g,

� the utility function of the representative consumer is u (c) = (1� �)�1 c1��
with � > 0 (CRRA: constant relative risk aversion)

the equilibrium interest rate in the economy is given by:

r (t) = f 0 (k (t))� n� g (15)

= �� (1� �) g + 1

c (t)

dc

dt
(16)

Here (k (t) ; c (t)) is the optimal (from the point of view of the planner) or
equilibrium (from the point of view of the representative consumer) scenario for
the economy, starting from k (0) = k0. The equality in (15) and (16) expresses
that in equilibrium, the marginal return on consumption equals the marginal
return on investment.
Note an important consequence of these formulas: the spot rate r (t) at time t

is not constant (even though all the other parameters in the economy, including
the psychological discount rate, is constant). More precisely, consider the yield
curve at time t > 0. This is the map T �! rt (T ), de�ned for T > t, with:

rt (T ) :=
1

T
ln

Z T

t

r (s) ds

so that exp rt (T ) is the price at time t of one unit of numéraire delivered at
time T > t. We �nd that:

� the yield curve is not �at

� it changes with time

� as t �!1 it converges to a �at yield curve, rt (T ) �! r1

14



� for every t, the long-term rate at time t is limT�!1 rt (T ) = r1

Here r1 is the spot rate at the stationary point (k1; c1). At this point,
formulas (15) and (16) become:

r1 = f 0 (k1)� n� g (17)

= �+ �g (18)

Note the remarkable fact that it no longer depends on t. In other words, in
the standard model, the long-term interest rate is constant along the optimal
path and equal to the spot rate at the stationary point.
Formulas (16) and (18) generalize to a much broader class of models than the

standard one, provided there is one consumption good and one representative
consumer. Consider an in�nite-lived individual, with utility function u, pure
rate of time preference � > 0, and who is facing a schedule of consumption c (t),
leading to an overall utility of:Z 1

0

e��tu (c (t)) dt

Let us ask ourselves how much immediate consumption �c (0) he/she would
be willing to forgo in order to increase its consumption by �c (t) at some later
time t > 0. Assuming these are small quantities, we can work on the margin,
and we get the relation:

�c (t)

�c (0)
=
u0 (c (0))

u0 (c (t))
e�t

so that the marginal return on consumption is:

�c (t)

�c (0)
= exp

Z t

0

r (s) ds

In equilibrium, if we use the consumption good as numéraire, this should be
equal to the spot interest rate:

r (t) = �� d

dt
lnu0 (c (t)) = �� u

00 (c (t))

u0 (c (t))

dc

dt
(t)

This is most conveniently rewritten as follows:

r (t) = �+

�
�c (t) u

00 (c (t))

u0 (c (t))

��
1

c (t)

dc

dt
(t)

�
= �+ � (c (t))G (t) (19)

where:

� � (c) := �cu00 (c) =u0 (c) is a positive parameter (because u is concave),
usually called the relative risk aversion; in this context, it would be more
relevant to call it the relative satiation. It usually depends on the level of
consumption c. In the special case of power utilities, u (c) = c1��= (1� �),
it is constant and equal to �
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� G (t) := (dc=dt) =c (t) is the rate of growth of the economy

Formula (19) is the benchmark for determining the interest rate, and is gen-
erally accepted in the economic literature. For instance, the Stern report takes
� = 0:1%, � = 1 and g = 1:3%, yielding r = 1:4%. Most of its critics claim that
it is too low, and take � = 2%, � = 2 and g = 2% as more reasonable num-
bers, yielding r = 6%. We will discuss these claims, and bring more economic
arguments to bear, in the sequel. Meanwhile, let us make some observations:

� as soon as there is growth in the economy (G (t) > 0), we have r > �. For
instance, as Ramsey found out, we can have positive interest rate r > 0
even if the pure rate of time preference is zero, � = 0.

� the interest rate rises with the growth rate g. For instance, setting � = 2%
and � = 2, we get r = 6% if g = 2% and r = 10% if g = 4%. Why is that
so ? Well, ask yourself the following question. Historically, growth has
been around 2% for the past two hundred years. Now, imagine how your
own ancestors were living 200 years ago - probably in conditions which
you would consider of extreme need and poverty. Would you want such
miserable people to have set something aside for you ? Probably not -
quite the opposite, if you were able to do something for them, you would
do it. Well, it growth continues at the same rate, this is the way that our
descendants will look upon us; they will be richer than we can imagine. So
why should we make sacri�ces for such people ? Hence the high interest
rate that we are in fact charging them.

