Towards the Schrödinger equation

Ivar Ekeland
Canada Research Chair in Mathematical Economics University of British Columbia

May 2010

Why are cars so expensive?

- Between 1925 and 1935, in the US, the average prices of cars had increased 45% and pressure was put on car manufacturers to lower prices.

Why are cars so expensive?

- Between 1925 and 1935, in the US, the average prices of cars had increased 45% and pressure was put on car manufacturers to lower prices.
- The answer from the industry was that these increases reflected changes in quality, and in 1939 Andrew Court, who worked for the Automobile Manufacturers Association, found a mathematical formulation.

Why are cars so expensive?

- Between 1925 and 1935, in the US, the average prices of cars had increased 45% and pressure was put on car manufacturers to lower prices.
- The answer from the industry was that these increases reflected changes in quality, and in 1939 Andrew Court, who worked for the Automobile Manufacturers Association, found a mathematical formulation.
- Court's idea is that the price of a car depends on a set of characteristics $z=\left(z^{1}, \ldots, z^{d}\right) \in R^{d}$ (safety, color, upholstery, motorization, and so forth). He then imagines a "standard" car with characteristics, $\overline{\mathbf{z}}$, which will serve as a comparison term for the others: only increases in $p(\bar{z})$ qualify as true price increases.

Why are cars so expensive?

- Between 1925 and 1935, in the US, the average prices of cars had increased 45% and pressure was put on car manufacturers to lower prices.
- The answer from the industry was that these increases reflected changes in quality, and in 1939 Andrew Court, who worked for the Automobile Manufacturers Association, found a mathematical formulation.
- Court's idea is that the price of a car depends on a set of characteristics $z=\left(z^{1}, \ldots, z^{d}\right) \in R^{d}$ (safety, color, upholstery, motorization, and so forth). He then imagines a "standard" car with characteristics, \bar{z}, which will serve as a comparison term for the others: only increases in $p(\bar{z})$ qualify as true price increases.
- The quality \bar{z} is not available throughout a ten-year period, but Court found a method to estimate its price from available qualities z. He found that the price of cars had actually gone down 55%

Why are cars so expensive?

- Between 1925 and 1935, in the US, the average prices of cars had increased 45% and pressure was put on car manufacturers to lower prices.
- The answer from the industry was that these increases reflected changes in quality, and in 1939 Andrew Court, who worked for the Automobile Manufacturers Association, found a mathematical formulation.
- Court's idea is that the price of a car depends on a set of characteristics $z=\left(z^{1}, \ldots, z^{d}\right) \in R^{d}$ (safety, color, upholstery, motorization, and so forth). He then imagines a "standard" car with characteristics, \bar{z}, which will serve as a comparison term for the others: only increases in $p(\bar{z})$ qualify as true price increases.
- The quality \bar{z} is not available throughout a ten-year period, but Court found a method to estimate its price from available qualities z. He found that the price of cars had actually gone down 55\%
- His work is now fundamental for constructing price indices net of qualitv

What is a car

A "car" is a generic name for very different objects. Court identified the following characteristics:

- cars come in discrete quantities: you buy $0,1,2, \ldots$

If the price of cars decrease, you do not buy more cars: you sell the old one and buy a better one. This is in contrast to classical economic theory, which is concerned with homogeneous (undifferentiated) goods: if the price of bread decreases, you eat more bread. Modern economies are shifting towards hedonic (differentiated) goods.

What is a car

A "car" is a generic name for very different objects. Court identified the following characteristics:

- cars come in discrete quantities: you buy $0,1,2, \ldots$
- they are differentiated by qualities: $z=\left(z^{1}, \ldots, z^{d}\right)$

If the price of cars decrease, you do not buy more cars: you sell the old one and buy a better one. This is in contrast to classical economic theory, which is concerned with homogeneous (undifferentiated) goods: if the price of bread decreases, you eat more bread. Modern economies are shifting towards hedonic (differentiated) goods.

