Inverse function theorems

Ivar Ekeland
CEREMADE, Université Paris-Dauphine

Trujillo, Perù, January 2012

Bibliography

I.Ekeland, "Nonconvex minimization problems", Bull. AMS 1 (New Series) (1979) p. 443-47
I. Ekeland, "Some lemmas on dynamical systems", Math. Scan. 52
(1983), p.262-268
I.Ekeland, "An inverse function theorem in Fréchet spaces" 28 (2011), Annales de I'Institut Henri Poincaré, Analyse Non Linéaire, p. 91-105

All papers can be found on my website:
http://www.ceremade.dauphine.fr/~ekeland/

Ekeland's variational principle (1972)

Theorem

Let (X, d) be a complete metric space, and $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a lower semi-continuous map, bounded from below:

$$
\begin{aligned}
& \{(x, a) \mid a \geq f(x)\} \text { is closed in } X \times \mathbb{R} \\
& f(x) \geq 0, \quad \forall x
\end{aligned}
$$

Suppose $f(0)<\infty$. Then for every $A>0$, there exists some \bar{x} such that:

$$
\begin{aligned}
f(\bar{x}) & \leq f(0) \\
d(\bar{x} .0) & \leq A \\
f(x) & \geq f(\bar{x})-\frac{f(0)}{A} d(x, \bar{x}) \quad \forall x
\end{aligned}
$$

This is a Baire-type result: relies on completeness, no compactnes needed

First-order version

Suppose X is a Banach space, and $d\left(x_{1}, x_{2}\right)=\left\|x_{1}-x_{2}\right\|$. Apply EVP to $x=\bar{x}+t u$ and let $u \rightarrow 0$. We get:

$$
f(\bar{x}+t u) \geq f(\bar{x})-\frac{f(0)}{A} t\|u\| \quad \forall(t, u)
$$

$$
\lim _{t \rightarrow+0} \frac{1}{t}(f(\bar{x}+t u)-f(\bar{x})) \geq-\frac{f(0)}{A}\|u\| \quad \forall u
$$

$$
\langle D f(x), u\rangle \geq-\frac{f(0)}{A}\|u\| \quad \forall u, \text { or }\|D f(x)\|^{*} \leq \frac{f(0)}{A}
$$

Corollary

Suppose F is everywhere finite and Gâteaux-differentiable. Then there is a sequence x_{n} such that:

$$
\begin{aligned}
f\left(x_{n}\right) & \rightarrow \inf f \\
\left\|D f\left(x_{n}\right)\right\|^{*} & \rightarrow 0
\end{aligned}
$$

An inverse function theorem in Banach spaces

Theorem

Let X and Y be Banach spaces. Let $F: X \rightarrow Y$ be continuous and Gâteaux-differentiable, with $F(0)=0$. Assume that the derivative $D F(x)$ has a right-inverse $L(x)$, uniformly bounded in a neighbourhood of 0 :

$$
\begin{aligned}
& \forall v \in Y, \quad D F(x) L(x) v=u \\
& \|x\| \leq R \Longrightarrow\|L(x)\|<m
\end{aligned}
$$

Then, for every \bar{y} such that

$$
\|\bar{y}\| \leq \frac{R}{m}
$$

there is some \bar{x} such that:

$$
\begin{aligned}
\|\bar{x}\| & \leq m\|\bar{y}\| \\
F(\bar{x}) & =\bar{y}
\end{aligned}
$$

Proof

Consider the function $f: X \rightarrow R$ defined by:

$$
f(x)=\|F(x)-\bar{y}\|
$$

It is continuous and bounded from below, so that we can apply EVP with $A=m\|\bar{y}\|$. We can find \bar{x} with:

$$
\begin{aligned}
f(\bar{x}) & \leq f(0)=\|\bar{y}\| \\
\|\bar{x}\| & \leq m\|\bar{y}\| \leq R \\
\forall x, \quad f(x) & \geq f(\bar{x})-\frac{f(0)}{m\|\bar{y}\|}\|x-\bar{x}\|=f(\bar{x})-\frac{1}{m}\|x-\bar{x}\|
\end{aligned}
$$

I claim $F(\bar{x})=\bar{y}$.

