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Abstract

We propose a simple equilibrium model, where the physical market of the com-
modity and the derivative market interact. There are three types of agents: in-
dustrial processors, inventory holders and speculators. Only the two first of them
operate in the physical market. All of them, however, may initiate a position in the
paper market, for hedging and/or speculation purposes. We give the necessary and
sufficient conditions on the fundamentals of this economy for a rational expectations
equilibrium to exist and we show that it is unique. This is the first contribution
of the paper. Our model exhibits a surprising variety of behaviours at equilibrium.
Thus the second contribution is that the paper offers a unique generalized framework
for the analysis of price relationships. The model allows for the generalization of
hedging pressure theory; and it shows how this theory is connected to the storage
theory. Meanwhile, it allows to study simultaneously the two main economic func-
tions of derivative markets: hedging and price discovery. In its third contribution,
through the distinction between the utility of speculation and that of hedging, the
model illustrates the interest of a derivatives market in terms of the welfare of the
agents.

JEL Codes: D40; D81; D84; G13; Q00.

1 Introduction (preliminary)

In the literature on commodity derivatives, the analysis of price relationships is split into
two strands: the storage theory focuses on the cost of storage of the underlying asset; the
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normal backwardation theory (also named the hedging pressure theory) is centered on the
risk premium. Although they are complementary, until now, these two strands remained
apart. In this paper, we propose a model of commodity markets which offers a unified
framework.

In this simple (perhaps the simplest possible) model of commodity trading, the financial
market interacts with the physical market. There are two periods, a single commodity, a
numéraire, and two markets: the spot market at time t = 1 and t = 2, and the futures
market, which is open at t = 1 and settled at t = 2. The spot market is physical (no
shorting is allowed: there is a non negativity constraint on inventories), while the futures
market is financial (both long and short positions are allowed). There are three types
of traders: inventory holders and industrial processors of the commodity, both of which
operate on the two markets, and speculators, who operate on the futures market only.
All of them are utility maximizers, and have mean-variance utility (more about this later
on). There is also a background demand (or supply), attributed to spot traders, which
helps clear the spot markets. The sources of uncertainty are the amount of commodity
produced and the demand of the spot traders at t = 2: their realization is unknown at
t = 1, but their law is common knowledge. As only the difference between these two
quantities matters, there is only one source of uncertainty. All decisions are taken at
t = 1, conditionally on expectations about t = 2.

Our main contributions are three: qualitative, quantitative and normative. They are the
consequences of the tractability of the model.

Qualitatively, we provide a unified framework for the theory of price relations in com-
modity futures markets. We give necessary and sufficient conditions on the fundamentals
of this economy for a rational expectations equilibrium to exist, and we show that it is
unique. We characterize four possible regimes in equilibrium, given the non-negativity
constraints on physical positions and on prices. While each of these four regimes is simple
to understand on economical grounds, we believe that our model is the first to allow them
and to give explicit conditions on the fundamentals of the economy determining which one
will actually prevail in equilibrium. In each of the regimes, we give explicit formulas for
the equilibrium prices. This enables us to characterize regimes in detail and to perform
complete and novel comparative statics. For instance, as is done in the storage theory, we
can explain why there is a contango (the “current basis”, defined as the difference between
the futures price and the current spot price, is positive) or a backwardation (the current
basis is negative) on the futures market. Towards this analysis, we give insights into the
question of the informational content of the futures price and the price discovery function
of futures markets. As done in the normal backwardation theory, we can also compare the
futures price with the expected spot price and ask whether or not there is a bias in the
futures price (we define the “expected basis” as the difference between the futures price
and the expected spot price). The sign and the level of the bias depend directly on which
regime prevails. In the third one, for instance, there is no bias; in the first regime, there
are two sub-regimes, one where the futures price is higher than the expected spot price,
and one where it is lower. Here, the model depicts the way futures market are used to
reallocate risk between operators, the price to pay for such a transfer, and thus provides
insights into the main economic function of derivative markets: hedging.

Quantitatively we show that, as the importance of money managers in the futures market
increases, for example because access to the market is relaxed, the volatility of prices goes
up. This effect may sound inefficient. Our interpretation is that speculation increases
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the informativeness of prices: volatility brings more efficiency. The mechanism is quite
simple. As the number of speculators increases, the cost of hedging decreases and demand
for futures grows along with physical positions. Smaller hedging costs make storers and
processors amplify the differences in their positions in response to different pieces of
information, implying that their market impact increases. This increases in turn the
volatility of prices.

Normatively, we use our model to perform a welfare analysis. For instance, we can show
that there is an optimal number of speculators for speculators themselves. Storers and
processors have opposite views on the desirability of speculators. Indeed, speculators are
worthless when the positions of storers and processors match exactly; but when one type
of agents has more needs than the other type can supply, then the former wants more
(the latter wants less) speculators because this reduces the cost of hedging for those who
need it most. The latter effect had not been investigated before.

Short literature review Of course, the questions we have raised have been investigated
before. Contrary to what is done in this paper, the literature on commodity prices however
separates the question of the links between the spot and the futures prices and that of the
bias in the futures price. The latter has been investigated first by Keynes (1930) through
the theory of normal backwardation (hedging pressure theory) whereas the former is
usually associated to the theory of storage, initiated by Kaldor (1940), Brennan (1958)
and Working (1949). The same is true for the equilibrium models developed so far.

An important number of equilibrium models of commodity prices focuses on the bias
in the futures price and the risk transfer function of the derivative market. This is the
case, for example, of Anderson and Danthine (1983a), Anderson and Danthine (1983b),
Hirshleifer (1988), Hirshleifer (1989), Guesnerie and Rochet (1993), and Acharya et al.
(2011). Anderson and Danthine (1983a) is an important source. Compared with this
work, our model is more simple (the producers are not directly modeled) and completely
specified. This gives us the possibility to obtain explicit formulas for the equilibrium
prices and to investigate further economics issues, like welfare for example. The models
developed by Hirshleifer (1988) and Hirshleifer (1989) are also inspired by Anderson and
Danthine (1983a). In these papers, Hirsleifer analyzes two points which are interesting for
our model but that we did not take the time to develop: first, the simultaneous existence
of futures and forward markets; second, the role of the spot traders. Hirshleifer (1989)
also asks whether or not vertical integration and futures trading can be substitute means
of diversifying risk. We focus instead, in the comparative statics, on the impact by type
of agent, with a rich variety of cases.

Let us also mention that, contrary to Anderson and Danthine (1983b), Hirshleifer (1989)
and Routledge et al. (2000), we do not undertake an inter-temporal analysis in the present
version of the model. Anderson and Danthine (1983b) is the extension of Anderson
and Danthine (1983a). To obtain results while keeping tractable equations, the authors
however must simplify their model so that only one category of hedger remains in the
inter-temporal version. When equilibrium analysis stands at the heart of all concerns
(which is our case), this is a strong limitation. Routledge et al. (2000) give another
interesting example of inter-temporal analysis. It is however not adapted to normative
analysis.

Beyond the question of the risk premium, equilibrium models have also been used in
order to examine the possible destabilizing effect of the presence of a futures market
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and to analyze welfare issues. This is the case of Guesnerie and Rochet (1993), Newbery
(1987), and Baker and Routledge (2012). As the model proposed by Guesnerie and Rochet
(1993) is devoted to the analysis of mental (“eductive”) coordination strategies, it is more
stripped down than ours. As in Newbery (1987), our explicit formulas for equilibrium
prices allows for interesting comparisons depending on the presence or absence of a futures
market. Finally, contrary to Baker and Routledge (2012), we are not interested in Pareto
optimal risk allocations.

Another strand of the literature on equilibrium models focuses on the current spot price
and the role of inventories in the behavior of commodity prices, as in Deaton and Laroque
(1992), and in Chambers and Bailey (1996). In these models, however, there are no futures
market; there is in fact a single type of representative agent, which prevents examining
risk allocation and the political economy of structural change.

