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Abstract. A classical theorem due to R. Phelps states that if C is a weakly
compact set in a Banach space E, the strongly exposing functionals form a
dense subset of the dual space E′. In this paper, we look at the concrete
situation where C ⊂ L1(Rd) is the closed convex hull of the set of random
variables Y ∈ L1(Rd) having a given law ν. Using the theory of optimal
transport, we show that every random variable X ∈ L∞(Rd), the law of which
is absolutely continuous with respect to Lebesgue measure, strongly exposes
the set C. Of course these random variables are dense in L∞(Rd).

1. Introduction

Throughout this paper we deal with a fixed probability space (Ω,F , P ). It will
be assumed that (Ω,F , P ) has no atoms. The space of d-dimensional random
vectors will be denoted by L0

(
Ω,F , P ;Rd

)
, and the space of p-integrable ones by

Lp
(
Ω,F , P ;Rd

)
, shortened to L0 and Lp if there is no ambiguity. The law µX of

a random vector X is the probability on Rd defined by:

∀f ∈ Cb(Rd),
∫

Ω

f (X (ω)) dP =

∫
Rd
f (x) dµX

where Cb(Rd) is the space of continuous and bounded functions on Rd. The last
term is, as usual, denoted by EµX [f ]. Clearly, X ∈ Lp

(
Rd
)
iff EµX [|x|p] <∞.

Our aim is to prove the following result:

Theorem 1. Let X ∈ L1
(
Rd
)
be given, and let C ⊂ L1(Rd) be the closed convex

hull of all random variables Y such that µX = µY . Take any Z ∈ L∞
(
Rd
)
the

law of which is absolutely continuous with respect to Lebesgue measure. Then there
exists a unique X ∈ C where Z attains its maximum on C. The law of X is µX ,
and for every sequence Xn ∈ C such that

〈Z,Xn〉 →
〈
Z,X

〉
we have ‖Xn −X‖1→ 0.

This will be proved as Theorem 17 at the end of this paper. In addition, Theorem
18 will provide a converse.

2. Preliminaries

2.1. Law-invariant subsets and functions. We shall write X1 ∼ X2 to mean
that X1 and X2 have the same law. This is an equi-valence relation on the space
of random vectors. A set C ⊂ L0 will be called law-invariant if:

[X1 ∈ C and X1 ∼ X2] =⇒ X2 ∈ C,
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and a function ϕ : L0 → R is law-invariant if ϕ (X1) = ϕ (X2) whenever X1 ∼ X2.
Given µ ∈ P

(
Rd
)
, we shall denote by M (µ) the equivalence class consisting of all

X with law µ:
M (µ) := {X |µX = µ}

The set M(µ) is not convex in general.

Lemma 2. If µ has finite p-moment,
∫
|x|pdµ < ∞, for 1 ≤ p ≤ ∞ set M(µ) is

closed in the Lp-norm.

Proof. If Xn ∈ M(µ) and ‖Xm − X‖p → 0, then we can extract a subsequence
which converges almost everywhere. If f ∈ Cb(Rd), applying Lebesgue’s dominated
convergence theorem, we have

∫
f(X)dP = limn

∫
f(Xn)dP. But the right-hand

side is equal to
∫
f(x)dµ for every n. �

We shall say that σ : Ω → Ω is a measure-preserving transformation if it is a
bijection, σ and σ−1 are measurable, and P

(
σ−1 (A)

)
= P (A) = P (σ (A)) for

all A ∈ A. The set Σ of all measure-preserving transformations is a group which
operates on random vectors and preserves the law:

∀σ ∈ Σ, ∀X ∈ L0, X ∼ X ◦ σ.
The converse is not true: given two variables X1 and X2 with X1 ∼ X2, there

may be no σ ∈ Σ such that X1 ◦ σ = X2. However, it comes close. By Lemma A.4
from [2], we have:

Proposition 3. Let C be a norm-closed subset of Lp
(
Ω,A, P ;Rd

)
, 1 ≤ p ≤ ∞.