Proof (ct'd)

Assume $F(\bar{x}) \neq \bar{y}$. The last equation can be rewritten:

$$
\forall t \geq 0, \forall u \in X, \quad \frac{f(\bar{x}+t u)-f(\bar{x})}{t} \geq-\frac{1}{m}\|u\|
$$

Simplify matters by assuming X is Hilbert. Then:

$$
\left(\frac{F(\bar{x})-\bar{y}}{\|F(\bar{x})-\bar{y}\|}, D F(\bar{x}) u\right)=\langle D f(\bar{x}), u\rangle \geq-\frac{1}{m}\|u\|
$$

We now take $u=-L(\bar{x})(F(\bar{x})-\bar{y})$, so that $D F(\bar{x}) u=-(F(\bar{x})-\bar{y})$. We get a contradiction:

$$
\|F(\bar{x})-\bar{y}\| \leq \frac{\|L(\bar{x})\|}{m}\|F(\bar{x})-\bar{y}\|<\|F(\bar{x})-\bar{y}\|
$$

Why Banach spaces are not good enough

Consider the torus $\mathbb{T}_{N}=(\mathbb{R} / 2 \pi \mathbb{Z})^{N}$, a vector $\omega \in \mathbb{R}^{N}$ and the operator D_{ω} defined by:

$$
D_{\omega} u=\sum_{n=1}^{N} \omega_{i} \frac{\partial u}{\partial \theta_{i}}
$$

The loss of derivatives is $d_{1}=1$. To find the inverse, we solve $D_{\omega} u=u$ by Fourier coordinates:

$$
u_{k}=-\frac{i}{k \cdot \omega} v_{k}
$$

For almost all ω there are constants c and $s>0$ such that $|k \cdot \omega|>c\left(\sum_{n=1}^{N}\left|k_{n}\right|\right)^{N+s}$ for every k. This gives:

$$
\left|u_{k}\right| \leq \frac{1}{c}\left(\sum_{n=1}^{N}\left|k_{n}\right|\right)^{N+d}\left|v_{k}\right|
$$

so the loss of derivative is $d_{2}=N+s$, which can be very large (for a start, $d_{2}>N$)

Fréchet spaces.

A Fréchet space X is graded if its topology is defined by an increasing sequence of norms:

$$
\forall x \in X, \quad\|x\|_{k} \leq\|x\|_{k+1}, \quad k \geq 0
$$

A point $x \in X$ is controlled if there is a constant $c_{0}(x)$ such that:

$$
\|x\|_{k} \leq c_{0}(x)^{k}
$$

Definitions

A graded Fréchet space is standard if, for every $x \in X$, there is a constant $c_{3}(x)$ and a sequence x_{n} of controlled vectors such that:

$$
\begin{array}{ll}
\forall k & \lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|_{k}=0 \\
\forall n, & \left\|x_{n}\right\|_{k} \leq c_{3}(x)\|x\|_{k}
\end{array}
$$

The graded Fréchet spaces $C^{\infty}\left(\bar{\Omega}, \mathbb{R}^{d}\right)=\cap C^{k}\left(\bar{\Omega}, \mathbb{R}^{d}\right)$ and $C^{\infty}\left(\bar{\Omega}, \mathbb{R}^{d}\right)=\cap H^{k}\left(\Omega, \mathbb{R}^{d}\right)$ are both standard.

Normal maps

We are given two Fréchet spaces X and Y, and a neighbourhood of zero $B=\left\{x \mid\|x\|_{k_{0}} \leq R\right\}$ in X

Definition

A map $F: X \rightarrow Y$ is normal over B if there are two integers d_{1}, d_{2} and two non-decreasing sequences $m_{k}>0, m_{k}^{\prime}>0$ such that:
(1) $F(0)=0$ and F is continuous on B
(2) F is Gâteaux-differentiable on B and for all $x \in B$

$$
\forall k \in \mathbb{N},\|D F(x) u\|_{k} \leq m_{k}\|u\|_{k+d_{1}}
$$

(3) There exists a linear map $L(x): Y \longrightarrow X$ such that:

$$
\begin{aligned}
& \forall v \in Y, D F(x) L(x) v=v \\
& \forall k \in \mathbb{N}, \sup _{x \in B}\|L(x) v\|_{k}<m_{k}^{\prime}\|v\|_{k+d_{2}}
\end{aligned}
$$

An inverse function theorem

Theorem

Suppose Y is standard, and $F: X \rightarrow Y$ is normal over $B=\left\{x \mid\|x\|_{k_{0}} \leq R\right\}$. Then, for every y with

$$
\|y\|_{k_{0}+d_{2}} \leq \frac{R}{m_{k_{0}}^{\prime}}
$$

there is some $x \in B$ such that:

$$
\|x\|_{k_{0}} \leq m_{k_{0}}^{\prime}\|y\|_{k_{0}+d_{2}} \text { and } F(x)=y
$$

Corollary (Lipschitz inverse)