Apart from the specific behavior of prices, the non-negativity constraint on inventories
raises another issue. Empirical facts indeed testify that there is more than a non-negativity
constraint in commodity markets: the level of inventories never falls to zero, leaving
thus unexploited some supposedly profitable arbitrage opportunities. The concept of a
convenience yield associated with inventories, initially developed by Kaldor (1940) and
Brennan (1958) is generally used to explain such a phenomenon, which has been regularly
confirmed, on an empirical point of view, since Working (1949). In their model, Routledge
et al. (2000) introduce a convenience yield in the form of an embedded timing option
associated with physical stocks. Contrary to these authors, we do not take into account
the presence of a convenience yield in our analysis. While this would probably constitute
an interesting improvement of our work, it is hardly compatible with a two-period model.

Recent attempts to test equilibrium models must also be mentioned, as they are rare.
While not totally operable in our context, the tests undertaken by Acharya et al. (2011)
could be used as in fruitful source of inspiration for further developments of our model.
As far the analysis of the risk premium is concerned, the empirical tests performed by
Hamilton and Wu (2012) and the simulations proposed by Bessembinder and Lemmon
(2002) are other possible directions.

2 The model

This is a two-period model. There is one commodity, a numéraire, and two markets: the
spot market at times t = 1 and t = 2, and a futures market, which is open at t = 1 and
such that contracts are settled at time t = 2. It is important to note that short positions
are allowed on the futures market. When an agent sells (resp. buys) futures contracts,
his position is short (resp. long), and the amount f he holds is negative (resp. positive).
On the spot market, such positions are not allowed: you can’t sell what you don’t hold.
In other words, the futures is a financial market, while the spot is a physical market.

There are three types of traders.

• Industrial users, or processors, who use the commodity to produce other goods
which they sell to consumers. Because of the inertia of their own production process,
and/or because all their production is sold forward, they decide at t = 1 how much
to produce at t = 2. They cannot store the commodity, so they have to buy all of
their input on the spot market at t = 2. They also trade on the futures market.
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• Inventory holders, who have storage capacity, and who can use it to buy the com-
modity at t = 1 and release it at t = 2. They trade on the spot market at t = 1,
where they buy, and at t = 2, where they sell. They also operate on the futures
market.

• Money managers, or speculators, who use the commodity price as a source of risk,
to make a profit on the basis of their positions in futures contracts. They do not
trade on the spot market.

In addition, we think of these markets as operating in a partial equilibrium framework:
in the background, there are other users of the commodity, and producers as well. These
additional agents will be referred to as spot traders, and their global effect will be described
by a demand function. At time t = 1, the demand is µ1−mP1, and it is µ̃2−mP̃2 at time
t = 2. Pt is the spot price at time t and the demand can be either positive or negative;
the sign ∼ indicates a random variable.

All decisions are taken at time t = 1, conditional on the information available for t = 2.
The timing is as follows:

• for t = 1, the commodity is in total supply ω1, the spot market and the futures
market open. On the spot market, there are spot traders and storers on the demand
side, the price is P1. On the futures markets, the processors, the storers and the
speculators all initiate a position, and the price is PF . Note that the storers have
to decide simultaneously how much to buy on the spot market and what position
to take on the futures market.

• for t = 2, the commodity is in total supply ω̃2, to which one has to add the inventory
which the storers carry from t = 1, and the spot market opens. The processors and
the spot traders are on the demand side, and the price is P̃2. The futures contracts
are then settled at that price, meaning that every contract brings a financial result
of P̃2 − PF .

There are NS speculators, NP processors, NI storage companies (I for inventories). We
assume that all agents (except the spot traders) are risk averse inter-temporal utility
maximizers. To take their decisions at time t = 1, they need to know the distribution of
the spot price P̃2 at t = 2. We will show that, under mean-variance specifications of the
utilities, there is a unique price system (P1, PF , P̃2) such that all three markets clear.

Uncertainty is modeled by a probability space (Ω,A, P ). Both ω̃2, µ̃2 and P̃2 are ran-
dom variables on (Ω,A, P ). At time t = 1, their realizations are unknown, but their
distributions are common knowledge.

Before we proceed, some clarifications are in order.

• Production of the commodity is inelastic: the quantities ω1 and ω̃2 which reach the
spot markets at times t = 1 and t = 2 are exogenous to the model. Traders know
ω1 and µ1, and share the same priors as to ω̃2 and µ̃2.

• This said, a negative spot demand can be understood as extra spot supply: if for
instance P1 > µ1/m, then the spot price at time t = 1 is so high that additional
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means of production become profitable, and the global economy provides additional
quantities to the spot market. The coefficient m is the elasticity of demand (or
production) with respect to prices. The number µ1 (demand when P1 = 0) is the
level at which the economy saturates: to induce spot traders to demand quantities
larger than µ1, one would have to pay them, that is, offer negative price P1 < 0 for
the commodity. The same remark applies to time t = 2.

• We separate the roles of the industrial user and the inventory holder, whereas in
reality industrial users may also hold inventory. It will be apparent in the sequel
that this separation need not be as strict, and that the model would accommodate
agents of mixed type. In all cases, agents who trade on the physical markets would
also trade on the financial market for two separate purposes: hedging their risk, and
making additional profits. In the sequel, we will see how their positions reflect this
dual purpose.

• Note also that the speculators would typically use their position on the futures
market as part of a diversified portfolio; our model does not take this into account.

• We also suppose that there is a perfect convergence of the basis at the expiration
of the futures contract. Thus, at time t = 2, the position on the futures markets is
settled at the price P̃2 then prevailing on the spot market.

• For the sake of simplicity, we set the risk-free interest rate to 0.

In what follows, as we examine an REE (rational expectation equilibrium), we look at two
necessary conditions for such an equilibrium to appear: the maximization of the agent’s
utility, conditionally on their price expectations, and market clearing.

3 Optimal positions and market clearing

3.1 Profit maximization

All agents have mean-variance utilities. For all of them, a profit π̃ brings utility:

E[π̃]− 1

2
αiVar[π̃] (1)

where αi is the risk aversion parameter of a type i individual.

Beside their mathematical tractability, there are good economic reasons for using mean-
variance utilities. They are not of von Neumann - Morgenstern type, i.e formula (1)
cannot be put in the form E

[
u
(
X̃
)]

for a suitable function u, so they are poorly suited
to model the behaviour of individuals under uncertainty. However, they are well suited
to describe the behaviour of firms operating under risk constraints. The capital asset-
pricing model (CAPM) in finance, for instance, consists of maximizing E

[
R̃
]
under the

constraint Var
[
R̃
]
≤ ρ, where R̃ is the return on the portfolio, which is equivalent to

maximizing E
[
R̃
]
− λVar

[
R̃
]
, where λ is the Lagrange multiplier. In financial markets,
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as in commodities markets, agents are mostly firms, not individuals, and they have risk
constraints imposed on them from inside (managers controlling traders) and from outside
(regulators controlling the firm). This is what formula (1) is trying to capture. For the
sake of simplicity, we have kept the variance as a measure of risk, but we expect that our
results could be extended to more sophisticated ones (coherent risk measures), at the cost
of some mathematical complications.

Speculator For the speculator, the profit resulting from a position in the futures market
fS is the r.v.:

πS(fS) = fS (P̃2 − PF ),

and the optimal position is:

f ?S =
E[P̃2]− PF
αSVar[P̃2]

. (2)

This position is purely speculative. It depends mainly on the level and on the sign of the
bias in the futures price. The speculator goes long whenever he thinks that the expected
spot price is higher than the futures price. Otherwise he goes short. Finally, he is all the
more inclined to take a position as his risk aversion and volatility of the underlying asset
are low.

Storer The storer can hold any non-negative inventory. However, storage is costly:
holding a quantity x between t = 1 and t = 2 costs 1

2
Cx2. Parameters C (cost of storage)

and αI (risk aversion) characterize the storer. He has to decide how much inventory to
buy at t = 1, if any, and what position to take in the futures market, if any.

If he buys x ≥ 0 on the spot market at t = 1, resells it on the spot market at t = 2, and
takes a position fI on the futures market, the resulting profit is the r.v.:

πI(x, fI) = x (P̃2 − P1) + fI (P̃2 − PF )− 1

2
Cx2.

The optimal position on the physical market is:

x? =
1

C
max{PF − P1, 0}. (3)

The storer holds inventories if the futures price is higher than the current spot price. This
position is the only one, in the model, that directly links the spot and the futures prices.
This is consistent with the theory of storage and, more precisely, its analysis of contango
and the informational role of futures prices.