Then C is law-invariant if and only if it is transformation-invariant. As a con-
sequence:

∀X ∈M (µ) , M (µ) = {X ◦ σ | σ ∈ Σ}
the closure being taken in the Lp-norm.

2.2. Choquet ordering of probability laws. Denote by P
(
Rd
)
the space of

probability laws on Rd, and endow it with the weak* topology induced by C0(Rd),
the space of continuous functions on Rd which go to zero at infinity. It is known
that there is a complete metric on P

(
Rd
)
which is compatible with this topology:

[µn → µ weak*]⇐⇒
[
∀f ∈ C0

(
Rd
)
,

∫
fndµ→

∫
fdµ

]
Denote by P1

(
Rd
)
the set of probability laws on Rd which have finite first

moment:

(2.1) µ ∈ P1

(
Rd
)
⇐⇒

∫
Rd
|x| dµ <∞

Note that P1

(
Rd
)
is convex, but not closed in P

(
Rd
)
. If µ ∈ P1

(
Rd
)
, every

linear function f (x) is µ-integrable. The point:

x :=

∫
Rd
ydµ(y)

will be called the barycenter of the probability µ.
Since every convex function on Rd is bounded below by an affi ne function, we

find that Eµ [f ] is well-defined (possibly +∞) for every real convex function. So
the following definition makes sense:
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Definition 4. For ν and µ in P1

(
Rd
)
, we shall say that ν 4 µ if, for every convex

function f : Rd → R, we have:∫
Rd
f (x) dν ≤

∫
Rd
f (x) dµ

For technical reasons, in order to avoid infinities, we shall introduce an equivalent
definition. Denote by C the set of convex functions f : Rd → R which are the point-
wise supremum of finitely many affi ne functions, i.e. f (x) = maxi∈I {〈yi, x〉 − ai},for
some finite family (yi, ai) ∈ Rd × R. Because of (2.1), if f ∈ C and µ ∈ P1

(
Rd
)
,

then
∫
f(x)dµ <∞.

Clearly, for any convex function g, there is an increasing sequence fn ∈ C such
that g = supn fn.

Lemma 5. For µ and ν ∈ P1

(
Rd
)
, we have ν 4 µ iff:

(2.2) ∀f ∈ C,
∫
f (x) dν ≤

∫
f (x) dµ

Proof. For any g convex, we have, by the preceding lemma g = supm fm, for some
increasing sequence fm ∈ C. The inequality holds for each fm, and we conclude by
Lebesghe’s monotone convergence theorem. �
We note the following, for future use

Lemma 6. Suppose we have an equi-integrable sequence Xn in L1
(
Rd
)
such that

their laws µn converge weak* to µ̄. Then:

∀f ∈ C,
∫
f (x) dµn →

∫
f (x) dµ̄

Proof. If f ∈ C, it must have linear growth at infinity: there are constants m and
M such that f (x) ≤ m + M |x|. Let ϕ ∈ C0

(
Rd
)
be such that ϕ (x) = 1 for

|x| ≤ 1 and ϕ (x) = 0 for |x| ≥ 2, with ϕ (x) ≥ 0 everywhere. For any ε > 0, by the
equi-integrability property, we can find R so large that, for all n,∣∣∣∣∫ f (x)ϕ

(
xR−1

)
dµn −

∫
f (x) dµn

∣∣∣∣ ≤ ε
Since µn converges weak* to µ̄, the first term converges to

∫
f (x)ϕ

(
xR−1

)
dµ̄.