� on the other tack, the interest rate falls with the growth rate. For instance,
setting � = 2% and � = 2 again, we get r = �2% if g = �2%, that is,
if the economy contracts at the rate of 2% a year. So negative interest
rates are not unthinkable - they might actually be needed in periods of
negative growth. Think for instance of an economy where the only good is
the environment, which cannot be produced, and actually has to decrease
as the population growth - in such an economy, the interest rate would
have to be negative. This leads us to the idea that one would actually
have to use di¤erent rates for environmental goods and for consumption
(manufactured) goods. The proper setting for exploring this idea is a
two-goods model, and this is what we will be doing next.

3.2 Modi�cations 1: The environment as a separate good

This section develops, in a continuous-time framework, the ideas of Guesnerie
[16], [17]We complement the standard model by adding a environment good E,
along with the consumption good C. The two goods have di¤erent characteris-
tics:

� E is a public good, and cannot be produced: it should be understood as
the global quality of the environment.
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� C is a private good, and can be produced as in the standard model: it
should be understood as an aggregate of all consumption goods.

The consumption good will be used as numéraire. For the time being, we
assume that the environment good is available in a �xed quantity �E (so that
the quantity will not be decreased as the economy grows).
Along the lines of Guesnerie, we choose the utility function of the represen-

tative consumer to be:

u (C;E) =
1

1� � v (C;E)
1��

with
v (C;E) = (C� + E�)

1=�

The parameter � � 1 denotes the extent to which the environment good E
and the consumption good C are substitutes. If a simultaneous and marginal
changes C �! C��C and E �! E+�E is to leave the total utility invariant,
then we must have:

� @v
@C
�C +

@v

@E
�E = 0

so that:
�E

�C
=
@v

@C
=
@v

@E
=

�
E

C

�1��
The right-hand side can be rewritten as follows:

�E

E
=

�
E

C

���
�C

C

In other words, to achieve an increase of 1% in the environmental good, the
representative individual is willing to give up

�
E
C

��
% of the consumer good.

� if 0 < � � 1, the willingness to pay for the environmental good decreases
as E=C decreases, that is, as it becomes relatively scarcer. This is the case
when the environmental good and the consumption good are substitutes.

� if � < 0, the willingness to pay for the environmental good increases as
it becomes relatively scarcer. This is the case when the two goods are
complements.

As in the standard model, we assume that there is a production function Y =
F (K;AL), which is positively homogeneous of degree one, and where the labour
force L (t) = L0 expnt and the technological progress A (t) = A0 exp gt are exo-
geneously given. Introducing the reduced consumption c (t) = C (t)A (t)�1 L (t)�1,
as in the preceding section, so that the average consumption at time t isA (t) c (t),
we �nd that the utility of the representative consumer at time t is given by:

u (c (t)) =
1

1� �
�E1��

�
1 +

�
A0
�E

��
c (t)

�
eg�t

�(1��)=�
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The representative consumer�s optimisation problem then becomes:

max

Z 1

0

1

1� �
�E1��

�
1 +

�
A0
�E

��
c (t)

�
eg�t

�(1��)=�

e��tdt

dk

dt
= f (k)� (n+ g) k � c

3.2.1 The case � < 0

In that case, we �nd that, for large t, the utility function can be approximated
as follows:�

1 +

�
A0
�E

��
c (t)

�
eg�t

�(1��)=�

' 1 + 1� �
�

�
A0
�E

��
c (t)

�
eg�t

The constants play no role in intertemporal optimisation, and we are left
with the criterion:

max

Z 1

0

c (t)
a
e(���g)tdt

This is precisely the standard problem again. We �nd that c (t) �! c1 and
k (t) �! k1, where:

f 0 (k1) = �+ (1� �) g + n; c1 = f (k1)� (n+ g) k1

In the absence of environmental concerns, the stationary level of capital
would be kc1, given by:

f 0 (kc1) = �+ g + n < �+ (1� �) g + n

so that kc1 > k1. In other words, the presence of a non-substituable environ-
mental good lowers economic growth. More precisely, the economy grows as
k1 exp (g + n) t < k

c
1 exp (g + n) t, and, of course, the amount of consumption

is reduced accordingly. This is known in the literature as "ecological stunting".
The interest rate at the stationary point then is:

r1 = �+ (1� �) g > �+ g

Note that the parameter � does not appear in thes formulas - the risk aversion
of the representative consumer does not come into play (at least not at the
stationary state) ! The only relevant parameter is the substitution rate between
the public and the private good. As technological progress and population
growth drive up the production of consumer goods, the environment becomes
comparatively more valuable, and long�term interest rates are determined only
by �, the pure rate of time preference, g, the technological growth rate, and � -
the larger �, the less an increase in consumption can compensate for a decrease
in environment quality, and the higher the interest rate.
We can now ask ourselves whether an investment that will result in a one-

time increase in consumption �c (0) today and result in a permanent decrease
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�E in the quality of the environment is worth undertaking. The answer will be
yes if and only if: that it is equal to:

u0 (c (0))�c (0) >

�
@

@E

Z 1

0

1

1� �
�
�E� +A�0 c (t)