For every y_{1}, y_{2} with $\left\|y_{i}\right\|_{k_{0}+d_{2}} \leq m_{k_{0}}^{\prime-1} R$ and every $x_{1} \in B$ with $F\left(x_{1}\right)=y_{1}$, there is some x_{2} with:

$$
\left\|x_{2}-x_{1}\right\|_{k_{0}} \leq m_{k_{0}}^{\prime}\left\|y_{2}-y_{1}\right\|_{k_{0}+d_{2}} \text { and } F\left(x_{2}\right)=y_{2}
$$

Corollary (Finite regularity)

Suppose F extends to a continuous map $\bar{F}: X_{k_{0}} \rightarrow Y_{k_{0}-d_{1}}$. Take some $y \in Y_{k_{0}+d_{2}}$ with $\|y\|_{k_{0}+d_{2}}<R m_{k_{0}}^{\prime-1}$. Then there is some $x \in X_{k_{0}}$ such that $\|x\|_{k_{0}}<R$ and $\bar{F}(x)=y$.

Proof: step 1

Let \bar{y} be given, with $\|y\|_{k_{0}+d_{2}} \leq \frac{R}{m_{k_{0}}^{\prime}}$. Let $\beta_{k} \geq 0$ be a sequence with unbounded support satisfying:

$$
\begin{aligned}
\sum_{k=0}^{\infty} \beta_{k} m_{k} m_{k+d_{1}}^{\prime} n^{k} & <\infty, \forall n \in \mathbb{N} \\
\frac{1}{\beta_{k_{0}+d_{2}}} \sum_{k=0}^{\infty} \beta_{k}\|\bar{y}\|_{k} & \leq \frac{R}{m_{k_{0}}^{\prime}}
\end{aligned}
$$

Set $\alpha_{k}:=m_{k_{0}}^{\prime-1} \beta_{k+d_{2}}$ and define:

$$
\|x\|_{\alpha}:=\sum_{k=0}^{\infty} \alpha_{k}\|x\|_{k}, \quad X_{\alpha}=\left\{x \in X \mid\|x\|_{\alpha}<\infty\right\}
$$

Then $X_{\alpha} \varsubsetneqq X$ is a linear subspace, X_{α} is a Banach space and the identity map $X_{\alpha} \rightarrow X$ is continuous: So the restriction $F: X_{\alpha} \rightarrow Y$ is continuous.

Step 1 (ct'd)

Now consider the function $f: X_{\alpha} \longrightarrow \mathbb{R} \cup\{+\infty\}$ (the value $+\infty$ is allowed) defined by:

$$
f(x)=\sum_{k=0}^{\infty} \beta_{k}\|F(x)-\bar{y}\|_{k}
$$

f is lower semi-continuous, and $0 \leq \inf f \leq f(0)=\sum_{k=0}^{\infty} \beta_{k}\|\bar{y}\|_{k}<\infty$. By the EVP there is a point $\bar{x} \in X_{\alpha}$ such that:

$$
\begin{aligned}
f(\bar{x}) & \leq f(0)=\sum_{k=0}^{\infty} \beta_{k}\|\bar{y}\|_{k}, \quad\|\bar{x}\|_{\alpha} \leq \alpha_{k_{0}} R \\
f(x) & \geq f(\bar{x})-\frac{f(0)}{\alpha_{k_{0}} R}\|x-\bar{x}\|_{\alpha}, \quad \forall x \in X_{\alpha}
\end{aligned}
$$

It follows that:

$$
\sum_{k=0}^{\infty} \alpha_{k}\|\bar{x}\|_{k} \leq \alpha_{k_{0}} R, \text { so }\|\bar{x}\|_{k_{0}} \leq R
$$

$$
\sum_{\text {Ekeland }}^{\infty} \beta_{k}\|\bar{y}\|_{k}<\infty, \sum_{\text {(CEREMADE, Universite Pris.l }}^{\infty} \beta_{k}\|F(\bar{x})-\bar{y}\|_{k}<\infty, \sum_{\text {Tinverse function theorems }}^{\infty} \beta_{k}\|F(\bar{x})\|_{k}<\infty, \text { Peri, January } 2012
$$