Letting R→∞, we find the desired result. �
Relation (2.2) defines an (incomplete) order relation on the set of probability

measures with finite first moment. It is known in potential theory as the Choquet
ordering (see [5], chapter XI.2 ). Note that if f is linear, both f and −f are convex,
so that, if ν 4 µ, then: ∫

Rd
f (x) dν =

∫
Rd
f (x) dµ for all n

In particular, if ν - µ then ν and µ have the same barycenter.
Informally speaking, ν 4 µ means that they have the same barycenter, but µ

is more spread out than ν. In potential theory, this is traditionally expressed by
saying that "µ est une balayée de ν", that is, "µ is swept away from ν". The
following elementary properties illustrates this basic intuition:

(1) (certainty equivalence) If x0 = Eµ [x] (x0 is the barycenter of µ) and δx0 is
the Dirac mass carried at x0, then δx0 4 µ
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(2) (diversification) If X1 ∼ X2 have law µ, and Y = 1
2 (X1 +X2) has law ν,

then ν 4 µ. Indeed, if f is convex:∫
Rd
f (x) dν =

∫
Ω

f (Y ) dP ≤ 1

2

∫
Ω

f (X1) dP +
1

2

∫
Ω

f (X2) dP

=

(
1

2
+

1

2

)∫
Rd
f (x) dµ =

∫
Rd
f (x) dµ

Lemma 7. Let µ ∈ P1(Rd) and let I[µ] be the Choquet order interval of µ in
P1(Rd)

I[µ] = {ν ∈ P1(Rd) : ν 4 µ}.
Then I[µ] is a compact subset of P1(Rd) with respect to the weak-star topology
induced by C0(Rd).

Proof. As the weak* topology on P1(Rd) is metrisable it will suffi ce to show that
every sequence (νn)∞n=1 in I[µ] has a cluster point.
The relation νn 4 µ implies in particular that the first moment of the νn are

bounded by the first moment of µ. This in turn implies that Prokhorov’s condition
is satisfied, i.e. for ε > 0 there is a compact K ⊆ Rd such that νn(K) ≥ 1 − ε, for
all n ∈ N.
By Prokhorov’s theorem we may find a subsequence, still denoted by (νn)∞n=1,

converging weak* to a probability measure ν ∈ P(Rd). To show that ν ∈ I[µ], let
f : Rd → R be convex. By the weak* semi-continuity of the function ν → 〈f, ν〉 on
P(Rd), we obtain

〈f, ν〉 ≤ lim
n→∞

sup 〈f, νn〉 ≤ 〈f, µ〉.

�

The relationship with weak convergence in L1 is given by the next result. To
motivate it, consider a sequence of i.i.d. random variables Xn such that P [Xn =
−1] = 1/2 = P [Xn = 1] . Then Xn → 0 weakly, and the law of the limit is δ0, but
all the Xn have the law 1

2δ−1 + 1
2δ1. Clearly δ0 4

1
2δ−1 + 1

2δ1.

Proposition 8. Suppose Xn is a sequence in L1
(
Ω,A, P ;Rd

)
, converging weakly

to Y . Denote by µn the law of Xn and by ν the law of Y . Suppose µn converges
weak* to some µ̄ ∈ P1

(
Rd
)
. Then ν 4 µ̄, with equality if and only if ‖Xn−Y ‖1 → 0

Proof. First note that µ � δE[Y ]. Indeed, if f ∈ C, we have, by Jensen’s inequality:∫
f(x)dµn =

∫
Ω

f(Xn)dP ≥ f(E[Xn])

By Lemma 7 and the equi-integrability of the Xn, the left hand side converges to∫
f(x)dµ while the right-hand side converges to f(E[y]).
Now consider a finite σ-algebra G ⊂ F . Denote by A the collection of atoms of

G. We have: ∫
f(x)dµn =

∫
E[f(Xn)|G]dP ≥

∫
f (E[Xn|G]) dP

and by the same method we show that:

µ �
∑
A∈A

P [A]δE[Y |A]
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Now let (Gk) , k ∈ N, be a sequence of finite sub-sigma-algebras of F such that
Y is measurable w.r.t. σ (

⋃
k Gk). Denoting by νk the law of E [Y | Gk], we have

by the above argument:
µ̄ � νk for all k

and hence µ̄ � ν by taking the limit when k →∞.
Turning to the final assertion, it follows from Lebesgue’s dominated convergence

theorem that, if Xn converges to Y in the L1 norm, the law µn of Xn converges to
the law ν of Y weak* in P1

(
Rd
)
.

