Towards the Schrödinger equation

Ivar Ekeland Canada Research Chair in Mathematical Economics University of British Columbia

May 2010

Ivar Ekeland Canada Research Chair in Math Towards the Schrödinger equation

May 2010 1 / 17

 Between 1925 and 1935, in the US, the average prices of cars had increased 45% and pressure was put on car manufacturers to lower prices.

- Between 1925 and 1935, in the US, the average prices of cars had increased 45% and pressure was put on car manufacturers to lower prices.
- The answer from the industry was that these increases reflected changes in quality, and in 1939 Andrew Court, who worked for the Automobile Manufacturers Association, found a mathematical formulation.

- Between 1925 and 1935, in the US, the average prices of cars had increased 45% and pressure was put on car manufacturers to lower prices.
- The answer from the industry was that these increases reflected changes in quality, and in 1939 Andrew Court, who worked for the Automobile Manufacturers Association, found a mathematical formulation.
- Court's idea is that the price of a car depends on a set of characteristics z = (z¹, ..., z^d) ∈ R^d (safety, color, upholstery, motorization, and so forth). He then imagines a "standard" car with characteristics, z̄, which will serve as a comparison term for the others: only increases in p(z̄) qualify as true price increases.

・ 何 ト ・ ヨ ト ・ ヨ ト

- Between 1925 and 1935, in the US, the average prices of cars had increased 45% and pressure was put on car manufacturers to lower prices.
- The answer from the industry was that these increases reflected changes in quality, and in 1939 Andrew Court, who worked for the Automobile Manufacturers Association, found a mathematical formulation.
- Court's idea is that the price of a car depends on a set of characteristics z = (z¹, ..., z^d) ∈ R^d (safety, color, upholstery, motorization, and so forth). He then imagines a "standard" car with characteristics, z̄, which will serve as a comparison term for the others: only increases in p(z̄) qualify as true price increases.
- The quality \bar{z} is not available throughout a ten-year period, but Court found a method to estimate its price from available qualities z. He found that the price of cars had actually gone *down* 55%

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

- Between 1925 and 1935, in the US, the average prices of cars had increased 45% and pressure was put on car manufacturers to lower prices.
- The answer from the industry was that these increases reflected changes in quality, and in 1939 Andrew Court, who worked for the Automobile Manufacturers Association, found a mathematical formulation.
- Court's idea is that the price of a car depends on a set of characteristics z = (z¹, ..., z^d) ∈ R^d (safety, color, upholstery, motorization, and so forth). He then imagines a "standard" car with characteristics, z̄, which will serve as a comparison term for the others: only increases in p(z̄) qualify as true price increases.
- The quality \bar{z} is not available throughout a ten-year period, but Court found a method to estimate its price from available qualities z. He found that the price of cars had actually gone *down* 55%

2 / 17

 His work is now fundamental for constructing price indices net of auality
 August A Research Chair in Math
 Towards the Schrödinger equation
 May 2010

• cars come in *discrete* quantities: you buy 0, 1, 2, ...

If the price of cars decrease, you do not buy *more* cars: you sell the old one and buy a *better* one. This is in contrast to classical economic theory, which is concerned with homogeneous (undifferentiated) goods: if the price of bread decreases, you eat more bread. Modern economies are shifting towards hedonic (differentiated) goods.

- cars come in *discrete* quantities: you buy 0, 1, 2, ...
- they are differentiated by qualities: $z = (z^1, ..., z^d)$

If the price of cars decrease, you do not buy *more* cars: you sell the old one and buy a *better* one. This is in contrast to classical economic theory, which is concerned with homogeneous (undifferentiated) goods: if the price of bread decreases, you eat more bread. Modern economies are shifting towards hedonic (differentiated) goods.