�
eg�t

�(1��)=�
e��tdt

�
�E

c (0)
��

c (0)
�
+ �E�

�1�1=��c (0) > �E��1�E

Z 1

0

�
�E� +A�0 c (t)

�
eg�t

�(1����)=�
e��tdt

On the stationary path, c (t) = c1, we get:

�c

�E
>
�
c�1 + �E�

�1�1=� �E��1

c�1

Z 1

0

�
�E� +A10 c

�
1e

g�t
�(1����)=�

e��tdt

3.2.2 The case 0 < � � 1

As t �!1, we �nd that:

u (c (t)) ' 1

1� �A
(1��)
0 c(1��)e(1��)gt

and we are back into the standard model.This time the environmental good
simply disappears from the global picture.

3.3 Modi�cations 2: Uncertainty on the growth rates

3.3.1 A classical argument

Let us start from Ramsey�s formula:

r = �+ �g (20)

Assume now that we believe in the model, but are uncertain about the growth
rate g :

g ~ N
�
�g; �2

�
so that average consumption c (t) = c (0) egt is lognormal.
Assume moreover that we are utility maximizers, and handle uncertainties

à la von Neumann-Morgenstern. We ask, as always, how much consumption
�c (0) we are willing to forgo today to increase by �c (t) our consumption at
time t

u0 (c (0))�c (0) = E [u0 (c (T ))�c (T )] e��t

with u (c) = c1��

1�� so that u
0 (c) = c��: This gives:

�c (0)

�c (t)
=

e��t

u0 (c (0))
E [u0 (c (t))]
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The computation gives:

e��t

c (0)
��E

h
c (0)

��
e�g�t

i
= e�rt

Using the well-known properties of the lognormal distribution, we �nd that:

E
�
e�g�t

�
= exp

�
��g�t+ 1

2
�2�2t2

�
and hence:

r = �+ ��g � 1
2
�2�2t (21)

Note that we are back with non-constant interest rates: in fact, the interest
rate goes to �1 when t goes to1 ! It may be for this reason that the economic
literature takes a di¤erent route, and simply averages the Ramsey formula (22),
de�ning r as the mathematical expectation of the right-hand side. We then get
the formula:

r = �+ ��g � 1
2
�2�2 (22)

which, although simpler (we are back with constant interest rates) and popular
(see [19] or makes little sense to me. If we take the usual values, � = � = g = 2,
we get r = 6% � 2�2, and since � (the volatility of the growth rate) is of the
order of a few percentage points, this correction will not be enough to reach
the Stern value of 1:4%. On the other hand, formula (21) will drive the interest
rate down to very low values, and eventually to negative ones: in the very long
term, the uncertainty becomes so large that it forbids any risk-taking.
One thing is for sure: uncertainty lowers the interest rate. This corresponds

to the standard fact that individuals are risk-averse. Note that this runs counter
to an argument that politicians and companies have been making for many
years, namely that we should do nothing about climate change, because it is
not certain and it may turn out to be all right after all. From what we know,
people are risk-averse for themselves, at least when the stakes (magnitude of
potential losses) is large, meaning that the downside is more important to them
than the upside, and it is di¢ cult to understand why society should behave
di¤erently.

3.3.2 Pooling opinions of experts

In 2001, Weitzman [36] made the following, very general, observation. Suppose
you consult two experts, whom you equally trust, about which interest rate to
choose, and that they come up with two di¤erent opinions, namely r1 and r2,
with r1 < r2. What value should you take ? As you trust them equally, it seems
reasonable to pick the mean value, namely �r = (r1 + r2) =2. As Weitzman points
out, this is wrong: what these experts are really saying is that one dollar today
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is worth respectively e�r1t and e�r2t at time t > 0. So if a mean is to be taken,
it should be the mean of those values, leading to a interest rate ~r given by:

~r (t) =
1

t
ln

�
1

2
e�r1t +

1

2
e�r2t

�
Note that this interest rate is not constant. It is approximately equal to

�r = (r1 + r2) =2 for the short term, but for the long term is equal to the lowest
rate r1. This is the Weitzman lesson: for the long term, the lowest rate should
prevail
Weitzman put his idea into practice. He pooled I = 1; 800 economists and

asked them for an assessment of interest rates to be applied for investment
projects. Economist i answered with a constant rate ri. leading to a discount
rate Ri (t) = e�rit. He found that the ri were distributed according to a Gamma
distribution with parameters (�; �):

f (r) ~
��

� (�)
r��1e��r

Averaging the discount rates, he then derives the aggregate interest rate:

R (t) :=

Z 1

0

f (r)A (r) dr =

�
�

� + t

��
=

1

(1 + t�2=�)
�2=�2

In terms of the mean � and the variance �2 of the Gamma distribution
(�; �). The corresponding interest rate then is:

r (t) = � 1
R

dR

dt
=

�

�+ �
=

�

1 + t�2=�

Note that very long-term interest rates are 0. The question is, how far out
is the very long term ? Within the time horizon of the Stern review, from 50 to
200 years, Weitzman �nds an interest rate of 1:75%, very much in line with the
value 1:4% chosen by Stern himself.

3.4 Modi�cations 3: Uncertainty on the model.

Up to now, the modelling does not capture one of the main features of very-
long term decisions, namely the possibility of major catastrophes with unknown
probabilities. The fact that these probabilities are unknown is an added ingre-
dient to risk, which is not captured by simply assigning a priori probabilities,
as in classical economic theory. Indeed, a classicial experiment by Ellsberg [13]
indicates that people have a speci�c aversion to ambiguity, that is to facing
unknown probabilities. This is not captured by the von Neumann-Morgenstern
approach to decision under uncertaintly, and the paradigm has to be changed.
There is at present an active and promising literature on decision making under
Ellsberg ambiguity (see [21], [15] for instance)
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Weitzman [37] has pointed out another problem: whatever probability dis-
tribution our model works with, this will not be the one we work with. Indeed,
we do not observe the distribution, all we can do is to infer it from a �nite (and,
in the case of climate change, pitifully small) amount of data. This means that,
even if our model speci�es Gaussian or Poisson distributions, which is usually
the case, and which are nice because they have "thin tails" (large deviations
have small probabilities) the ones we will end up working with may well have
"fat tails", meaning that all long-term calculations break down.
To take a speci�c example, go back to the formula:

r = �+ ��g � 1
2
�2�2

which is based on the modelling assumption that g~N
�
�g; �2

�
. Weitzman�point

is that, even if we agree with that speci�cation, we know neither �g nor �. We
will have to estimate them, and for this we need not only the data but an a
priori distribution.
A standard way (Je¤reys prior) to choose such a distribution is to suppose

that ln� is Gaussian. If there are N experimental values available, we are led to
a classical problem in statistics (�nd the variance of a Gaussian variable given
N experimental values), the answer to which is a Student distribution with N
degrees of freedom. It is well known that this distribution has fat tails. More
precisely, if we have observed we �nd that:

1

u0 (c (0))
E [u0 (c (t)) j c (t1) ; :::; c (tN )] = +1

with the speci�cation u (c) = c1��= (1� �). In other words, given a �nite num-
ber of observations, society should be willing to give up an unlimited amount
of consumption today to gain any certain amount of consumption in the future.
This corresponds to an interest rate of r = �1

3.5 Modi�cations 4: Equity and redistribution

3.5.1 The problems

Consider again the standard model: there is an in�nite-lived representative
consumer, who strives to maximize

max

Z 1

0

u (C (t)) e��tdt (Ramsey Growth Model)

Problem 1: there is no such thing as a representative consumer Peo-
ple are di¤erent - in their tastes (utility function u), in their expectations (proba-
bility p). More importantly, some are rich, but most are poor. The �rst question
is dealt with by aggregation theory (see the lectures by Jouini in this summer
school). The second question, to my knowledge, has not attracted academic at-
tention - except from Ramsey himself ! He devotes the last section of his seminal
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paper (1928) to this problem and concludes : "In such a case, therefore, equi-
librium would be attained by a division of society into two classes, the thrifty
enjoying bliss and the improvident at the subsistence level". It would of course
be politically quite incorrect to mention the poor nowadays, and this is why
academics gladly adhere to the �ction of the representative consumer.