Conversely suppose that (Xn)∞n=1 converges to Y weakly in L1(Rd) and µ̄ = ν.
We claim that for every A ∈ F , and every function f ∈ C we then have
(2.3) lim

n→∞
E [f(Xn)1A] = E [f(Y )1A]

Indeed by Jensen’s inequality, we have:

lim
n→∞

E [f(Xn)1A] ≥ E [f(Y )1A]

lim
n→∞

E[f(Xn)1Ω\A)] ≥ E[f(Y )1Ω\A)]

On the other hand, by Lemma 6, we have:

lim
n→∞

E[f(Xn)] = lim
n→∞

〈f, µn〉 = 〈f, µ̄〉 = 〈f, ν〉 = E[f(Y )].

So equality must hold in (2.3), as announced.
Now suppose that (Xn)∞n=1 fails to converge to Y in the norm of L1(Rd), i.e.,

there is 1 > α > 0 such that

P[|Xn − Y | ≥ α] ≥ α,
for infinitely many n. By approximating Y by step functions we may find a set
A ∈ F , with P [A] > 0, and a point y0 ∈ A such that |Y − y0| < α2

5 on A and

P[A ∩ |Xn − y0| ≥ α
2 ] ≥ α

2P[A].

We then have
E[|Y − y0|1A] ≤ α2

5 P[A]

while
E[|Xn − y0|1A] ≥ α2

4 P[A],

a contradiction to (2.3). �

The Choquet ordering can be completely characterized in terms of Markov ker-
nels

Definition 9. A Borel map α : Rd → P1

(
Rd
)
is a Markov kernel if, for every

x ∈ X, the barycenter of αx is x:

∀x ∈ X,
∫
Rd
ydαx = x

If α is a Markov kernel, and ν ∈ P
(
Rd
)
, we define µ :=

∫
Rd αxdν ∈ P

(
Rd
)
by:∫

Rd
f (x) dµ =

∫
Rd
αx (f) dν

Theorem 10. If ν and µ are in P1

(
Rd
)
we have ν 4 µ if and only if there exists

a Markov kernel αx such that µ =
∫
Rd αxdν
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Proof. Suppose there exists such a Markov kernel. For any convex function f ,
since x is the barycenter of αx, Jensen’s inequality implies that αx (f) ≥ f (x).
Integrating, we get: ∫

Rd
f (x) dµ =

∫
Rd
αx(f)dν ≥

∫
Rd
f (x) dν

so ν 4 µ. The converse is known as Strassen’s theorem (see [7], [5]) �

2.3. Optimal transport. In the sequel, µ and ν will be given in P1

(
Rd
)
, and µ

will have bounded support. We are interested in the following problem: maximize∫
Rd
〈x, T (x)〉 dµ

among all Borel maps T :Rd→ Rd which map µ on ν:

T\µ = ν ⇐⇒
∫
f(y)dν =

∫
f(T (x))dµ ∀f ∈ C0(R)

In the sequel, this will be referred to as the basic problem, and denoted by
(BP[µ, ν]). If there is an optimal solution T , it has the property that if X is any
r.v. with law µ, then, among all r.v. Y with law ν, the one such that the correlation
Eµ[〈X,Y 〉] is maximal is T (X):
There is also a relaxed problem, denoted (RP[µ, ν]). It consists of maximizing:∫

Rd×Rd
〈x, y〉 dλ

among all probability measures λ on Rd×Rd which have µ and ν as marginals.
Obviously, we have sup(BP ) ≤ sup(RP ), and the latter is finite because µ has
bounded support and ν has finite first moment.
Finally, there is a dual problem, defined by (DP[µ, ν]), which consists of minim-

izing ∫
Rd
ϕ(x)dµ+

∫
Rd
ψ(y)dν

over all pairs of functions ϕ(x) and ψ(y) such that ϕ(x) + ψ(y) ≥ 〈x, y〉.
The following theorem summarizes results due to Kantorovitch [3], Kellerer [4]

Rachev and Ruschendorf [6], and Brenier [1]. It was originally formulated for the
case when µ and ν have finite second moment, and this is also what is found in [8].
Indeed, in this case, since T\µ = ν,we have:∫