- 本間 と えき と えき とうき

- cars come in *discrete* quantities: you buy 0, 1, 2, ...
- they are differentiated by qualities: $z = (z^1, ..., z^d)$
- the qualities cannot be bought separately

If the price of cars decrease, you do not buy *more* cars: you sell the old one and buy a *better* one. This is in contrast to classical economic theory, which is concerned with homogeneous (undifferentiated) goods: if the price of bread decreases, you eat more bread. Modern economies are shifting towards hedonic (differentiated) goods.

(人間) トイヨト イヨト

- cars come in *discrete* quantities: you buy 0, 1, 2, ...
- they are differentiated by qualities: $z = (z^1, ..., z^d)$
- the qualities cannot be bought separately

If the price of cars decrease, you do not buy *more* cars: you sell the old one and buy a *better* one. This is in contrast to classical economic theory, which is concerned with homogeneous (undifferentiated) goods: if the price of bread decreases, you eat more bread. Modern economies are shifting towards hedonic (differentiated) goods.

• what happens to equilibrium theory ?

- 4 個 ト 4 国 ト - 4 国 ト - 三日

• There are two probability spaces (X, μ) and (Y, ν)

X, Y, Z will be assumed to be bounded subsets of some Euclidean space with smooth boundary, u and v will be smooth. We do not assume that μ and v are absolutely continuous.

- There are two probability spaces (X, μ) and (Y, ν)
- There is a third set Z and two maps u(x, z) and c(y, z)

X, Y, Z will be assumed to be bounded subsets of some Euclidean space with smooth boundary, u and v will be smooth. We do not assume that μ and ν are absolutely continuous.

- There are two probability spaces (X, μ) and (Y, ν)
- There is a third set Z and two maps u(x, z) and c(y, z)
- Each x ∈ X is a consumer type, each y ∈ Y is a producer type, and each z ∈ Z is a quality

X, Y, Z will be assumed to be bounded subsets of some Euclidean space with smooth boundary, u and v will be smooth. We do not assume that μ and v are absolutely continuous.

Demand and supply

Suppose a (continuous) price system $p: Z \rightarrow R$ is announced. Then

$$\max_{z} (u(x, z) - p(z)) \implies \begin{cases} p^{\natural}(x) = \max_{z} \\ D_{p}(x) = \arg \max_{z} \\ max_{z}(p(z) - c(y, z)) \implies \begin{cases} p^{\flat}(y) = \max_{z} \\ S_{p}(y) = \arg \max_{z} \end{cases}$$

A demand distribution is a measure $\alpha_{X \times Z}$ on $X \times Z$ projecting on μ such that

$$\alpha_{X\times Z} = \int_{X} \alpha_{x} d\mu$$
 with Supp $\alpha_{x} \subset D_{p}(x)$

A supply distribution is a measure $\beta_{Y \times Z}$ on $Y \times Z$ projecting on ν such that

$$\beta_{Y \times Z} = \int_{Y} \beta_{y} d\nu$$
 with Supp $\beta_{y} \subset S_{\rho}(y)$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Equilibrium

Definition

 $p: Z \to R$ is an equilibrium if

$$pr_{Z}(\alpha_{X \times Z}) = pr_{Z}(\beta_{Y \times Z}) := \lambda$$

Does it exist ? There is an obvious condition:

$$p^{\flat\flat}(z) := \max_{x} \left(u(x,z) - p^{\natural}(x) \right) = \text{ maximum bid price for } z$$
$$p^{\flat\flat}(z) := \min_{y} \left(p^{\flat}(y) - c(y,z) \right) = \text{ minimum ask price for } z$$

If $p^{\natural\natural}(z) < p^{\flat\flat}(z)$, then quality z is not traded. Set

$$Z_0 := \left\{ z \mid p^{\natural \natural}\left(z
ight) < p^{\flat \flat}\left(z
ight)
ight\}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Theorem (Existence)

If $Z_0 \neq \emptyset$, there is an equilibrium price. The set of all equilibrium prices p is convex and non-empty. If $p : Z_0 \to R$ is an equilibrium price, then so is every $q : Z \to R$ which is admissible, continuous, and satisfies for some constant c:

$$p^{\sharp\sharp}(z) \leq q(z) + c \leq p^{\flat\flat}(z) \quad \forall z \in Z$$

A (10) A (10) A (10)

Uniqueness

Theorem (Uniqueness of equilibrium prices)

For λ -almost every quality z which is traded in equilibrium, we have

$$p^{\sharp\sharp}(z) = p(z) = p^{\flat\flat}(z)$$
.