Problem 2: no one lives for ever This means that the coe¢ cient � (pure
rate of time preference) will apply to di¤erent persons in the short to middle
term (where the present generation is alive) and in the middle to long term
(when we are all dead, and our descendants rule or are ruled). This means that
this parameter is put to two di¤erent uses:

� for weighing consequences to me of my own actions

� for weighing consequences to others of my own actions

In a seminal paper, Sumaila and Walters (2005, [32]) separate the (psy-
chological) impatience from the (ethical) concern for future generations. Their
model combines three parameters:

� the population is renewed at the rate 

� each generation has a pure rate of time preference �

� each generation discounts at the rate � < � the utility of future generations

For an event which is to happen at time t, we �nd that the discount factor
to apply is:

R (t) = e��t + 

Z t

0

e��se��(t�s)ds (23)

= (1� �) e��t + �e��t (24)

with:
� =



�� � (25)

. Note that this corresponds to a non-constant rate of time preference:

r (t) = � ln
�
(1� �) e��t + �e��t

�
� r (t) ' �� in the long term

� r (t) ' ��+ (1� �) � in the short term
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4 Non-constant discount rates

4.1 Time inconsistency

Let us summarize the arguments for non-constant interest rates:

� there is strong experimental evidence that the psychological discount rate
is not exponential, but hyperbolic: it is more like (1 + �t)��t than
exp (��t)

� even within the framework of the standard model, where the representative
consumer has a constant psychological discount rate �, he/she ends up
facing non-constant interest rates (see problem (13)), unless his/her utility
happens to be CRRA. So, in the case of general utility functions, there will
be time inconsistency even if the psychological discount rate is constant

� aggregating the beliefs of several individuals will lead to non-constant
interest rates, as Weitzman pointed out, even if each of them has a constant
psychological discount rate

� if the planner takes the interests of future generations into account, he/she
will have to discount future welfare at a non-constant rate, even if he/she
and the representative consumer both have constant rates of time prefer-
ence, and even if this rate is the same !

My view is that this the case is overwhelming. Even if it were not, there is a
�nal argument to be made: any policy recommendation drawn from the analysis
must be robust to small changes in the model: one should ask, for instance, what
becomes of the Ramsey model if the psychological discount rate is not exactly
exponential. One would hope that there still is an optimal strategy, which
converges to a stationary state, given by a suitably modi�ed golden rule.
Unfortunately, non-constant interest rates create a special situation, known

as time inconsistency. This is best explained in the framework of intergener-
ational equity, as explained at the end of the preceding section. The present
generation faces the problem:

max

Z 1

0

R (t)u (c (t)) dt,

dk

dt
= f (k (t))� (n+ g) k � c (t) and k (0) = k0

However, the present generation will not be around to implement the policy
it has designed today, and must rely upon others (namely future generations) to
do so. But the future generations may not agree with decisions taken on their
behalf many years before they were around, and decide to carry out di¤erent
ones. This is the non-commitment problem, which can be avoided only if the
policy which seems optimal to us today still seems optimal to them when they
are in charge. Unfortunately, with a non-constant rate of time preference, this
will not happen.
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Take two scenarios c1 (�) and c2 (�), both of which kick in at time T . In other
words, c1 (�) and c2 (�) are de�ned for s � T . Say that we compare them, at
some time t1 < T , and we �nd c1 (�) is superior to c2 (�):Z 1

T

R(t� t1)u (c1 (t)) dt �
Z 1

T

R(t� t1)u (c2 (t)) dt (26)

Let some time elapse, and do the comparison again at some later instant
t2 < T . Is it still true that we will �nd c1 (�) superior to c2 (�) ? This would
mean that: Z 1

T

R(t� t2)u (c1 (t)) dt �
Z 1

T

R(t� t2)u (c2 (t)) dt (27)

In the case when the discount rate is constant, so that R (t) = exprt, the �rst
inequality implies the second because of the special properties of the exponential
function. We have:Z 1