The optimal position on the futures market is:

f ?I =
E[P̃2]− PF
αIVar[P̃2]

− x?. (4)

This position can be decomposed into two elements. First, a negative position −x∗,
which simply hedges the physical position: the storer sells futures contracts in order
to protect himself against a decrease in the spot price. Second, a speculative position,
structurally identical to that of the speculator, which reflects the storer’s risk aversion
and his expectations about the relative level of the futures and the expected spot prices.
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Processor The processor decides at time t = 1 how much input y to buy at t = 2, and
which position fP to take on the futures market. The revenue from sales at date t = 2 is
(y− β

2
y2)P , where P is our convention for the forward price of the output, and the other

factor reflects decreasing marginal revenue. Due to these forward sales of the production,
this revenue is known at time t = 1. The resulting profit is the r.v.:

πP (y, fP ) =

(
y − β

2
y2
)
P − yP̃2 + fP (P̃2 − PF ).

An easy computation then gives his optimal decisions, namely:

y? =
1

βP
max{P − PF , 0}, (5)

f ?P =
E[P̃2]− PF
αPVar[P̃2]

+ y?. (6)

The futures market is also used by the processor to plan his production, all the more so
if the price of his input PF is below that of his output P . The position on the futures
market, again, can be decomposed into two elements. First, a positive position y∗, which
hedges the position on the physical market: the processor goes long on futures contracts
in order to protect himself against an increase in the spot price. Then, a speculative
position reflecting the processor’s risk aversion and his expectations about the level of the
expected basis.

Remarks on optimal positions In this framework, all agents have the possibility
to undertake speculative operations. After having hedged 100 percent of their physical
positions, they adjust this position according to their expectations. The separation of the
physical and the futures decisions was derived by Danthine (1978). As shown by Anderson
and Danthine (1983a), this property does not hold if the final good price is stochastic,
unless a second futures market for the final good is introduced. As we shall see, this
separation result is very convenient for equilibrium analysis. This is one of the reasons
why we choose, for the processor, not to introduce uncertainty on the output price and/or
on the quantities produced.

3.2 Market clearing

Although we assume that all individuals are identical in each category of agents, more
subtle assumptions could be retained without much complication. For example, remark
that if the storers had different technologies, say, storer i with i = 1, . . . , NI had technology
Ci, then, instead of NI

C
max{PF − P1, 0}, total inventories would be (

∑
i 1/Ci) max{PF −

P1, 0}. In other words, storers are easily aggregated. In the following, when relevant,
we shall use the index nI representing a synthetic number of storage units, and per-unit
inventories X∗ defined by:

nI =

{
NI/C if storers are identical,∑

i 1/Ci otherwise,
X? = max{PF − P1, 0}.
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Similarly, if producers had different technologies, say, producer i with i = 1, . . . , NP had
technology βi, then total input demand would be

∑
i 1/(βiP ) · max{P − PF , 0} instead

of NP
βP

max{P − PF , 0}. Thus, when relevant, we shall use the index nP representing a
synthetic number of production units, and per-unit demand Y ∗ defined by:

nP =

{
NP
βP

if producers are identical,
1
P

∑
i

1
βi

otherwise,

Y ? = max{P − PF , 0}.

The spot market at time 1 On the supply side we have the harvest ω1. On the
other side we have the inventory nIX? bought by the storers, and the demand of the spot
traders. Market clearing requires:

ω1 = nIX
? + µ1 −mP1,

hence:
P1 =

1

m
(µ1 − ω1 + nIX

?) . (7)

The spot market at time 2 We have, on the supply side, the harvest ω̃2, and the
inventory nIX

? sold by the storers; on the other side, the input nPY ? bought by the
processors and the demand of the spot traders. The market clearing condition is:

ω̃2 + nIX
? = nPY

? + µ̃2 −mP̃2,

with X? and Y ? as above. We get:

P̃2 =
1

m
(µ̃2 − ω̃2 − nIX? + nPY

?) . (8)

The futures market Market clearing requires:

NSf
?
S +NPf

?
P +NIf

?
I = 0.

Replacing the f ?i by their values, we get:

E[P̃2]− PF =
Var[P̃2]

NP
αP

+ NI
αI

+ NS
αS

(nIX
? − nPY ?) . (9)

Remark that if, say, different storers had different risk aversions αIj (for j = 1, . . . , NI),
then we would see

∑
j 1/αIj instead of NI/αI in equation (9). This is an illustration of a

more general fact: we sum up the inverse of the risk aversions of all agents to represent
the inverse of the overall (or market) risk aversion.

Equation (9) gives a formal expression for the bias in the futures price, which confirms
the findings of Anderson and Danthine (1983a). It shows indeed that the bias depends
primarily on fundamental economic structures (the characteristics of the storage and
production functions, which are embedded in X? and Y ?) and the number of operators,
secondarily on subjective parameters (the risk aversion of the operators), and thirdly
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on the volatility of the underlying asset. Note also that the sign of the bias depends
only on the sign of (nIX

? − nPY ?). As the risk aversion of the operators only influences
the speculative part of the futures position, it does not impact this sign. Finally, when
nIX

? = nPY
?, there is no bias in the futures price, and the risk transfer function is

entirely undertaken by the hedgers, provided that their positions on the futures market
are the exact opposite of each others. Thus the absence of bias is not exclusively the
consequence of risk neutrality but may have other structural causes.

4 Existence and uniqueness of the equilibrium

The equations characterizing the equilibrium are the optimal choices on the physical
market (equations (3) and (5)), the clearing of the spot market at dates 1 and 2 (equations
(7) and (8)), as well as the clearing of the futures market (9):



X? = max{PF − P1, 0} (3)
Y ? = max{P − PF , 0} (5)
P1 = 1

m
(µ1 − ω1 + nIX

?) (7)

P̃2 = 1
m

(µ̃2 − ω̃2 − nIX? + nPY
?) (8)

PF = E[P̃2] + Var[P̃2]
NP
αP

+
NI
αI

+
NS
αS

(nPY
? − nIX?) (9)

Let us also remind that the distribution of µ̃2 − ω̃2 is common knowledge. We introduce
the following notations:

ξ1 := µ1 − ω1,

ξ̃2 := µ̃2 − ω̃2,

ξ2 := E[µ̃2 − ω̃2],

ρ := 1 +m
Var[µ̃2 − ω̃2]
NP
αP

+ NI
αI

+ NS
αS

where m is the elasticity of demand.

From (8), we can derive useful moments:

E[P̃2] =
1

m
(ξ2 − nIX? + nPY

?) , (8E)

Var[P̃2] =
Var[ξ̃2]

m2
. (8V)

We assume Var[ξ̃2] > 0, so there is uncertainty on the future availability of the commodity.
It is the only source of uncertainty in the model. Likewise, we assume (for the time being)
that αP , αI and αS all are non-zero numbers. These restrictions will be lifted later on.

4.1 Definitions

Definition 1. An equilibrium is a family
(
X?, Y ?, P1, PF , P̃2

)
such that all prices are non-

negative, processors, storers and speculators act as price-takers, and all markets clear.
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Technically speaking,
(
X?, Y ?, P1, PF , P̃2

)
is an equilibrium if equations (3), (5), (7), (8),

and (9) are satisfied, with X∗ ≥ 0, Y ∗ ≥ 0, P1 ≥ 0, PF ≥ 0 and P̃2 (ω) ≥ 0 for all ω ∈ Ω.
Note that the latter condition depends on the realization of the random variable P̃2, which
can be observed only at t = 2, while the first four can be checked at time t = 1. This
leads us to the following:

Definition 2. A quasi-equilibrium is a family
(
X?, Y ?, P1, PF , P̃2

)
such that all prices

except possibly P̃2 are non-negative, processors, storers and speculators act as price-takers
and all markets clear.

Technically speaking, a quasi-equilibrium is a family
(
X?, Y ?, P1, PF , P̃2

)
∈ R4

+×L0 (Ω,A, P )

such that equations (3), (5), (7), (8) and (9) are satisfied.