Theorem (Uniqueness of equilibrium allocations)

Let $(p_1, \alpha_{X \times Z}^1, \beta_{Y \times Z}^1)$ and $(p_2, \alpha_{X \times Z}^2, \beta_{Y \times Z}^2)$ be two equilibria. Denote by $D_1(x)$, $D_2(x)$ and $S_1(y)$, $S_2(y)$ the corresponding demand and supply maps. Then:

$$\alpha_x^2 [D_1 (x)] = \alpha_x^1 [D_1 (x)] = 1$$
 for μ -a.e. x
 $\beta_y^2 [S_1 (y)] = \beta_y^1 [S_1 (y)] = 1$ for ν -a.e. y

Efficiency and duality

With every pair of demand and supply distributions, $\alpha'_{X \times Z}$ and $\beta'_{Y \times Z}$, we associate the total welfare of society:

$$W\left(\alpha'_{X\times Z},\beta'_{Y\times Z}\right) = \int_{X\times Z} u\left(x,z\right) d\alpha'_{X\times Z} - \int_{Y\times Z} v\left(y,z\right) d\beta'_{Y\times Z}$$

Theorem (Pareto optimality of equilibrium allocations) Let $(p, \alpha_{X \times Z}, \beta_{Y \times Z})$ be an equilibrium. Take any pair of demand and supply distributions $\alpha'_{X \times Z}$ and $\beta'_{Y \times Z}$ such that $pr_Z(\alpha'_{X \times Z}) = pr_Z(\beta'_{Y \times Z})$. Then

$$W(\alpha'_{X\times Z},\beta'_{Y\times Z}) \leq W(\alpha_{X\times Z},\beta_{Y\times Z})$$
$$W(\alpha_{X\times Z},\beta_{Y\times Z}) = \int_{X} p^{\sharp}(x) d\mu + \int_{Y} p^{\flat}(y) d\nu$$
$$\int_{X} p^{\sharp}(x) d\mu + \int_{Y} p^{\flat}(y) d\nu = \min_{q} \left[\int_{X} q^{\sharp}(x) d\mu + \int_{Y} q^{\flat}(y) d\nu \right]$$

Many-to-one matching

For applications to the job market, it is important to allow employers to hire several workers.

$$\max_{z} (p(z) - c(x, z))$$
$$\max_{z,n} (u(y, z, n) - np(z))$$

Let us write the *pure* version of the problem (maps instead of distributions)

$$\max\left\{\int_{Y} u(y, z_{s}(y), n(y)) dv - \int_{X} c(x, z_{d}(x)) d\mu\right\}$$
$$\int_{X} \varphi(z_{d}(x)) d\mu = \int_{Y} n(y) \varphi(z_{s}(y)) dv$$

One can then prove existence and quasi-uniqueness in the usual way (IE, unpublished)

An example

$$u(y, z, n) := n\bar{u}(y, z) - \frac{n^2}{2}\bar{c}(n)$$
$$\max_{z,n} \left(n\bar{u}(y, z) - \frac{n^2}{2}\bar{c}(n) - np(z) \right) = \max_n \left[\max_z \left\{ n\bar{u}(y, z) - np(z) \right\} - \\= \max_n \left[n\bar{p}^{\natural}(y) - \frac{n^2}{2}\bar{c}(y) \right]$$
$$= \frac{1}{2\bar{c}(y)} \left[\bar{p}^{\natural}(y) \right]^2$$

The dual problem is:

$$\max_{p}\left[\int_{Y}\frac{\bar{p}^{\natural}\left(y\right)^{2}}{2\bar{c}\left(y\right)}d\nu-\int_{X}p^{\flat}\left(x\right)d\mu\right]$$

Ivar Ekeland Canada Research Chair in Math

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Trade cannot be forced.