What is a car

A "car" is a generic name for very different objects. Court identified the following characteristics:

- cars come in discrete quantities: you buy $0,1,2, \ldots$
- they are differentiated by qualities: $z=\left(z^{1}, \ldots, z^{d}\right)$
- the qualities cannot be bought separately

If the price of cars decrease, you do not buy more cars: you sell the old one and buy a better one. This is in contrast to classical economic theory, which is concerned with homogeneous (undifferentiated) goods: if the price of bread decreases, you eat more bread. Modern economies are shifting towards hedonic (differentiated) goods.

What is a car

A "car" is a generic name for very different objects. Court identified the following characteristics:

- cars come in discrete quantities: you buy $0,1,2, \ldots$
- they are differentiated by qualities: $z=\left(z^{1}, \ldots, z^{d}\right)$
- the qualities cannot be bought separately

If the price of cars decrease, you do not buy more cars: you sell the old one and buy a better one. This is in contrast to classical economic theory, which is concerned with homogeneous (undifferentiated) goods: if the price of bread decreases, you eat more bread. Modern economies are shifting towards hedonic (differentiated) goods.

- what happens to equilibrium theory ?

A model for hedonic markets

- There are two probability spaces (X, μ) and (Y, v)
X, Y, Z will be assumed to be bounded subsets of some Euclidean space with smooth boundary, u and v will be smooth. We do not assume that μ and v are absolutely continuous.

A model for hedonic markets

- There are two probability spaces (X, μ) and (Y, v)
- There is a third set Z and two maps $u(x, z)$ and $c(y, z)$
X, Y, Z will be assumed to be bounded subsets of some Euclidean space with smooth boundary, u and v will be smooth. We do not assume that μ and v are absolutely continuous.

A model for hedonic markets

- There are two probability spaces (X, μ) and (Y, v)
- There is a third set Z and two maps $u(x, z)$ and $c(y, z)$
- Each $x \in X$ is a consumer type, each $y \in Y$ is a producer type, and each $z \in Z$ is a quality
X, Y, Z will be assumed to be bounded subsets of some Euclidean space with smooth boundary, u and v will be smooth. We do not assume that μ and v are absolutely continuous.

Demand and supply

Suppose a (continuous) price system $p: Z \rightarrow R$ is announced. Then

$$
\begin{aligned}
\max _{z}(u(x, z)-p(z)) & \Longrightarrow\left\{\begin{array}{c}
p^{\natural}(x)=\max _{z} \\
D_{p}(x)=\arg \max _{z}
\end{array}\right. \\
\max _{z}(p(z)-c(y, z)) & \Longrightarrow\left\{\begin{array}{c}
p^{b}(y)=\max _{z} \\
S_{p}(y)=\arg \max _{z}
\end{array}\right.
\end{aligned}
$$

A demand distribution is a measure $\alpha_{X \times Z}$ on $X \times Z$ projecting on μ such that

$$
\alpha_{X \times Z}=\int_{X} \alpha_{x} d \mu \text { with Supp } \alpha_{x} \subset D_{p}(x)
$$

A supply distribution is a measure $\beta_{Y \times Z}$ on $Y \times Z$ projecting on v such that

$$
\beta_{Y \times Z}=\int_{Y} \beta_{y} d v \text { with Supp } \beta_{y} \subset S_{p}(y)
$$

Equilibrium

Definition

$p: Z \rightarrow R$ is an equilibrium if

$$
\operatorname{pr}_{Z}\left(\alpha_{X \times Z}\right)=\operatorname{pr}_{Z}\left(\beta_{Y \times Z}\right):=\lambda
$$

Does it exist ? There is an obvious condition:

$$
\begin{aligned}
& p^{\text {पौ }}(z):=\max _{x}\left(u(x, z)-p^{\natural}(x)\right)=\text { maximum bid price for } z \\
& p^{b b}(z):=\min _{y}\left(p^{b}(y)-c(y, z)\right)=\text { minimum ask price for } z
\end{aligned}
$$

If $p^{\text {th }}(z)<p^{\text {bb }}(z)$, then quality z is not traded. Set

$$
Z_{0}:=\left\{z \mid p^{\text {qt }}(z)<p^{b b}(z)\right\}
$$

Existence

Theorem (Existence)