T

R(t� t2)u (c1 (t)) dt =

Z 1

T

er(t�t2)u (c1 (t)) dt

= er(t1�t2)
Z 1

T

er(t�t1)u (c1 (t)) dt

= er(t1�t2)
Z 1

T

R(t� t1)u (c1 (t)) dt

so that (27) is derived from (26) by multiplying both sides by a constant.
In the case of non-constant discount rates, (26) no longer implies (27) ! In

fact, a policy which is optimal for the decision-maker at time t1, no longer
is optimal for the decision-maker at a later time t2 (even though the utility
function u (c) is unchanged). There is no control that will be simultaneously
optimal for all those who will have to implement it.
The fact that this problem does not occur with constant interest rates is a

miracle, which was already pointed out by Samuelson in 1937, with his usual
foresight [31]: "our equations hold only for an individual who is deciding at
the beginning of the period how he will allocate his expenditures over the pe-
riod. Actually, however, as the individual moves along in time there is a sort
of perspective phenomenon in that his view of the future in relation to his in-
stantaneous time position remains time invariant, rather than his evaluation of
any particular year (e.g. 1940). This relativity e¤ect is expressed in the be-
haviour of men who make irrevocable trusts, in the taking out of life insurance
as a compulsory savings measure, etc. The particular results we have reached
are not subject to criticism on this score , having been carefully selected so as
to take care of this provision. Contemplation of our particular equations will
reveal that the results are unchanged even if the individual discounts from the
existing point of time rather than from the beginning of the period." The last
sentence, of course, means that Samuelson uses constant interest rates.
So, if interest rates are not constant, and there is no commitment technology,

we will have to discard optimal control theory and build a new theory to replace
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it. This is a heavy mathematical work, which was carried out by Ekeland and
Lazrak in ([10], and [11]). In the sequel, we describe their results

4.2 Equilibrium strategies

As above, we shall consider a general discount function R : [0;1] ! R.
Throughout, it will be assumed to be continuously di¤erentiable, with:

R (0) = 1, R (t) � 0,
Z 1

0

R (t) dt <1

and we consider the intertemporal decision problem (as it is seen at time t = 0)

max
R1
0
R (t)u (c (t)) dt,

dk
dt = f (k (t))� (n+ g) k (t)� c (t) and k (0) = k0

(28)

Without loss of generality we are assuming that g = n = 0 (just change the
de�nition of the production function f (k))
Because of time-inconsistency, problem (28) can no longer be seen as an op-

timization problem.There is no way for the decision-maker at time 0 to achieve
what is, from her point of view, the �rst-best solution of the problem, and she
must turn to a second-best policy: the best she can do is to guess what her suc-
cessors are planning to do, and to plan her own consumption c (0) accordingly.
In other words, we will be looking for a subgame-perfect equilibrium of a certain
game.
A second idea now comes into play: we will assume perfect competition

between decision-makers: none of them is su¢ ciently powerful to in�uence the
global outcome. In the spirit of Aumann (see [3]) we will consider that the set
of decision-makers is the interval [0; T ]. At time t, there is a decision-maker
who decides what current consumption c (t) shall be. As is readily seen from
the equation of motion dk=dt = f (k) � c, changing the value of c at just one
point in time will not a¤ect the trajectory. However, the decision-maker at time
t is allowed to form a coalition with her immediate successors, that is with all
s 2 [t; t+ "], and we will derive the de�nition of an equilibrium strategy by
letting " ! 0. In fact, we are assuming that the decision-maker t can commit
her immediate successors (but not, as we said before, her more distant ones),
but that the commitment span is vanishingly small.
We restrict our analysis to Markov strategies, in the sense that the policy

depends only on a payo¤ relevant variable, the current capital stock and not on
past history, current time or some extraneous factors. Such a strategy is given
by c = � (k), where � : R ! R is a continuously di¤erentiable function. If we
apply the strategy �, the dynamics of capital accumulation from t = 0 are given
by:

dk

ds
= f (k (s))� � (k (s)) ; k (0) = k0

We shall say � converges to �k, a steady state of �, if k (s) �! �k when
s �! 1, when the initial value k0 is su¢ ciently close to �k. A strategy � is
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convergent if there is some �k such that � converges to �k. In that case, the
integral is obviously convergent, and its successive derivatives can be computed
by di¤erentiating under the integral. Note that if � converges to �k, then we
must have f

�
�k
�
= �

�
�k
�
.

Suppose a convergent Markov strategy c = � (k), where � : R ! R is a
continuously di¤erentiable function, has been announced and is public knowl-
edge. The decision maker begins at time t = 0 with capital stock k. If all future
decision-makers apply the strategy �, the resulting capital stock k0 future path
obeys

dk0
dt

= f (k0 (t))� � (k0 (t)) ; t � 0 (29)

k0 (0) = k: (30)

We suppose the decision-maker at time 0 can commit all the decision-makers
in [0; "] ;where " > 0. She expects all later ones to apply the strategy �, and
she asks herself if it is in her own interest to apply the same strategy, that
is, to consume � (k). If she commits to another bundle, c say, the immediate
utility �ow during [0; "] is u (c) ". At time ", the resulting capital will be
k+ (f (k)� c) ", and from then on, the strategy � will be applied which results
in a capital stock kc satisfying

dkc
dt

= f (kc (t))� � (kc (t)) ; t � " (31)

kc (") = k + (f (k)� c) ": (32)