‖x− T (x) ‖2dµ =

∫
‖x‖2dµ+

∫
‖T (x) ‖2dµ− 2

∫
〈x, T (x)〉 dµ

=

∫
‖x‖2dµ+

∫
‖y‖2dν − 2

∫
〈x, T (x)〉 dµ

Since the two first terms on the right-hand side do not depend on T , the problem of
maximising

∫
〈x, T (x)〉 dµ (bilinear cost) is equivalent to the problem of minimizing∫

‖x − T (x) ‖2dµ (quadratic cost), for which general techniques are available. In
the case at hand, we will not assume that ν has finite second moment, so this
approach is not available: the square distance is not defined, while the correlation
maximisation still makes sense.
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Theorem 11. Suppose µ has compact support and is absolutely continuous w.r.t.
Lebesgue measure. Suppose also ν has finite first moment. Then the basic problem
(BP[µ, ν]) has a solution T , which is unique up to negligible subsets, and there is a
convex function ϕ : Rd→ R such that T (x) = ∇ϕ(x) a.e..
The relaxed problem (RP[µ, ν]) has λ =

∫
δT (x)dµ(x) as a unique solution.

Denoting by ψ the Fenchel transform of ϕ, all solutions to the dual problem
(DP[µ, ν]) are of the form (ϕ + a, ψ − a) for some constant a, up to µ-, resp ν-.,
a.s. equivalence. The values of the minimum in problem (DP) and of the maximum
in problems (BP) and (RP) are equal:

(2.4) max(BP [µ, ν]) = max(RP [µ, ν]) = min(DP [µ, ν])

Let us denote by mc[µ, ν] this common value. We shall call it the maximal
correlation between µ and ν. It follows from the theorem that for any T ′, λ′, ϕ′, ψ′

satisfying the admissibility conditions, we have:∫
Rd
〈x, T ′(x)〉 dµ ≤mc[µ, ν]∫

Rd×Rd
〈x, y〉 dλ′ ≤mc[µ, ν]∫

Rd
ϕ′(x)dµ+

∫
ψ′Rd(y)dν ≥mc[µ, ν]

As an interesting consequence, we have:

Proposition 12. Let µ,ν1, ν2 be probability measures on Rd such that µ is abso-
lutely continuous w.r.t the Lebesgue measure and has bounded support, while ν1 and
ν2 have finite first moment. Suppose ν1 4 ν2 and ν1 6= ν2. Then mc[µ, ν1] <
mc[µ, ν2].

Proof. By Theorem 10, there is a Markov kernel α such that:

(2.5) ν2 =

∫
Rd
αxdν1

Let T1be the optimal solution of (BP[µ, ν1]). Consider the probability measure
λ on Rd × Rd defined by:

(2.6)
∫
f (x, y) dλ (x, y) =

∫
dµ (x)

∫
f (x, y) dαT1(x)(y)

Since αT1(x) is a probability measure, the first marginal of λ is µ. Let us compute
the second marginal. We have, for any f ∈ C0(Rd),

∫
Rd×Rd

f(y)dλ(x, y) =

∫
Rd
αT1(x)(f)dµ(x)

=

∫
Rd
αx(f)dν1(x)

= ν2(f)

where the second equality comes from the fact that T1maps µ on ν1 and the second
from equation (2.5). So the second marginal of λ is ν2, and λ is admissible in
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problem (RP[µ, ν2]). A similar computation gives:∫
Rd×Rd

〈x, y〉 dλ(x, y) =

∫
Rd

〈
x,

∫
Rd
dαT1(x)(y)

〉
dµ (x)

=

∫
Rd
〈x, T1(x)〉 dµ (x) = mc[µ, ν1]

Since λ has marginals µ and ν2, it is admissible in the relaxed problem(RP[µ, ν2]),
so that the left-hand side is at most mc[µ, ν2] while the right-hand side is equal to
mc[µ, ν1]. It follows that mc[µ, ν1] ≤ mc[µ, ν2]. If there is equality, then λ is an
optimal solution to (RP[µ, ν2]). By the uniqueness part of Theorem 11, we must
have λ =