If $Z_{0} \neq \varnothing$. there is an equilibrium price. The set of all equilibrium prices p is convex and non-empty. If $p: Z_{0} \rightarrow R$ is an equilibrium price, then so is every $q: Z \rightarrow R$ which is admissible, continuous, and satisfies for some constant c :

$$
p^{\sharp \sharp}(z) \leq q(z)+c \leq p^{\text {bb }}(z) \quad \forall z \in Z
$$

Uniqueness

Theorem (Uniqueness of equilibrium prices)
For λ-almost every quality z which is traded in equilibrium, we have

$$
p^{\sharp \sharp}(z)=p(z)=p^{\text {bb }}(z) .
$$

Theorem (Uniqueness of equilibrium allocations)

Let $\left(p_{1}, \alpha_{X \times Z}^{1}, \beta_{Y \times Z}^{1}\right)$ and $\left(p_{2}, \alpha_{X \times Z}^{2}, \beta_{Y \times Z}^{2}\right)$ be two equilibria. Denote by $D_{1}(x), D_{2}(x)$ and $S_{1}(y), S_{2}(y)$ the corresponding demand and supply maps. Then:

$$
\begin{aligned}
& \alpha_{x}^{2}\left[D_{1}(x)\right]=\alpha_{x}^{1}\left[D_{1}(x)\right]=1 \text { for } \mu \text {-a.e. } x \\
& \beta_{y}^{2}\left[S_{1}(y)\right]=\beta_{y}^{1}\left[S_{1}(y)\right]=1 \text { for } v \text {-a.e. } y
\end{aligned}
$$

Efficiency and duality

With every pair of demand and supply distributions, $\alpha_{X \times Z}^{\prime}$ and $\beta_{Y \times Z}^{\prime}$, we associate the total welfare of society:

$$
W\left(\alpha_{X \times Z}^{\prime}, \beta_{Y \times Z}^{\prime}\right)=\int_{X \times Z} u(x, z) d \alpha_{X \times Z}^{\prime}-\int_{Y \times Z} v(y, z) d \beta_{Y \times Z}^{\prime}
$$

Theorem (Pareto optimality of equilibrium allocations)

Let $\left(p, \alpha_{X \times Z}, \beta_{Y \times Z}\right)$ be an equilibrium. Take any pair of demand and supply distributions $\alpha_{X \times Z}^{\prime}$ and $\beta_{Y \times Z}^{\prime}$ such that $\operatorname{pr}_{Z}\left(\alpha_{X \times Z}^{\prime}\right)=\operatorname{pr}_{Z}\left(\beta_{Y \times Z}^{\prime}\right)$. Then

$$
\begin{aligned}
W\left(\alpha_{X \times Z}^{\prime}, \beta_{Y \times Z}^{\prime}\right) & \leq W\left(\alpha_{X \times Z}, \beta_{Y \times Z}\right) \\
W\left(\alpha_{X \times Z}, \beta_{Y \times Z}\right) & =\int_{X} p^{\sharp}(x) d \mu+\int_{Y} p^{b}(y) d v \\
\int_{X} p^{\sharp}(x) d \mu+\int_{Y} p^{b}(y) d v & =\min _{q}\left[\int_{X} q^{\sharp}(x) d \mu+\int_{Y} q^{b}(y) d v\right]
\end{aligned}
$$

Many-to-one matching

For applications to the job market, it is important to allow employers to hire several workers.

$$
\begin{aligned}
& \max _{z}(p(z)-c(x, z)) \\
& \max _{z, n}(u(y, z, n)-n p(z))
\end{aligned}
$$

Let us write the pure version of the problem (maps instead of distributions)

$$
\begin{aligned}
& \max \left\{\int_{Y} u\left(y, z_{s}(y), n(y)\right) d v-\int_{X} c\left(x, z_{d}(x)\right) d \mu\right\} \\
& \int_{X} \varphi\left(z_{d}(x)\right) d \mu=\int_{Y} n(y) \varphi\left(z_{s}(y)\right) d v
\end{aligned}
$$

One can then prove existence and quasi-uniqueness in the usual way (IE, unpublished)