The capital stock kc can be written as kc (t) = k0 (t) + k1 (t) " where:

dk1
dt

= (f 0 (k0 (t))� �0 (k0 (t))) k1 (t) ; t � " (33)

k1 (") = � (k)� c (34)

and f 0 and �0 stand for the derivatives of f and �. Summing up, we �nd that
the total gain for the decision-maker at time 0 from consuming bundle c during
the interval of length " when she can commit, is

u (c) "+

Z 1

"

h (s)u (� (k0 (t) + "k1 (t))) dt;

and in the limit, when "! 0, and the commitment span of the decision-maker
vanishes, expanding this expression to the �rst order leaves us with two termsZ 1

0

h (t)u (� (k0 (t))) dt

+ "

�
u (c)� u (�(k)) +

Z 1

0

h (t)u0 (� (k0 (t)))�
0 (k0 (t)) k1 (t) dt

�
: (35)
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where k1 solves the linear equation

dk1
dt

= (f 0 (k0(t))� �0 (k0(t))) k1 (t) ; t � 0 (36)

k1 (0) = � (k)� c: (37)

Note that the �rst term of (35) does not depend on the decision taken at
time 0, but the second one does. This is the one that the decision-maker at
time 0 will try to maximize. In other words, given that a strategy � has been
announced and that the current state is k , the decision-maker at time 0 faces
the optimization problem:

max
c
P1 (k; �; c) (38)

where

P1 (k; �; c) = u (c)� u (�(k)) +
Z 1

0

h (t)u0 (� (k0 (t)))�
0 (k0 (t)) k1 (t) dt: (39)

In the above expression, k0 (t) solves the Cauchy problem (29),(30) and k1 (t)
solves the linear equation (36),(37).

De�nition 6 A convergent Markov strategy � : R! R is an equilibrium strat-
egy for the intertemporal decision problem (28) if, for every k 2 R, the maximum
in problem (38) is attained for c = � (k):

� (k) = argmax
c
P1 (k; �; c) (40)

The intuition behind this de�nition is simple. Each decision-maker can com-
mit only for a small time "; so he can only hope to exert a very small in�uence
on the �nal outcome. In fact, if the decision-maker at time 0 plays c when
he/she is called to bat, while all the others are applying the strategy �, the end
payo¤ for him/her will be of the form

P0 (k; �) + "P1 (k; �; c)

where the �rst term of the right hand side does not depend on c. In the absence
of commitment, the decision-maker at time 0 will choose whichever c maximizes
the second term "P1 (k; �; c). Saying that � is an equilibrium strategy means
that the decision maker at time 0 will choose c = � (k). Given the stationarity of
the problem, if the strategy c = � (k) is chosen at time 0, it will be chosen at any
future time t and as a result, the strategy � can be implemented in the absence
of commitment. Conversely, if a strategy � for the intertemporal decision model
(28) is not an equilibrium strategy, then it cannot be implemented unless the
decision-maker at time 0 has some way to commit his successors.

4.3 The quasi-exponential case

From now on, we shall use the following speci�cations:

R (t) = � exp (��t) + (1� �) exp (��t) and u (c) = ln c (41)
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Using a logarithmic utility simpli�es the computations, but the results ex-
tend to general CARA utilities u (c) = c1��= (1� �), with � > 0, and presum-
ably to more general utilities as well. The argument in [11] relies heavily the
fact that the discount function is quasi-exponential. It has been extended to
the case:

R (t) = (�t+ 1) e��t

by [39], and it would presumably extend to discount functions of the formR (t) =Pn
i=1 Pi (t) exp (��it), where the Pi are polynomials, although this has not been

done.
Under the speci�cations (41), Ekeland and Lazrak have obtained an exten-

sion of the behaviour observed in the classical Ramsey model, with constant
discount rate: they have found equilibrium strategies which converge to some
asymptotic growth rate k1, independent of the initial capital k0. The precise
value of k1 must lie in an interval, which converges to the golden rule (3) when
the discount function becomes exponential.
Denote by K is the �ow associated with the di¤erential equation (29) de�ned

by

@K (�; t; k)
@t

= f (K (�; t; k))� � (K (�; t; k))

K (�; 0; k) = k:

De�nition 7 Take some k1 > 0. We shall say that � is a local equilibrium
strategy converging to k1 if there is some open interval 
 around k1 such that
� is de�ned and C2 on 
, the �ow K (�; t; k) sends 
 into itself, and:

� � (k) = argmaxc P1 (k; �; c) for all k 2 


� K (�; t; k) �! k1 when t �!1, for all k 2 


Here P1 (k; �; c) is given by formula (39).
Our main result then is:

Theorem 8 Assume f is C3 for k > 0. De�ne k � �k by:

f 0 (k) = �� + (1� �) �; f 0
�
�k
�
=

1
�
� +

1��
�

(42)

Then, for every k1 2
�
k ; �k

�
, there exists a local equilibrium strategy converging

to k1.

In the Ramsey case, when � = �, or � = 1, we �nd the classical relation
f 0 (k1) = �. In the general case, the golden rule (3) is replaced by the inequal-
ity k � k1 � �k we �nd a continuum of possible equilibrium strategies, and
corresponding asymptotic growth rates, and their range is fully characterized.
So the proof in [11] is in two parts: �rst showing that every possible k1 is in
that range, and then showing that every point in that range is a possible k1.
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Note that there is still an indeterminacy, smaller of course as one nears the
exponential case, but present. This indeterminacy arises from the fact that
there are no boundary condition as t �! 1, nothing to replace the transver-
sality condition at in�nity of the exponential case. A further game-theoretical
argument, however, will enable us to do away with that indeterminacy, and give
a de�nite recommendation to the policy-maker.

De�nition 9 Let � and �0 be two equilibrium strategies converging to k1 and
k01. We shall say that � is eventually Pareto-dominated by �0 if, for any
starting point k, there is some t > 0 such that:

� for all s > t, the decision-maker at time s prefers �0 to �

� if one applies strategy �0 after time t, it remains true that at all subsequent
times, the decision-makers prefer �0 to �

In [[11] it is proved that, whenever a strategy converges to some k1, it is
eventually Pareto-dominated by any strategy that converges to some k01 < k1.
So the only equilibrium strategy which is not Pareto-dominated is the leftmost
none, namely the one which converges to k. Let us express this result:

Proposition 10 All convergent equilibrium strategies are Pareto-dominated,
except the one(s) which converge(s) to k

So the rational choice is now clear: it is the equilibrium strategy which
converges to the point k where

f 0 (k) =
1�

�
� +

(1��)
�

� (43)

Indeed, for any other choice, one of the future decision-makers will switch
to another strategy, in the knowledge that his/her successors will follow suit.
So there is no point in applying now a strategy which one knows will not be
implemented later on, even if one has to wait for the distant future.
Applying the Sumaila-Walters speci�cations (23), (24) and (25) gives:

f 0 (k) =
1�


�(���) +

����
�(���)

� = �� (�� �)
�+ �� � �� � �

= �

�
1� 1

1 + �=

�
which is to be compared to the golden rule (3), where we we have taken loga-
rithmic utility, so that � = 1, and n = 0 (no technological progress), so that it
becomes f 0 (k1) = �. So concerns for intergenerational equity lower the interest
rate, by a factor which depends only on �=. For instance, if � = , that is, if
we discount the utility of future generations at a rate which is precisely equal to
the renewal rate of the population, then the planner should replace �, the pure
rate of time preference of the present generation, by �=2.
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4.4 Bibliographical notes

The �rst paper to investigate the Ramsey model of economic growth with non-
constant discount rates is due to Barro [5], who investigated the case of loga-
rithmic utility. There was an earlier literature, in the discrete-time framework,
originating with the seminal papers of Strotz [35] and Phelps and Pollack [27].
Going from the discrete to continuous time proved to be mathematically chal-
lenging. Ekeland and Lazrak ([10], and [11]) then introduced the idea of perfect
competition between decision-makers, which enabled them to characterize seem
to fully characterize equilibrium strategies in this case and to derive an analogue
of the HJB equation.

5 Conclusion

This introduction to long-term interest rates, incomplete as it is, would be even
more so if I failed to direct the reader to [[23]] and [[28]], which are standard
references in the �eld. As a personal conclusion, I would like to remind the reader
once more that determining the proper interest rates to use for projects with very
long-term consequences, such as those which impact the environment, is one of
the most important ways that the economic profession can contribute to solving
the major challenges which our planet faces today. Such interest rates should
incorporate the distributional and ethical concerns of our contemporaries. In
other words, economics, after decades of riding the tiger of economic expansion,
should once more become a normative science and take the lead.
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