Consumer of type x has a reservation utility $u_0(x)$ and producer of type y has a reservation utility $v_0(y)$

 $\begin{cases} \max_{z} \left(u\left(x,z\right) - p\left(z\right) \right) > u_{0}\left(x\right) \Longrightarrow x \text{ buys } z \in D_{p}\left(x\right) \\ \max_{z} \left(u\left(x,z\right) - p\left(z\right) \right) < u_{0}\left(x\right) \Longrightarrow x \text{ does not buy} \\ \begin{cases} \max_{z} \left(p\left(z\right) - c\left(y,z\right) \right) > v_{0}\left(y\right) \Longrightarrow y \text{ produces } z \in S_{p}\left(x\right) \\ \max_{z} \left(p\left(z\right) - c\left(y,z\right) \right) < v_{0}\left(y\right) \Longrightarrow y \text{ does not produce} \end{cases}$

We then have a suitable definition of equilibrium and an existence theorem. Note that:

- proofs become quite delicate (Pschenichnyi)
- the absolute level of prices becomes relevant, i.e. the constant *c* disappears
- we do not need $\mu(X) = \nu(Y)$ any more: prices keep excess people out of the market

Economists, like all scientists except mathematicians, are interested in:

• testing theories

In the case of the labor market, one can observe:

One wants to infer the utilities u(x, z) for employers and costs c(y, z) to labourers

There is an added difficulty, namely unobservable characteristics ξ and η :

```
utilities are u(x, \xi, z) instead of u(x, z)
costs are c(y, \eta, z) instead of c(y, z)
```

イロト 不得 トイヨト イヨト 二日

Economists, like all scientists except mathematicians, are interested in:

- testing theories
- identifying parameters from observations

In the case of the labor market, one can observe:

One wants to infer the utilities u(x, z) for employers and costs c(y, z) to labourers

There is an added difficulty, namely unobservable characteristics ξ and η :

```
utilities are u(x, \xi, z) instead of u(x, z)
costs are c(y, \eta, z) instead of c(y, z)
```

Economists, like all scientists except mathematicians, are interested in:

- testing theories
- identifying parameters from observations

In the case of the labor market, one can observe:

• the distributions of types μ and ν

One wants to infer the utilities u(x, z) for employers and costs c(y, z) to labourers

There is an added difficulty, namely unobservable characteristics ξ and η :

```
utilities are u(x, \xi, z) instead of u(x, z)
costs are c(y, \eta, z) instead of c(y, z)
```

Economists, like all scientists except mathematicians, are interested in:

- testing theories
- identifying parameters from observations

In the case of the labor market, one can observe:

- the distributions of types μ and ν
- the equilibrium prices p(z) and the equilibrium allocations α_x and β_y

One wants to infer the utilities u(x, z) for employers and costs c(y, z) to labourers

There is an added difficulty, namely unobservable characteristics ξ and η :

```
utilities are u(x, \xi, z) instead of u(x, z)
costs are c(y, \eta, z) instead of c(y, z)
```

The marriage problem

• For $I = \{1, ..., n\}$, and Σ_n its permutation group, we consider the optimal transportation problem

$$\max_{\sigma} \left\{ \sum_{i} \Phi_{i,\sigma(i)} \mid \sigma \in \Sigma_n \right\}$$

We cannot infer the $\Phi_{i,j}$ from the optimal matching. Note that there is a fundamental indeterminacy in the problem: $\Phi_{i,j} + a_i + b_j$ and $\Phi_{i,j}$ give the same matching.