We now give two existence and uniqueness results, the first one for quasi-equilibria and
the second one for equilibria.

4.2 Quasi-equilibrium

Theorem 1. There is a quasi-equilibrium if and only if (ξ1, ξ2) belongs to the region:

ξ2 ≥ −ρnPP if ξ1 ≥ 0, (10)
ξ2 ≥ −ρnPP − ((m+ ρnP )/nI + ρ) ξ1 if − nIP ≤ ξ1 ≤ 0, (11)
ξ2 ≥ −(m/nI + ρ)ξ1 if ξ1 ≤ −nIP, (12)

and then it is unique.

Proof. To prove this theorem, we begin by substituting equation (8E) in equation (9).
We get:

mPF − ρ (nPY
? − nIX?) = ξ2. (13)

We now have two equations, (7) and (13) for P1 and PF . Replacing X? and Y ? by their
values, given by (3) and (5), we get a system of two nonlinear equations in two variables:

mP1 − nI max {PF − P1, 0} = ξ1, (14)
mPF + ρ (nI max {PF − P1, 0} − nP max {P − PF , 0}) = ξ2. (15)

Remark that if we can solve this system with P1 > 0 and PF > 0, we get P̃2 from (8).
So the problem is reduced to solving (15) and (14). Consider the mapping F : R2

+ → R2

defined by:

F (P1, PF ) =

(
mP1 − nI max {PF − P1, 0}

mPF + ρ (nI max {PF − P1, 0} − nP max {P − PF , 0})

)
.

In R2
+, take P1 as the horizontal coordinate and PF as the vertical one, as depicted by

Figure 1. There are four regions, separated by the straight lines PF = P1 and PF = P :

• Region 1, where PF > P1 and PF < P . In this region, both X? and Y ? are positive.

• Region 2, where PF > P1 and PF > P . In this region, X? > 0 and Y ? = 0.
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Figure 1: Phase diagram of physical and financial decisions in space (P1, PF ).

• Region 3, where PF < P1 and PF > P . In this region, X? = 0 and Y ? = 0.

• Region 4, where PF < P1 and PF < P . In this region, X? = 0 and Y ? > 0

Moreover, in the regions where X? > 0, we have X? = PF − P1 and in the regions where
Y ? > 0, we have Y ? = P − PF . So, in each region, the mapping is linear, and it is
obviously continuous across the boundaries. Denote by O the origin in R2

+, by A the
point P1 = 0, PF = P , and by M the point P1 = PF = P (so, for instance, region 1 is the
triangle OAM). In region 1, we have:

F (P1, PF ) =

(
mP1 − nI (PF − P1)

mPF + ρ (nI (PF − P1)− nP (P − PF ))

)
.

The images F (O), F (A), and F (M) are easily computed:

F (O) = (0,−ρnPP ),

F (A) = P (−nI ,m+ ρnI),

F (M) = mP (1, 1).

From this, one can find the images of all four regions (see Figure 2). The image of region
1 is the triangle F (O)F (A)F (M). The image of region 2 is bounded by the segment
F (A)F (M) and by two infinite half-lines, one of which is the image of {P1 = 0, PF ≥ P},
the other being the image of {P1 = PF , PF ≥ P}. In region 2, we have:

F (P1, PF ) =

(
mP1 − nI (PF − P1)
mPF + ρnI (PF − P1)

)
.

The first half-line emanates from F (A) and is carried by the vector (−nI , m+ ρnI). The
second half-lines emanates from F (M) and is carried by the vector (1, 1). Both of them
(if extended in the negative direction) go through the origin. The image of region 4 is
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Figure 2: Phase diagram of physical and financial decisions.

bounded by the segment F (O)F (M) and by two infinite half-lines, one of which is the
image of {PF = 0}, the other being the image of {P1 ≥ P, PF = P}. In region 4, we have:

F (P1, PF ) =

(
mP1

mPF − ρnP (P − PF )

)
,

so the first half-line emanates from F (O) and is horizontal, with vertical coordinate
−ρnPP , and the second emanates from F (M) and is horizontal. The image of region
3 is entirely contained in R2

+, where it is the remainder of the three images we described.
To prove the theorem, we have to show that the system (15) and (14) has a unique
solution. It can be rewritten as:

F (P1,PF ) =

(
ξ1
ξ2

)
,

and it has a unique solution if and only if the right-hand side belongs to the image of F ,
which we have just described. This leads to the conclusion of the proof: based on the
previous remark summarized in Figure 2, we easily find the expressions of the theorem.

4.3 Equilibrium

To get an equilibrium instead of a quasi-equilibrium, we need the further condition, cal-
culated last, P̃2 ≥ 0. By equation (8), this is equivalent to:

inf {µ̃2 − ω̃2} ≥ nIX
? − nPY ?. (16)

This amount to

PF ≤
inf {µ̃2 − ω̃2}+ nIP1 + nPP

nI + nP
in region 1, (17)
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PF ≤ P1 +
inf {µ̃2 − ω̃2}

nI
in region 2, (18)

0 ≤ inf {µ̃2 − ω̃2} in region 3, (19)

PF ≤ P +
inf {µ̃2 − ω̃2}

nP
in region 4. (20)

Theorem 2. Let (ξ1, ξ2) belong to the region (10), (11), (12), so there exists a unique
quasi-equilibrium. It is an equilibrium if and only if µ̃2− ω̃2 satisfies an additional condi-
tion, namely:

inf {µ̃2 − ω̃2} ≥
nP (m+ nI)(ξ2 −mP ) +mnI(ξ2 − ξ1)
nP (m+ nI)ρ+m(m+ (1 + ρ)nI)

in region 1;

inf {µ̃2 − ω̃2} ≥
nI(ξ2 − ξ1)

m+ (1 + ρ)nI
in region 2;

inf {µ̃2 − ω̃2} ≥ 0 in region 3;

inf {µ̃2 − ω̃2} ≥ −
mnP (P − ξ2

m
)

m+ ρnP
in region 4.

Proof. The proof for region 1 comes from applying F on equation (17). For region 2, a
direct application of F shows that equation (18) implies

ξ2 − ξ1 ≤
m+ (1 + ρ)nI

nI
inf {µ̃2 − ω̃2} ,

which must be read directly as a restriction on inf {µ̃2 − ω̃2} given ξ2. For region 3, the
theorem is directly derived from equation (16), since X? = 0 and Y ? = 0. For region
4, a direct application of F shows that equation (20) gives the condition. Note that
inf {µ̃2 − ω̃2} ≥ 0 is a sufficient condition for an equilibrium to exist in region 4.

Remark that the condition for region 1 is general in the following sense. Take nP = 0,
you get the condition for region 2; take nI = 0, you get the condition for region 4; take
now nI = nP = 0, you get the condition for region 3. This simple shortcut works for other
analytical results.

5 Equilibrium analysis

In this section we analyze the equilibrium in two steps. Firstly, we examine the four
regimes depicted in Figure 1. They correspond to very different types of decisions under-
taken in the physical and the financial markets. Secondly, we turn to Figure 2 and enrich
the discussion with the analysis of the net scarcity of the commodity, both immediate and
expected.

5.1 Prices, physical and financial positions

A first general comment on Figure 1 is that in regimes 1 and 2 where X? > 0, the futures
market is in contango: PF > P1. Inventories are positive and they can be used for inter-
temporal arbitrages. In regimes 3 and 4, there is no inventory (X? = 0) and the market is
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Figure 3: Phase diagram of physical and financial decisions in space (P1, PF ) (zoom on
Regime 1).

in backwardation: PF < P1. These configurations are fully consistent with the theory of
storage. The other meaningful comparison concerns PF and E[P̃2]. From Equation (9),
we know that nIX?−nPY ? gives the sign and magnitude of E[P̃2]−PF , i.e. the way risk
is transferred between the operators on the futures market.