∫
δT1(x)dµ(x). Comparing with equation (2.6), we find αy = δy, holding

true ν1-almost surely. Writing this in equation (2.5) we get ν1 = ν2. �

2.4. Strongly exposed points. Let E be a Banach space, and C ⊂ E a closed
subset. For v ∈ E′, consider the optimization problem:
(2.7) sup

u∈C
〈v, u〉

Definition 13. We say that v ∈ E′exposes u ∈ C if u solves problem (2.7) and is
the unique solution. We shall say that v ∈ E′ strongly exposes u ∈ C if it exposes
u and all maximizing sequences in problem (2.7) converge to u:{

un ∈ C, lim
n
〈v, un〉 = 〈v, u〉

}
=⇒ lim

n
‖u− un‖ = 0

We shall say that u ∈ C is an exposed point (resp. strongly exposed) if it is
exposed (resp. strongly exposed) by some continuous linear functional v. It is a
classical result of Phelps that every weakly compact convex subset C of E is the
closed convex hull of its strongly exposed points.

3. Some geometric properties of law-invariant subsets of L1
(
Rd
)

Recall that, given ν ∈ P1

(
Rd
)
, we have defined subsets M(ν) and C(ν) of

L1
(
Rd
)
by:

M (ν) =
{
X ∈ L1 |µX = ν

}
C (ν) =

{
X ∈ L1 |µX 4 ν

}
M(ν) is closed in L1but not convex. To investigate the relation between M (ν)

and C (ν), we shall need the following result:

Proposition 14. Let Y ∈ L1(Rd) with law (Y ) = ν, and µ ∈ P1(Rd) such that
µ < ν. Then there is a sequence (Xn)∞n=1 in M(µ) such that (Xn)∞n=1 converges
weakly to Y in L1(Rd). As a consequence, there is a sequence (Yn)∞n=1 ∈ conv
(M(µ)) converging strongly to Y in L1(Rd).

We start by recalling a well-known result from ergodic theory.

Lemma 15. Let Ω = {−1, 1}Z equipped with the Borel sigma-algebra F and Haar-
measure P , and Tn the n-shift, that is:

∀k ∈ Z, [Tn (η)]k = ηk−n

For any Z ∈ L1
(
Ω,F , P ;Rd

)
, the sequence of functions Z ◦Tn converges weakly to

the constant EP [Z].
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Proof. Suppose that Z depends only on finitely many coordinates and let A ∈ F
also depend only on finitely many coordinates of {−1, 1}Z. Then, for n large enough,
Zn := Z ◦ Tn is independent of A so that

E[Zn|A] = E[Zn] = E[Z].

The general case follows from approximation. �

Proof. (of Proposition 14): Assume (w.l.o.g.) that L1
(
Ω,F , P ;Rd

)
is separable.

Recall that, (Ω,F ,P) has no atoms. Suppose first that Y takes only finitely many
values, i.e.

Y =

N∑
j=1

yj1Aj

where (yj)
N
j=1 ∈ Rd and (A1, . . . , AN ) forms a partition of Ω into sets in F with

strictly positive measure.
By Theorem 10 we may find a Markov kernel α = (αyj )

N
j=1 such that the bary-

center of αyj is yj and:

(3.1) µ =

N∑
j=1

P[Aj ]αyj

Each of the sets Aj , equipped with normalized measure P [Aj ]
−1P |Aj

is Borel
isomorphic to {−1, 1}Z, equipped with Haar measure. Hence, by the preceding
lemma, for each j = 1, . . . , N we may find a random variable Zj : Aj → Rd under
P [Aj ]

−1P |Aj
such that law (Zj) = αyj , as well as a sequence (Tj,n)∞n=1 of measure-

preserving transformations of Aj such that, in the weak topology of L1
(
Rd
)
:

lim
n→∞

(Zj ◦ Tjn)1Aj
= yj1Aj

, j = 1, . . . , N.