The marriage problem

For *I* = {1, ..., *n*}, and Σ_n its permutation group, we consider the optimal transportation problem

$$\max_{\sigma} \left\{ \sum_{i} \Phi_{i,\sigma(i)} \mid \sigma \in \Sigma_n \right\}$$

We cannot infer the $\Phi_{i,j}$ from the optimal matching. Note that there is a fundamental indeterminacy in the problem: $\Phi_{i,j} + a_i + b_j$ and $\Phi_{i,j}$ give the same matching.

• We consider the relaxed problem:

$$\max\left\{\sum_{i,j}\pi_{i,j}\Phi_{i,j}\mid \pi_{i,j}\geq 0, \ \sum_{j}\pi_{i,j}=1=\sum_{i}\pi_{i,j}\right\}$$

We cannot infer the $\Phi_{i,j}$ from the optimal matching

Simulated annealing

• We introduce a parameter *T* > 0 (temperature), and consider the problem:

$$\max\left\{\sum_{i,j} \pi_{i,j} \left(\Phi_{i,j} + T \ln \pi_{i,j} \right) \mid \pi_{i,j} \ge 0, \ \sum_{j} \pi_{i,j} = 1 = \sum_{i} \pi_{i,j} \right\}$$

< ロ > < 同 > < 三 > < 三

Simulated annealing

• We introduce a parameter T > 0 (temperature), and consider the problem:

$$\max\left\{\sum_{i,j} \pi_{i,j} \left(\Phi_{i,j} + T \ln \pi_{i,j}\right) \mid \pi_{i,j} \ge 0, \ \sum_{j} \pi_{i,j} = 1 = \sum_{i} \pi_{i,j}\right\}$$

• The solution is given in a quasi-explicit form by

$$\pi_{i,j} = \exp\left(rac{-\Phi_{i,j}+u_i+v_j}{T}
ight)$$

where the u_i and v_j are the Lagrange multipliers

Simulated annealing

• We introduce a parameter T > 0 (temperature), and consider the problem:

$$\max\left\{\sum_{i,j} \pi_{i,j} \left(\Phi_{i,j} + T \ln \pi_{i,j} \right) \mid \pi_{i,j} \ge 0, \ \sum_{j} \pi_{i,j} = 1 = \sum_{i} \pi_{i,j} \right\}$$

• The solution is given in a quasi-explicit form by

$$\pi_{i,j} = \exp\left(rac{-\Phi_{i,j}+u_i+v_j}{T}
ight)$$

where the u_i and v_i are the Lagrange multipliers

 Erwin Schrödinger, "Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique", Annales de l'IHP 2 (1932), p. 269-310. If the distribution of the *i* is p_i and the distribution of j is q_i , the formula becomes:

$$\pi_{i,j} = p_i q_j \exp\left(\frac{-\Phi_{i,j} + u_i + v_j}{T}\right)$$

Ivar Ekeland Canada Research Chair in Math

May 2010 15 / 17

Identification

If we observe the $\pi_{i,j}$, Schrödinger's equation gives us:

$$\Phi_{i,j} = u_i + v_j + T \left(\ln p_i + \ln q_j \right) + \ln \pi_{i,j}$$

and the surplus function $\Phi_{i,j}$ is identified, up to the fundamental indeterminacy

 $\Phi_{i,j} = \ln \pi_{i,j}$

Current work (Galichon and Salanié) investigates continuous versions of this problem:

$$\max \int_{X \times Y} \left[\Phi(x, y) + \ln \pi(x, y) \right] \pi(x, y) \, dx dy$$
$$\int_{X} \pi(x, y) \, dx = q(y), \quad \int_{Y} \pi(x, y) \, dy = p(x)$$

イロト イポト イヨト イヨト 二日

Symposium on Transportation Methods, "Economic Theory", vol.42, 2, February 2010, Springer

• • • • • • • • • • • •