The analysis of the four possible regimes, with a focus on regime 1 (it is the only one where
all operators are active and it gathers two important subcases), enables us to unfold the
reasons for the classical conjecture: backwardation on the expected basis, i.e. PF < E[P̃2].
More interestingly, we show why the reverse inequality is also plausible, as mentioned by
several empirical studies.1

The equation nIX?−nPY ? = 0 cuts regime 1 into two parts, 1U and 1L. It passes through
M as can be seen in Figure 3. This frontier can be rewritten as:

∆ : PF =
nI

nI + nP
P1 +

nP
nI + nP

P. (21)

• Along the line ∆, there is no bias in the futures price, and the risk remains entirely in
the hands of the hedgers (storers and producers have perfectly matching positions).

• Above ∆, nIX? > nPY
? and PF < E[P̃2]. This concerns the upper part of regime

1 (regime 1U) and regime 2.

• Below ∆, nIX? < nPY
? and PF > E[P̃2]. This concerns the lower part of regime 1

(regime 1L) and regime 4.

When nIX? > nPY
?, the net hedging position is short and speculators in long position are

indispensable to the clearing of the futures market. In order to induce their participation,
1For extensive analyses of the bias in a large number of commodity markets, see for example Fama

and French (1987), Kat and Oomen (2006) and Gorton et al. (2012).
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there must be a profitable bias between the futures price and the expected spot price:
the bias E[P̃2] − PF is positive. This backwardation on the expected basis corresponds
to the situation depicted by Keynes (1930) as the normal backwardation theory. On
the contrary, when nIX

? < nPY
?, the net hedging position is necessarily long and the

speculators must be short. The expected spot price must be lower than the futures price,
and the bias E[P̃2]− PF is negative.

1U P1 < PF PF < E[P̃2] PF < P

X? > 0 fS > 0 Y ? > 0

∆ P1 < PF PF = E[P̃2] PF < P

X? > 0 fS = 0 Y ? > 0

1L P1 < PF PF > E[P̃2] PF < P

X? > 0 fS < 0 Y ? > 0

2 P1 < PF PF < E[P̃2] PF > P

X? > 0 fS > 0 Y ? = 0

3 P1 > PF PF = E[P̃2] PF > P

X? = 0 fS = 0 Y ? = 0

4 P1 > PF PF > E[P̃2] PF < P

X? = 0 fS < 0 Y ? > 0

Table 1: Relationships between prices, physical and financial positions.

Table 1 summarizes for each regime the relationships between the prices and the physical
and financial positions. An attentive scrutiny of the table shows that the regimes are very
contrasted.

For example, in regime 2, we have simultaneously a contango on the current basis and
a backwardation on the expected basis (or a positive bias). In short, P1 < PF < E[P̃2].
In regime 3, in the absence of hedging of any sort, the futures market is dormant, and
this is no bias on the expected basis. Regime 4 is the opposite of regime 2: the market
is in backwardation and, as X? = 0, the net hedging position is long, the net speculative
position is short and the bias is negative. In short, P1 > PF > E[P̃2].

5.2 Supply shocks

To exploit usefully Figure 2, one must bear in mind that the horizontal and vertical
variables measure scarcity, not abundance: ξ1 = µ1 − ω1 is the extent to which current
production ω1 fails short of the demand of spot traders, and ξ2 = E[µ̃2 − ω̃2] is the
(expected) extent to which future production falls short of the demand of spot traders.

Assume that no markets are open before ξ1 is realized and assume that ξ1 brings no news
(or revision) about ξ2. We can fix ξ2, and see what happens on equilibrium variables,
depending on ξ1. To fix ideas suppose that the expected situation at date 2 is a moderate
scarcity, situated at ξ2 = ξ2. The level of ξ2 is common knowledge for the operators. Take
it as drawn in Figure 4. In the case of a low ξ1 (abundance in period 1), we are in regime
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Figure 4: Phase diagram of physical and financial decisions in space (zoom on Regime 1).

1U. If ξ1 is bigger, we are in regime 1L, and if ξ1 is even bigger, the equilibrium is in
regime 4.

The interpretation is straightforward. If period 1 experiences abundance (regime 1U),
there is massive storage (the current price is low and expected profits are attractive, since
a future scarcity is expected). Storers need more hedging than processors, first because
inventories are high, second because the expected release of stocks reduces the needs of the
processors. Thus, there is a positive bias in the futures price and speculators have a buy
position. For a less marked abundance (regime 1L), storage is more limited. The hedging
needs of the storers diminishes while those of the processors increase. So the net hedging
position is long, the bias in the futures price becomes negative and the speculators have
a sell position. If the commodity is even scarcer (regime 4), there is no storage, only the
processors are active and they hedge their positions.

The combination of the exogenous variables of the model (i.e. current or expected scarcity)
with the activities on the physical market makes it possible to create a link between the
storage and the normal backwardation theories. For example, it explains why, when
there is a contango on the current basis in regime 1, we can have either an expected
backwardation or an expected contango.

6 Welfare analysis

In this section, we shall express the indirect utilities of the various agents in equilibrium,
and compute their sensitivities with respect to the parameters. We proceed in two steps.
First, we compute the indirect utilities of the agents in equilibrium, as functions of equi-
librium prices P1 and PF . Second, we compute the elasticities of P1 and PF to deduce the
elasticities of the indirect utilities. We restrict ourselves to the richer case, i.e. Regime 1,
where all agents are active. Recall that then we have:

PF < P and P1 < PF ; (22)
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P̃2 =
1

m
(µ̃2 − ω̃2 − nI (PF − P1) + nP (P − PF )) ; (23)

mP1 − nI (PF − P1) = ξ1; (24)
mPF + ρ (nI (PF − P1)− nP (P − PF )) = ξ2. (25)

As above, we shall set ξ2 := E[µ̃2 − ω̃2] and ξ1 := µ1 − ω1.

6.1 Indirect utilities

The indirect utility of the speculators is given by:

US = f ∗
S(E[P̃2]− PF )− 1

2
αSf

∗2
S Var[P̃2],

where we have to substitute the value of f ∗
S, which leads to:

US =

(
E[P̃2]− PF

)2
2αSVar[P̃2]

. (26)

Let us now turn to the storers. Their indirect utility is given by:

UI = (x∗ + f ∗
I )E[P̃2]− x∗P1 − f ∗

I PF −
1

2
Cx∗2 − 1

2
αI(x+ f ∗

I )2Var[P̃2],

where we substitute the values of f ∗
I , x∗ and y∗:

UI =

(
E[P̃2]− PF

)2
2αIVar[P̃2]

+
(PF − P1)

2

2C
. (27)

For the processors we have, in a similar fashion:

UP =

(
E[P̃2]− PF

)2
2αPVar[P̃2]

+
(PF − P )2

2βP
. (28)

We thus obtain, for all categories of agents, a clear separation between two additive
components of the indirect utilities. The first is associated with the level of the expected
basis and is clearly linked with speculation. The second is associated with the level of the
current basis or the futures prices and is linked with the hedged activity on the physical
market. We shall name USi this first component for the category of agent i, and UHi the
second one.

Quite intuitively, for all operators, USi is all the more important as the futures market
is biased, whatever the sign of the bias; it decreases with respect to risk aversion and to
the variance of the expected spot price. UHi changes with the category of agent under
consideration. For the storers, it is positively correlated to the current basis and diminishes
with storage costs. For the processors, it rises with the margin on the processing activity
and decreases with the production costs.
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We will now particularize formulas (26), (27) and (28) to the case when the markets are
in equilibrium. In that case, P̃2 becomes a function of (P1, PF ), and the formulas become
(after replacing the ni by their values in terms of the Ni):

US =
Var[ξ̃2]

2m2αS

(∑
Ni
αi

)2 (NI

C
(PF − P1)−

NP

βP
(P − PF )

)2

; (29)

UI =
Var[ξ̃2]

2m2αI

(∑
Ni
αi

)2 (NI

C
(PF − P1)−

NP

βP
(P − PF )

)2

+
(PF − P1)

2

2C
; (30)

UP =
Var[ξ̃2]

2m2αS

(∑
Ni
αi

)2 (NI

C
(PF − P1)−

NP

βP
(P − PF )

)2

+
(PF − P )2

2βP
. (31)

Note for future use that these are indirect utilities per head : for instance, there are NI

storers, they are all identical, and UI is the indirect utility of each one of them. This will
enable us to do a welfare analysis in the next subsection.