Letting

Xn =

N∑
j=1

(Zj ◦ Tjn)1Aj

we obtain by (3.1) a sequence in L1(Rd) with law (Xn) = µ and converging weakly
to Y =

∑N
j=1 yj1Aj

.

Now drop the assumption that Y is a simple function and fix a sequence (Gm)∞m=1

of finite sub-sigma-algebras of F , generating F . Note that if Ym = E[Y |Gm] and νm
is the law of Ym, we have νm ≺ ν, by Jensen’s inequality.
By the first part we may find, for each m ≥ 1, a sequence (Xm,n)∞n=1 in M(µ)

such that (Xm,n)∞n=1 converges weakly to Ym . Noting that (Ym)∞m=1 converges to Y
(in the norm of L1(Rd) and therefore also weakly) we may find a sequence (nm)∞m=1

tending suffi ciently fast to infinity, such that (Xm,nm)∞m=1 converges weakly to Y .
The final assertion follows from the Hahn-Banach theorem. �

The relationship between C (ν) and M (ν) now follows:

Theorem 16. The set C (ν) is convex, weakly compact, and equals the weak closure
of M (ν):

C (ν) = M(ν)
w

= coM(ν)
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Proof. Obviously M(ν)
w ⊂ C (ν). Conversely, take any X ∈ C(ν). By Proposition

14, there is a sequence Xn in M (ν) such that Xn → X weakly, so X ∈ M(ν)
w
.

This shows that C (ν) = M(ν)
w
.

By Proposition 8, C(ν) is convex. It remains to show that it is weakly compact.
Since C (ν) is the weak closure of M (ν), it is enough to show that M (ν) is weakly
relatively compact. To do that, we shall use the Dunford-Pettis criterion. We
claim that M(ν) is equi-integrable. Indeed, fix some X ∈ M(ν). For any other
Y ∈M (ν), and any m > 0, we have:∫

|Y |≥m
|Y |dP =

∫
|x|≥m

|x| dν (x) =

∫
|X|≥m

|X|dP

which goes to 0 when m→∞, independently of Y . The result follows. �
We now investigate strongly exposing functionals and strongly exposed points

of C(ν). We will show that any Z ∈ L∞, the law of which is a.c. w.r.t. Lebesgue
measure, strongly exposes a point of C(ν) (which must then belong to M(ν)) and
conversely, provided ν is absolutely continuous w.r.t. Lebesgue measure, that any
point of M(ν) is strongly exposed by such a Z.

Theorem 17. Let ν ∈ P1

(
Rd
)
, Z ∈ L∞ and suppose the law of Z is absolutely

continuous with respect to Lebesgue measure. Then Z strongly exposes C(ν), and
the exposed point in fact belongs to M(ν).

Proof. Let µ be the law of Z and consider the maximal correlation problem (BP[µ, ν]).
By Theorem 11, it has a unique solution T . Set X = T (Z). Clearly X has law ν,
and by uniqueness:

(3.2) [X ′ ∈M(ν), X ′ 6= X] =⇒ 〈Z,X〉 > 〈Z,X ′〉
So X is an exposed point in M(ν). Take any Y ∈ C(ν), so that µY 4ν. By

Proposition 12, we have 〈Z,X〉 ≥ 〈Z, Y 〉, and if 〈Z,X〉 = 〈Z, Y 〉, then µY = µX =
ν. So Y must belong to M(ν), and by formula (3.2), we must have Y = X. So X
is an exposed point in C(ν) as well.
It remains to prove that it is strongly exposed. For this, take a maximizing

sequence Xn in C(ν). Since C (ν) is weakly compact and νn � ν, where νn is the
law of Xn, there is a subsequence Xnkwhich converges weakly to some X

′ ∈ C(ν).
By Lemma 7, the set of all µ - ν is weak* compact, so we may assume that the
laws νnk converge weak* to some ν̄. Obviously X