An example

$$
\begin{aligned}
u(y, z, n) & : \\
\max _{z, n}\left(n \bar{u}(y, z)-\frac{n^{2}}{2} \bar{c}(n)-n p(z)\right) & =n \bar{u}(y, z)-\frac{n^{2}}{2} \bar{c}(n) \\
& =\max _{n}\left[\max _{z}\{n \bar{u}(y, z)-n p(z)\}-\right. \\
& =\max _{n}\left[n \bar{p}^{\natural}(y)-\frac{n^{2}}{2} \bar{c}(y)\right] \\
& =\frac{1}{2 \bar{c}(y)}\left[\bar{p}^{\natural}(y)\right]^{2}
\end{aligned}
$$

The dual problem is:

$$
\max _{p}\left[\int_{Y} \frac{\bar{p}^{\natural}(y)^{2}}{2 \bar{c}(y)} d v-\int_{X} p^{b}(x) d \mu\right]
$$

Trade cannot be forced.

Consumer of type x has a reservation utility $u_{0}(x)$ and producer of type y has a reservation utility $v_{0}(y)$

$$
\begin{aligned}
& \left\{\begin{array}{c}
\max _{z}(u(x, z)-p(z))>u_{0}(x) \Longrightarrow x \text { buys } z \in D_{p}(x) \\
\max _{z}(u(x, z)-p(z))<u_{0}(x) \Longrightarrow x \text { does not buy }
\end{array}\right. \\
& \left\{\begin{array}{c}
\max _{z}(p(z)-c(y, z))>v_{0}(y) \Longrightarrow y \text { produces } z \in S_{p}(x) \\
\max _{z}(p(z)-c(y, z))<v_{0}(y) \Longrightarrow y \text { does not produce }
\end{array}\right.
\end{aligned}
$$

We then have a suitable definition of equilibrium and an existence theorem. Note that:

- proofs become quite delicate (Pschenichnyi)
- the absolute level of prices becomes relevant, i.e. the constant c disappears
- we do not need $\mu(X)=\nu(Y)$ any more: prices keep excess people out of the market

What do economists do ?

Economists, like all scientists except mathematicians, are interested in:

- testing theories

In the case of the labor market, one can observe:

One wants to infer the utilities $u(x, z)$ for employers and costs $c(y, z)$ to labourers
There is an added difficulty, namely unobservable characteristics ξ and η :

$$
\begin{aligned}
& \text { utilities are } u(x, \xi, z) \text { instead of } u(x, z) \\
& \text { costs are } c(y, \eta, z) \text { instead of } c(y, z)
\end{aligned}
$$

What do economists do ?

Economists, like all scientists except mathematicians, are interested in:

- testing theories
- identifying parameters from observations

In the case of the labor market, one can observe:

One wants to infer the utilities $u(x, z)$ for employers and costs $c(y, z)$ to labourers
There is an added difficulty, namely unobservable characteristics ξ and η :
utilities are $u(x, \xi, z)$ instead of $u(x, z)$
costs are $c(y, \eta, z)$ instead of $c(y, z)$

What do economists do ?

Economists, like all scientists except mathematicians, are interested in:

- testing theories
- identifying parameters from observations

In the case of the labor market, one can observe:

- the distributions of types μ and v

One wants to infer the utilities $u(x, z)$ for employers and costs $c(y, z)$ to labourers
There is an added difficulty, namely unobservable characteristics ξ and η :
utilities are $u(x, \xi, z)$ instead of $u(x, z)$
costs are $c(y, \eta, z)$ instead of $c(y, z)$

What do economists do ?

Economists, like all scientists except mathematicians, are interested in:

- testing theories
- identifying parameters from observations

In the case of the labor market, one can observe:

- the distributions of types μ and v
- the equilibrium prices $p(z)$ and the equilibrium allocations α_{x} and β_{y}

One wants to infer the utilities $u(x, z)$ for employers and costs $c(y, z)$ to labourers
There is an added difficulty, namely unobservable characteristics ξ and η :
utilities are $u(x, \xi, z)$ instead of $u(x, z)$
costs are $c(y, \eta, z)$ instead of $c(y, z)$

The marriage problem

- For $I=\{1, \ldots, n\}$, and Σ_{n} its permutation group, we consider the optimal transportation problem

$$
\max _{\sigma}\left\{\sum_{i} \Phi_{i, \sigma(i)} \mid \sigma \in \Sigma_{n}\right\}
$$

We cannot infer the $\Phi_{i, j}$ from the optimal matching. Note that there is a fundamental indeterminacy in the problem: $\Phi_{i, j}+a_{i}+b_{j}$ and $\Phi_{i, j}$ give the same matching.