6.2 The impact of speculators on the welfare of others

Formulas (29), (30) and (31) give us the indirect utilities of the agents at equilibrium
in terms of the equilibrium prices P1 and PF . These can in turn be expressed in terms
of the fundamentals of the economy, namely ξ1 and ξ̃2 (see Appendix A): substituting
formulas (44), (45) and (46), we get new expressions, which can be differentiated to give
the sensitivities of the indirect utilities with respect to the parameters in the model.
However, it is better to work directly with formulas (29), (30) and (31). We will then need
the sensitivities of P1 and PF with respect to the varying parameter, but these can be
derived from the system (24)-(25) by the implicit function theorem. To see how it is done,
let us compute the sensitivities with respect to NS, the number of speculators. In other
words, we will investigate whether an increase in the number of speculators increases or
decreases the welfare of speculators, of inventory holders, and of industry processors.

Sensitivities of prices We first compute the sensitivities dP1

dNS
and dPF

dNS
. We get them

by differentiating (24)-(25):

m
dP1

dNS

− nI
(
dPF
dNS

− dP1

dNS

)
= 0,

m
dPF
dNS

+ ρ

(
nI

(
dPF
dNS

− dP1

dNS

)
+ nP

dPF
dNS

)
= − dρ

dNS

(nI (PF − P1)− nP (P − PF )) ,

which yields:
dPF
dNS

=

(
m

nI
+ 1

)
dP1

dNS

, (32)

dP1

dNS

=
dρ

dNS

nP (P − PF )− nI (PF − P1)(
m
nI

+ 1
)

(m+ ρnI + ρnP )− ρnI
(33)

= −m
αS

Var[ξ̃2](∑
Ni
αi

)2 nP (P − PF )− nI (PF − P1)(
m
nI

+ 1
)

(m+ ρnI + ρnP )− ρnI
.

19



Sensitivity of US Differentiating formula (29) yields:

dUS
dNS

=
Var[ξ̃2]

m2αS

(∑
Ni
αi

)2 (nI(PF − P1)− nP (P − PF ))

(
m+ nP

(
1 +

m

nI

))
dP1

dNS

− Var[ξ̃2]

m2α2
S

(∑
Ni
αi

)3 (nI(PF − P1)− nP (P − PF ))2

=
Var[ξ̃2]

m2α2
S

(∑
Ni
αi

)3
Var[ξ̃2]∑

Ni
αi

m
(
m+ nP

(
1 + m

nI

))
(
m
nI

+ 1
)

(m+ ρnI + ρnP )− ρnI
− 1

 (34)

× (nI(PF − P1)− nP (P − PF ))2 .

The sign of dUS
dNS

is constant in region 1: it is the sign of the middle term. Given that the
variance is hidden in ρ, it is positive if

Var[ξ̃2] >
(m+ nI)(m+ nP ) +m

m2nI

∑ Ni

αi
.

Remark that there is an optimal number of speculators for speculators themselves: above
a certain NS, adding speculators ceases to be profitable to incumbent speculators.

Careful examination of the equations above shows that increasing the number of spec-
ulators have two opposite effects. First, it decreases the margin on hedging, since the
overall risk tolerance is bigger; this effect is negative. Second, the lower price of hedging
increases demand thereof; this effect is positive on speculators welfare. The second effect
dominates in situations where the second-period shock has a relatively high volatility, as
the inequality above shows, because this means that there is lot to gain to risk sharing.

Sensitivity of UI Differentiating formula (30) yields:

dUI
dNS

=
Var[ξ̃2]

m2αI

(∑
Ni
αi

)2 (nI(PF − P1)− nP (P − PF ))

(
m+ nP

(
1 +

m

nI

))
dP1

dNS

− Var[ξ̃2]

m2α2
I

(∑
Ni
αi

)3 (nI(PF − P1)− nP (P − PF ))2 +
PF − P1

C

(
dPF
dNS

− dP1

dNS

)

=
Var[ξ̃2]

m2α2
I

(∑
Ni
αi

)3
Var[ξ̃2]∑

Ni
αi

m
(
m+ nP

(
1 + m

nI

))
(
m
nI

+ 1
)

(m+ ρnI + ρnP )− ρnI
− 1

 (35)

× (nI(PF − P1)− nP (P − PF ))2

+
PF − P1

C

m

nI

m

αS

Var[ξ̃2](∑
Ni
αi

)2 nI(PF − P1)− nP (P − PF )(
m
nI

+ 1
)

(m+ ρnI + ρnP )− ρnI
.

We will not pursue the calculations further, noting simply that (nI(PF−P1)−nP (P−PF ))
factors, so that the result is of the form:

dUI
dNS

= A(nI(PF − P1)− nP (P − PF ))(K1(PF − P1) +K2(P − PF )),
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for suitable constants A, K1, and K2. This means that the sign changes across

• the line ∆, already encountered, defined by nI (PF − P1) + nP (P − PF ) = 0;

• the line D, defined by the equation K1(PF − P1) +K2(P − PF ) = 0.

Both ∆ and D go through the point M where P1 = PF = P . If K2/K1 < 0, the line D
enters region 1, if K2/K1 > 0, it does not. So, if K2/K1 > 0, region 1 is divided in three
subregions by the lines D and ∆, and the sign changes when one crosses from one to the
other. If K2/K1 > 0, region 1 is divided in two subregions by the line ∆, and the sign
changes across ∆. In all cases, the response of inventory holders to an increase in the
number of speculators will depend on the equilibrium.

Sensitivity of UP Differentiating formula (31) yields:

dUP
dNS

=
Var[ξ̃2]

m2αP

(∑
Ni
αi

)2 (nI(PF − P1)− nP (P − PF ))

(
m+ nP

(
1 +

m

nI

))
dP1

dNS

− Var[ξ̃2]

m2α2
P

(∑
Ni
αi

)3 (nI(PF − P1)− nP (P − PF ))2 +
PF − P
βP

dPF
dNS

=
Var[ξ̃2]

m2α2
P

(∑
Ni
αi

)3
Var[ξ̃2]∑

Ni
αi

m
(
m+ nP

(
1 + m

nI

))
(
m
nI

+ 1
)

(m+ ρnI + ρnP )− ρnI
− 1

 (36)

× (nI(PF − P1)− nP (P − PF ))2

+
PF − P
βP

(
m+ nI
nI

)
m

αS

Var[ξ̃2](∑
Ni
αi

)2 nI(PF − P1)− nP (P − PF )(
m
nI

+ 1
)

(m+ ρnI + ρnP )− ρnI
.

Again, we will not pursue the calculations further, noting simply that nI (PF − P1) −
nP (P − PF ) factors again, so that:

dUP
dNS

= A∗(nI(PF − P1)− nP (P − PF ))(K∗
1(PF − P1) +K∗

2(P − PF ))

As in the preceding case, there will be a line D∗ (different from D), which enters region 1
if K∗

1/K
∗
2 < 0 and does not if K∗

1/K
∗
2 > 0. In the first case, region 1 is divided into three

subregions by D and ∆∗, in the second it is divided into two subregions by ∆, and the
sign of dUI

dNP
changes when one crosses the frontiers.

Speculation and welfare in summary Remind that all agents are speculators in their
ways. This activity gives the sign of the first term of the derivative of welfare with respect
to NS (the speculation term): if the speculators gain from being more, then all agents
gain as far as only speculation is concerned. This said, remark that the second term in
the derivative of welfare concerns only the storers and the processors (the hedging term).
They go in opposite direction in regime 1: in subcase 1U, if the number of speculators
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increases, the hedging term is positive for storers and negative for processors. It is the
other way around in subcase 1L.

In terms of political economy (in the sense that economic interests may determine political
positions), we can simplify the message as follows. Note that in the neighborhood of ∆,
the speculation term is of second order with respect to the hedging term. Therefore,
the interests of storers and processors are systematically opposed. Storers are in favor of
(processors are against) an increase in the number of speculators if they demand more
futures (in absolute value) than processors can offer (subcase 1U). The opposite positions
are taken if processors are demanding more futures in absolute value (subcase 1L).