Proof: step 2

Assume then $F(\bar{x}) \neq \bar{y}$. If $u \in X_{\alpha}$, we can set $x=\bar{x}+t u$, replace f by its value and divide by t.
$-\lim _{t \rightarrow 0} \frac{1}{t}\left[\sum_{k=0}^{\infty} \beta_{k}\|\bar{y}-F(\bar{x}+t u)\|_{k}-\sum_{k=0}^{\infty} \beta_{k}\|\bar{y}-F(\bar{x})\|_{k}\right] \leq A \sum_{k \geq 0} \alpha_{k}\|u\|$
with $A=\sum \beta_{k}\|\bar{y}\|_{k}\left(\alpha_{k_{0}} R\right)^{-1}<1$. We would like to go one step further:

$$
-\sum_{k=0}^{\infty} \beta_{k}\left(\frac{F(\bar{x})-\bar{y}}{\left\|F(\bar{x})-\bar{y}_{k}\right\|_{k}}, D F(\bar{x}) u\right)_{k} \leq A \sum_{k \geq 0} \alpha_{k}\|u\|_{k}
$$

This program can be carried through (by repeated use of Lebesgue's dominated convergence theorem) if we take $u=u_{n}$, where $u_{n}=L(\bar{x}) v_{n}$ and:

$$
\begin{aligned}
v_{n} & \rightarrow F(\bar{x})-\bar{y}, \quad v_{n} \text { controlled } \\
\left\|v_{n}\right\|_{k} & \leq c_{3}(F(\bar{x})-\bar{y})\|F(\bar{x})-\bar{y}\|_{k}
\end{aligned}
$$

Proof: step 3

Plugging in $u_{n}=L(\bar{x}) v_{n}$, we get:

$$
\begin{aligned}
-\sum_{k=0}^{\infty} \beta_{k}\left(\frac{F(\bar{x})-\bar{y}}{\left\|F(\bar{x})-\bar{y}_{k}\right\|_{k}}, D F(\bar{x}) L(\bar{x}) v_{n}\right)_{k} & \leq A \sum_{k \geq 0} \alpha_{k}\left\|L(\bar{x}) v_{n}\right\|_{k} \\
-\sum_{k=0}^{\infty} \beta_{k}\left(\frac{F(\bar{x})-\bar{y}}{\left\|F(\bar{x})-\bar{y}_{k}\right\|_{k}}, v_{n}\right)_{k} & \leq A \sum_{k \geq 0} \alpha_{k}\left\|L(\bar{x}) v_{n}\right\|_{k}
\end{aligned}
$$

Letting $n \rightarrow \infty$, so $v_{n} \rightarrow F(\bar{x})-\bar{y}$, this becomes:

$$
\begin{aligned}
-\sum_{k=0}^{\infty} \beta_{k}\left\|F(\bar{x})-\bar{y}_{k}\right\|_{k} & \leq A \sum_{k \geq 0} \alpha_{k} m_{k}\left\|F(\bar{x})-\bar{y}_{k}\right\|_{k+d_{2}} \\
& =A \sum_{k \geq d_{2}} \beta_{k}\left\|F(\bar{x})-\bar{y}_{k}\right\|_{k}
\end{aligned}
$$

which is a contradiction since $A<1$

A setting for Nash-Moser

We work with a continuous family of norms and finite regularity:

$$
\begin{aligned}
X_{s_{0}} & \subset X_{s} \subset X_{s_{1}} \text { for } s_{0}<s<s_{1} \\
s_{0} & <s<s^{\prime}<s_{1} \Longrightarrow\|x\|_{s} \leq\|x\|_{s^{\prime}}
\end{aligned}
$$

We assume that $X_{s_{0}}$ admits a family of smoothing operators, i.e. for every $N \in \mathbb{N}$ a projection $\Pi_{N}: X_{s_{0}} \rightarrow X_{s_{0}}$ with

$$
\begin{aligned}
\left\|\Pi_{N} u\right\|_{s_{0}+d} & \leq C(d) N^{d}\|u\|_{s}, \quad \forall d \geq 0 \\
\left\|\left(I-\Pi_{N}\right) u\right\|_{s_{0}} & \leq C(d) N^{-d}\|u\|_{s_{0}+d}, \quad \forall d \geq 0
\end{aligned}
$$

Typically $E_{N}=\Pi_{N} X_{s_{0}}$ is finite-dimensional

Roughly tame maps

We are given a neighbourhood of zero $B=\left\{x \mid\|x\|_{s_{0}} \leq R\right\}$ in X, and a number $d_{1} \geq 0$

Definition

A map $F: X_{s_{1}} \rightarrow X_{s_{0}}$ is roughly tame over B if there exists non-negative numbers d_{1}, d_{2}, and c such that
(1) $F(0)=0$ and F is continuous and Gâteaux-differentiable from $B \cap X_{s+d_{1}}$ into X_{s} for every $s_{0} \leq s \leq s_{1}$
(2) For all $x \in B$, we have:

$$
\|D F(x) u\|_{s} \leq m\left(\|u\|_{s+d_{1}}+\|x\|_{s+d_{1}}\|u\|_{s_{0}}\right), \quad s_{0} \leq s \leq s_{1}
$$