The marriage problem

- For $I=\{1, \ldots, n\}$, and Σ_{n} its permutation group, we consider the optimal transportation problem

$$
\max _{\sigma}\left\{\sum_{i} \Phi_{i, \sigma(i)} \mid \sigma \in \Sigma_{n}\right\}
$$

We cannot infer the $\Phi_{i, j}$ from the optimal matching. Note that there is a fundamental indeterminacy in the problem: $\Phi_{i, j}+a_{i}+b_{j}$ and $\Phi_{i, j}$ give the same matching.

- We consider the relaxed problem:

$$
\max \left\{\sum_{i, j} \pi_{i, j} \Phi_{i, j} \mid \pi_{i, j} \geq 0, \sum_{j} \pi_{i, j}=1=\sum_{i} \pi_{i, j}\right\}
$$

We cannot infer the $\Phi_{i, j}$ from the optimal matching

Simulated annealing

- We introduce a parameter $T>0$ (temperature), and consider the problem:

$$
\max \left\{\sum_{i, j} \pi_{i, j}\left(\Phi_{i, j}+T \ln \pi_{i, j}\right) \mid \pi_{i, j} \geq 0, \sum_{j} \pi_{i, j}=1=\sum_{i} \pi_{i, j}\right\}
$$

Simulated annealing

- We introduce a parameter $T>0$ (temperature), and consider the problem:

$$
\max \left\{\sum_{i, j} \pi_{i, j}\left(\Phi_{i, j}+T \ln \pi_{i, j}\right) \mid \pi_{i, j} \geq 0, \sum_{j} \pi_{i, j}=1=\sum_{i} \pi_{i, j}\right\}
$$

- The solution is given in a quasi-explicit form by

$$
\pi_{i, j}=\exp \left(\frac{-\Phi_{i, j}+u_{i}+v_{j}}{T}\right)
$$

where the u_{i} and v_{j} are the Lagrange multipliers

Simulated annealing

- We introduce a parameter $T>0$ (temperature), and consider the problem:

$$
\max \left\{\sum_{i, j} \pi_{i, j}\left(\Phi_{i, j}+T \ln \pi_{i, j}\right) \mid \pi_{i, j} \geq 0, \sum_{j} \pi_{i, j}=1=\sum_{i} \pi_{i, j}\right\}
$$

- The solution is given in a quasi-explicit form by

$$
\pi_{i, j}=\exp \left(\frac{-\Phi_{i, j}+u_{i}+v_{j}}{T}\right)
$$

where the u_{i} and v_{j} are the Lagrange multipliers

- Erwin Schrödinger, "Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique", Annales de l'IHP 2 (1932), p. 269-310. If the distribution of the i is p_{i} and the distribution of j is q_{j}, the formula becomes:

$$
\pi_{i, j}=p_{i} q_{j} \exp \left(\frac{-\Phi_{i, j}+u_{i}+v_{j}}{T}\right)
$$

Identification

If we observe the $\pi_{i, j}$, Schrödinger's equation gives us:

$$
\Phi_{i, j}=u_{i}+v_{j}+T\left(\ln p_{i}+\ln q_{j}\right)+\ln \pi_{i, j}
$$

and the surplus function $\Phi_{i, j}$ is identified, up to the fundamental indeterminacy

$$
\Phi_{i, j}=\ln \pi_{i, j}
$$

Current work (Galichon and Salanié) investigates continuous versions of this problem:

$$
\begin{aligned}
& \max \int_{X \times Y}[\Phi(x, y)+\ln \pi(x, y)] \pi(x, y) d x d y \\
& \int_{X} \pi(x, y) d x=q(y), \quad \int_{Y} \pi(x, y) d y=p(x)
\end{aligned}
$$

References

Symposium on Transportation Methods, "Economic Theory", vol.42, 2, February 2010, Springer