6.3 The impact of speculators on prices

Formula (46) gives P̃2 conditional on ξ1:

P̃2 =
ξ̃2
m

+
nI

ξ1
m
− ((1 + nI

m
)nP + nI)

ξ2
m

+ (1 + nI
m

)nPP(
nI + nP + 1

m
nInP

)
ρ+ (m+ nI)

, (37)

where

ξ2 = E[ξ̃2] and ρ = 1 +m
Var[ξ̃2]∑

Ni
αi

.

P̃2 is clearly a decreasing function of ρ, which in turn is a decreasing function of NS. So
P̃2 is an increasing function of NS. On the other hand

Var[P̃2 | P1] =
Var[ξ̃2]

m2
, (38)

which depends only on the fundamentals of the economy, not on NI , NP nor NS. So the
number of speculators does not influence the conditional volatility of P̃2.

The unconditional expectation and volatility of P̃2 is a different matter. Let us assume, for
instance, that ξ̃1 and ξ̃2 are independent samples from a random variable ξ̃. Substituting
in (46) gives:

E[P̃2] =
E[ξ̃]

m
+

(1 + nI
m

)nP

(
P − E[ξ̃]

m

)
(
nI + nP + nInP

m

)
ρ+m+ nI

, (39)

Var[P̃2] =

(
1 +

(
nI

(nI + nP + 1
m
nInP )ρ+ (m+ nI)

)2
)

Var[ξ]

m2
. (40)

Let us also investigate P1 as a random variable, assuming again that ξ̃1 and ξ̃2 are inde-
pendent samples from a random variable ξ̃. Transforming equation (44), we get:

P1 =
(m+ (nI + nP )ρ) ξ1

m
+ nI

ξ2
m

+ nInPρm
−1P

m+ (nI + nP )ρ+ nI + nInPρm−1
= Q0 +Qρ, (41)

where

Q0 =
(nI + nP )ξ1 + nInPP

m(nI + nP ) + nInP
,
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Qρ =

(
ξ1 + nI

ξ2
m

)
− (nI+nP )

ξ1
m

+nInPm
−1P

nI+nP+nInPm−1 (m+ nI)

m+ nI + (nI + nP + nInPm−1)ρ
.

Note that Q0 is independent of ρ while Qρ contains ρ in its denominator only. We find

E[P1] = E[Q0] + E[Qρ], (42)

E[Q0] =
(nI + nP )E[ξ] + nInPP

m(nI + nP ) + nInP
,

E[Qρ] =

(
1 + nI

m

)
E[ξ]− (nI+nP )

E[ξ]
m

+nInPm
−1P

nI+nP+nInPm−1 (m+ nI)

m+ nI + (nI + nP + nInPm−1)ρ
.

It is easily checked that the numerator of E[Qρ] is positive provided P < E[ξ]
m

.

We calculate directly

Var[P1] = Var

[
(m+ (nI + nP )ρ) ξ1

m

m+ (nI + nP )ρ+ nI + nInPρm−1

]
(43)

=

(
m+ (nI + nP )ρ

m+ (nI + nP )ρ+ nI + nInPρm−1

)2
Var[ξ]

m2
.

Speculation and prices in summary Increasing the number of speculators NS

• doesn’t influence E[P̃2 | P1] and Var[P̃2 | P1];

• increases E[P̃2];

• increases E[P1] if P < E[ξ]
m

;

• decreases E[P1] if P > E[ξ]
m

;

• increases Var[P1] and Var[P̃2].

Note that Appendix C completes this analysis with comparisons between the basic sce-
nario and another in which the futures market is closed.

The interpretation is the following. As the number of speculators increases, the overall risk
appetite increases, which decreases the cost of hedging. This stimulates risk-taking in the
physical sphere, pushing storers to store more (other things being equal) and processors
to program more production. More precisely, storers respond more intensely to shocks,
implying that their purchases have a higher level on average and a higher variability. The
latter effect causes higher first-period prices as well as higher volatility when there are
more speculators. In the second period, the release of inventories also have higher market
impact, which explains the higher (unconditional) volatility of the price. Note that these
effects are more systematic (i.e. less contrasted) than those on welfare, which confirms a
well-known theoretical fact: volatilities alone are poor indicators of welfare.
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7 Conclusion

Our model, although extremely simple, perhaps the simple possible which allows the inter-
action between a physical spot market and a financial futures market, exhibits a surprising
variety of behaviors. In equilibrium, there may be a contango or a backwardation, the
futures price may be higher or lower than the expected spot price, inventory holders may
or may not hold inventory, industrial processors may or may not buy forward, adding
speculators may increase or decrease the indirect utilities of inventory holders and of in-
dustrial processors. All depends, in a way we determine, on market fundamentals and
the realization of shocks in the physical market. This rich variety of behaviors can be
found in commodities markets as they go, and we have not found in the literature a model
which encompasses them all. While filing this gap, and to the best of our knowledge, the
present paper offers, for the first time since 1930, a unified framework for the analysis of
price relationships in commodity futures markets.

Of course, our model is too simple to capture some important effects; for instance, we
would like to understand the so-called convenience yield, which is usually explained as the
option value of holding stock. This cannot be understood within a two-period model. So
developing a multi-period model, perhaps even an infinite-horizon one, is the next step in
our approach. It would be interesting to see how the conclusions of the two-period model
fare in the multi-period or the infinite-horizon model.
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A Prices: explicit expressions

Note that ξ1 := µ1 − ω1, ξ̃2 := µ̃2 − ω̃2, ξ2 := E[µ̃2 − ω̃2], nI := NI/C and nP := NP
βP

.

(ξ1, ξ2) determine the regime, and the final expressions of equilibrium prices are as follows.

Regime 1:

P1 =
(m+ (nI + nP )ρ) ξ1

m
+ nI

ξ2
m

+ nInPρm
−1P

m+ (nI + nP )ρ+ nI + nInPρm−1
, (44)

PF =
nIρ

ξ1
m

+ (m+ nI)
ξ2
m

+ (m+ nI)nPρm
−1P

nIρ+ (m+ nI) + (m+ nI)nPρm−1
, (45)

P̃2 =
ξ̃2
m

+
nI

ξ1
m
− ((m+ nI)nPm

−1 + nI)
ξ2
m

+ (m+ nI)nPm
−1P

nIρ+ (m+ nI) + (m+ nI)nPρm−1
, (46)
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X? =
−(m+ nPρ) ξ1

m
+m ξ2

m
+ nPρP

nIρ+ (m+ nI) + (m+ nI)nPρm−1
, (47)

Y ? =
−nIρ ξ1m − (m+ nI)

ξ2
m

+ (m+ (1 + ρ)nI)P

nIρ+ (m+ nI) + (m+ nI)nPρm−1
. (48)

Remark that all denominators are equal. They are written in different ways only to show
that P1 and PF are convex combinations of ξ1

m
, ξ2
m

and P .

Note that starting from regime 1, setting nI or nP to 0 in the expressions to get the prices
for any other region works perfectly. For example, the prices for regime 2 can be directly
retrieved by posing nP = 0 in equations (44)-(48).

Regime 2:

P1 =
(m+ nIρ) ξ1

m
+ nI

ξ2
m

m+ nI(1 + ρ)
; PF =

nIρ
ξ1
m

+ (m+ nI)
ξ2
m

m+ nI(1 + ρ)
; P̃2 =

ξ̃2
m

+
nI
(
ξ1
m
− ξ2

m

)
m+ nI(1 + ρ)

;

X? =
−m

(
ξ1
m
− ξ2

m

)
m+ nI(1 + ρ)

; Y ? = 0.

Regime 3:

P1 =
ξ1
m

; PF =
ξ2
m

; P̃2 =
ξ̃2
m

; X? = 0 ; Y ? = 0.

Regime 4:

P1 =
ξ1
m

; PF =
m ξ2

m
+ nPρP

m+ nPρ
; P̃2 =

ξ̃2
m

+
nP
(
P − ξ2

m

)
m+ nPρ

;

X? = 0 ; Y ? =
m
(
P − ξ2

m

)
m+ nPρ

.

B Existence: qualitative comparative statics on the ba-
sic scenario

We claim in this section that, for a given distribution of (ξ1, ξ2), if risk or risk aversions
increase, regime 1, in which all markets and all operators are active, becomes more likely.