(3) For each $N \in \mathbb{N}$, there exists a linear map $L_{N}(x)$ from E_{N} into itself such that:

$$
\begin{aligned}
& \forall v \in E_{N}, \quad \Pi_{N} D F(x) L_{N}(x) v=v \\
&\left\|L_{N}(x) v\right\|_{s} \quad \leq \quad c N^{d_{2}}\left(\|v\|_{s}+\|x\|_{s}\|v\|_{s_{0}}\right), \quad s_{0} \leq s \leq s_{1}
\end{aligned}
$$

Nash-Moser theorem without smoothness

With Jacques Fejoz and Eric Séré we have proved the following (unpublished)

Theorem

Suppose F is roughly tame and:

$$
s_{1}-s_{0}>4\left(d_{1}+d_{2}\right)
$$

Then there is some $\varepsilon>0$ and \bar{s} with $s_{0}<\bar{s}<s_{1}$ such that, if $\|y\|_{\bar{s}} \leq \varepsilon$, the equation $F(x)=y$ has a solution in $B \cap X_{s_{0}+d_{1}}$

Note that typically $\bar{s}>s_{0}+d_{2}$: there is an additional loss of derivatives, due to the presence of x in the estimates wrt to u. The proof goes by following the procedure of Berti, Bolle and Procesi, namely a Galerkin iteration where one solves exactly at each step the approximate equation on $\Pi_{N} X_{s_{0}}$. They do so by applying a "smooth" inverse function theorem (in finite dimension) at each step, and we simply substitute the non-smooth theorem I proved earlier.

An example

This is Nash's original example: imbed the 2-torus into \mathbb{R}^{5} with a prescribed fundamental form g. Find $u: \mathbb{T}_{2} \rightarrow \mathbb{R}^{5}$ such that:

$$
F(u)=\left(\frac{\partial u}{\partial \theta_{i}}, \frac{\partial u}{\partial \theta_{j}}\right)=g_{i, j}, \quad 1 \leq i, j \leq 2
$$

The loss of derivatives is $d_{1}=1$. We have:

$$
[D F(u) \varphi]_{i, j}=\left(\frac{\partial u}{\partial \theta_{i}}, \frac{\partial \varphi}{\partial \theta_{j}}\right)+\left(\frac{\partial \varphi}{\partial \theta_{i}}, \frac{\partial u}{\partial \theta_{j}}\right)
$$

To find a right inverse $L(u)$, we have to solve $D F(u) \varphi=\psi$, three equations for five unknown functions. We impose an additional condition

$$
\left(\frac{\partial u}{\partial \theta_{1}}, \varphi\right)=\left(\frac{\partial u}{\partial \theta_{2}}, \varphi\right)=0
$$

and the equation $D F(u) \varphi=\psi$ reduces to:

$$
-2\left(\frac{\partial^{2} u}{\partial \theta_{i} \partial \theta_{j}}, \varphi\right)=\psi_{i, j} 1 \leq i, j \leq 2
$$

Suppose a solution \bar{u} is known. If the determinant:

$$
\Delta(\theta)=\operatorname{det}\left[\frac{\partial u}{\partial \theta_{1}}, \frac{\partial u}{\partial \theta_{2}}, \frac{\partial^{2} u}{\partial \theta_{1}^{2}}, \frac{\partial^{2} u}{\partial \theta_{1} \partial \theta_{2}}, \frac{\partial^{2} u}{\partial \theta_{2}^{2}}\right]
$$

does not vanish along \bar{u}, then the system:

$$
\begin{gathered}
\left(\frac{\partial u}{\partial \theta_{1}}, \varphi\right)=\left(\frac{\partial u}{\partial \theta_{2}}, \varphi\right)=0 \\
-2\left(\frac{\partial^{2} u}{\partial \theta_{i} \partial \theta_{j}}, \varphi\right)=\psi_{i, j} 1 \leq i, j \leq 2
\end{gathered}
$$

can be solved pointwise, so the loss of derivatives is $d_{2}=0$.

Theorem

Suppose $\bar{u} \in\left(H^{s}\right)^{5}$ with $s>2$ and $\bar{g} \in(H)_{3}^{S}$ with $S>4(s+2)$. Then, for any $\delta>3(s+2)$, there is $\rho>0$ and $c>0$ such that for any g with $\|g-\bar{g}\|_{\delta}<\rho$ we can solve $F(u)=g$ with $\|u-\bar{u}\|_{s} \leq c\|g-\bar{g}\|_{\delta}$