′ maximizes 〈Z,X ′〉, and since
Z exposes X, we must have X ′ = X. So the Xnkconverge weakly to X, and, by
Proposition 8, µX = ν 4 ν.
On the other hand, take any convex function f with linear growth. Since νnk 4 ν

we have: ∫
f(x)dνnk ≤

∫
f(x)dν

Letting k →∞, we get from Lemma 7∫
f(x)dν = lim

k

∫
f(x)dνnk ≤

∫
f(x)dν

So ν = ν, and Proposition 8 then implies that ‖Xnk −X‖1 → 0. Since the limit
does not depend on the subsequence, the whole sequence Xn converges, and X is
strongly exposed, as announced. �
Here is a kind of converse:
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Theorem 18. Fix two measures ν and µ on Rd, the first one having finite first
moment and the second one compact support. Suppose both of them are absolutely
continuous with respect to Lebesgue measure. Then, for every X with law ν, there
is a unique Z with law µ which strongly exposes X in C (ν).

Proof. Consider the maximal correlation problem (BP[ν, µ]). It has a unique solu-
tion T : Rd → Rd verifying T]ν = µ. Since both µ and ν are absolutely continuous
with respect to Lebesgue measure, the problem (BP[µ, ν]) also has a unique solution
S : Rd → Rd verifying S]µ = ν. Clearly S = T−1 and T = S−1. Define Z = T (X).
It is then the case that the law of Z is µ and S (Z) = S ◦ T (X) = X. Repeating
the preceding proof we find that Z strongly exposes X in C (ν). �

Note that the condition that ν be absolutely continuous with respect to the
Lebesgue measure cannot be dropped from the preceding theorem. This may be
seen by a variant of a well-known example in optimal transport theory ([9], Example
4.9). On R2 consider the measure ν which is uniformly distributed on the interval
{0}× [0, 1] while µ is uniformly distributed on the rectangle [−1, 1]× [0, 1]. Then
µ is absolutely continuous w.r.t. Lebesgue measure, while ν is not. Clearly the
optimal transport T from µ to ν for the maximal correlation problem is given by
the projection on the vertical axis. This map is not invertible.
Let (Ω,F , P ) be given by Ω = [0, 1] equipped with the Lebesgue measure P

on the Borel σ-algebra. Define a random vector X ∈ L1
(
Ω,F , P ;R2

)
by X (ω) =

(0, ω) , so that the law of X is ν. Let us now calculate the maximal correlation
between µ and ν. Let Z0 ∈ L∞ have law µ and define X0 = T (Z0) so that X0 has
law ν. By the proof of theorem 17 we get:

mc (µ, ν) =

∫
Ω

〈X0, Z0〉 dP =

∫
R2
〈x, T (x)〉 dµ

=
1

2

∫ 1

−1

[∫ 1

0

x2
2dx2

]
dx1 =

∫ 1

0

x2
2dx2 =

1

3
.

On the other hand, we claim that:

(3.3)
∫
〈X,Z0〉 dP <

1

3
.

Since this holds for any Z0 with law µ, it shows that X does not expose any
point in C (µ). This is the desired counterexample.To prove (3.3), write Z0 (ω) =
(Z0,1 (ω) , Z0,2 (ω)) and note that P [Z0,2 6= X2] > 0. Indeed, assume otherwise, so
that Z0,2 (ω) = X2 (ω) = ω almost surely. Then Z0,1 (ω) is fully determined by
Z0,2 (ω), meaning that, in the image of Ω by Z, the coordinate z1 is determined by
the coordinate z2. This clearly contradicts the fact that the law of Z is µ. Since
the law of Z0,2 is the Lebesgue measure on [0, 1], but Z0,2 does not coincide with
X2 (ω) = ω, we have, from the uniqueness of the Brenier map:∫

〈X,Z0〉 dP ≤
∫
X2Z0,2dP <

∫
X2

2dP =
1

3

Let us summarize our findings: There are measures µ and ν on R2 with compact
support, µ being absolutely continuous with respect to Lebesgue measure, and
some X ∈ L∞

(
R2
)
with law ν such that there is no Z ∈ L∞

(
R2
)
with law µ which

exposes X in C (ν)
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