Beside µ1−ω1 and E[µ̃2− ω̃2], the model parameters are Var[µ̃2− ω̃2], the forward price P
at which the processor can sell his product, the numbers NP , NI and NS, the risk aversion
parameters αP , αI and αS, the production coefficient β, the cost of storage C and the
elasticity of spot traders’ demand m.

Before we proceed with the comparative statics, note that Var[µ̃2 − ω̃2] and αP , αI and
αS appear only through the single parameter:

ρ = 1 +m
Var[µ̃2 − ω̃2]
NP
αP

+ NI
αI

+ NS
αS

.

We will thus concentrate our attention on this parameter.

Of particular interest is the case ρ = 1. This happens when one of the following conditions
is verified:
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• Var[µ̃2 − ω̃2] = 0 (the future is deterministic and known);

• at least one agent is risk neutral (it is worth emphasizing that our model does not
rely on risk aversion to function: even in the risk-neutral case, the four market
configurations appear);

• at least one sector is extremely competitive Ni = +∞ for some i;

• m, the elasticity of the demand to the price is zero.

In all other cases, ρ is higher than 1. It increases with the elasticity of the demand, with
the uncertainty on the future availability of the commodity, with risk aversion, and it
diminishes with the number of operators.

In the case ρ = 1, we have:

F (O) = (0,−nPP ),

F (A) = P (−nI ,m+ nI),

F (M) = mP (1, 1).

and the upper boundary of region 3 has slope 1, so that region 3 has the minimum possible
size. This means that the conditions are the most favorable to active physical markets.

Figure 5 illustrates what happens as ρ increases from 1 to +∞ due to a change of Var[µ̃2−
ω̃2] or of one of the αi. The point F (M) remains fixed, while F (O) and F (A) move
vertically, the first one downwards and the second one upwards. So region 1 is enlarged,
but the effects are ambiguous for region 4. Region 3 also enlarges, as the slope of the
half-line emanating from F (M) increases towards the vertical. Region 2 is the only one
to be unambiguously reduced.

  

1−1

E [  2−  2]

1

2 Point move as
ρ increases

2
X *

>0
Y *

=0

3
X *

=0
Y *

=0

1
X *

>0
Y *

>0

4
X *

=0
Y *

>0

F M 

F A 

F O 

Figure 5: Phase diagram of physical and financial decisions (effect of ρ).
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C Comparison with the no-futures scenario (NF)

When there is no futures markets (scenario NF), speculators are inactive. There remains
only three kinds of operators: storers, processors, and spot traders.

In what follows, we can economize on calculations by applying the parameter transposition
table 2 on the previous results. The validity of the method is formally established in the
proof of Theorem 3.

Basic scenario: PF ρ nI nP
NF scenario: E[P̃2] 1 nI = nI × C

C+αIV2
nP = nP × β

β+αP
V2
P

Table 2: How to transpose the basic scenario’s results to scenario NF.

The following notation will be used: V2 := Var[P̃2], an exogenous parameter.

The optimal position of the storer becomes:

x? =
1

C + αIV2
max{E[P̃2]− P1, 0}. (49)

The storer holds inventory if the expected price is higher than the current spot price.

An easy computation gives the optimal decision of the processor, namely:

y? =
1

βP + αPV2
max{P − E[P̃2], 0}. (50)

Unless the forward price of the final product is higher than the expected spot price of the
commodity, the processor has no activity.

Theorem 3 (Existence conditions). With the notation ξ1 := µ1 − ω1, ξ2 := E[µ̃2 − ω̃2]
and V2 := Var[µ̃2 − ω̃2], existence conditions on ξ1, ξ2 and V2 are stricter in scenario NF
than in the basic case.

Region 1 in NF is included in basic region 1. Region 2 in NF gains on basic region 1 and
is cut on its left border. Region 3 doesn’t change. Region 4 in NF gains on basic region 1
and is cut on its bottom border.

See Figure 6.

Proof. To prove this theorem, we begin by taking the expected form of equation (8):

E[P̃2] =
1

m
(E[µ̃2 − ω̃2]−NIy

? +NPy
?) .

We get the equation:

mE[P̃2] +NIx
? −NPY

? = E[µ̃2 − ω̃2]. (51)

Hence Var[P̃2] = V2, a constant. Consider the mapping FNF : R2
+ → R2 defined by:

FNF (P1,E[P̃2]) =

(
mP1 − nIC

C+αIV2
max{E[P̃2]− P1, 0}

mE[P̃2] + nIC
C+αIV2

max{E[P̃2]− P1, 0} − nPP
Pβ+αPV2

max{P − E[P̃2], 0}

)
.
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Figure 6: Changes on regions when the futures market is closed.

Formally, the analysis is identical to the one done in the basic case. We see now the
validity of Table 2. The images FNF (O), FNF (A), and FNF (M) are easily computed:

FNF (O) = (0,−nPP ) ,

FNF (A) = P (−nI ,m+ nI) ,

FNF (M) = mP (1, 1) .

From this, one can find the images of all four regions. In other words, the image of O moves
towards the origin. The image of M doesn’t move. The image of A goes to the south-east
(this is directly visible in the expressions above), in a way that is characterized in detail
to prove the theorem. The properties concerning O and M are obvious. Concerning
the image of A, we need to check to facts: (1) OFNF (A) is steeper (in absolute value)
than OF (A); (2) MFNF (A) is flatter (in absolute value) than MF (A). (1) We compare
ρ+m/nI with 1 +m/nI . The former can be rearranged as

1 +m
V2

NP
αP

+ NI
αI

+ NS
αS

+
m

nI
= 1 +m

C + V2
1
αI

+ 1
NI

(
NP
αP

+
NS
αS

)
nIC

= 1 +m

C + αIV2

1+
αI
NI

(
NP
αP

+
NS
αS

)
nIC

= 1 +
m

nI

C + αIV2

1+
αI
NI

(
NP
αP

+
NS
αS

)
C + αIV2

which is clearly smaller than the latter. (2) We have to compare the two vectors:

F (M)− F (A) = P (m+ nI ,−ρnI) ,
FNF (M)− FNF (A) = P (m+ nI ,−nI)

Clearly, the ratios of coordinates are such that the latter is flatter than the former because
ρ > 1 and αIV2 > 0.
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Prices and volatility. The absence of a futures market impacts quantities as well as
price levels and volatilities. For instance equations (7) and (8) suggest that lower values
of X? and Y ? lead to lower levels of the spot price at time 1, and also, possibly, at time
2.

Prices and quantities in the NF scenario are the following (they can be retrieved directly,
or using Table 2 on the expressions in Appendix A):

P1 =
(m+ (nI + nP )) ξ1

m
+ nI

ξ2
m

+ nInPm
−1P

m+ (nI + nP ) + nI + nInPm
−1

, (52)

E[P̃2] =
nI

ξ1
m

+ (m+ nI)
ξ2
m

+ (m+ nI)nPm
−1P

nI + (m+ nI) + (m+ nI)nPm
−1

, (53)

P̃2 =
ξ̃2
m

+
nI

ξ1
m
− ((m+ nI)nPm

−1 + nI)
ξ2
m

+ (m+ nI)nPm
−1P

nI + (m+ nI) + (m+ nI)nPm
−1

, (54)

X? =
−(m+ nP ) ξ1

m
+m ξ2

m
+ nPP

nI + (m+ nI) + (m+ nI)nPm
−1
, (55)

Y ? =
−nI ξ1m − (m+ nI)

ξ2
m

+ (m+ 2nI)P

nI + (m+ nI) + (m+ nI)nPm
−1

. (56)

Remark that ξ1 should be seen as random, notwithstanding the fact that we supposed in
this model that markets are open only after its value has been revealed. In this view, the
empirical variability of the prices depend directly on the variability of ξ1. Let’s assume
first that ξ1 and ξ̃2 are independent. Later on, we can reason intuitively on positive or
negative correlations.

We thus compare in the two scenarios the variability of P1 attributable to ξ1:

Var

[
nI

ξ1
m

nI(ρ+ 1) +m+ nPρ+ nInPρm−1

]

with

Var

[
nI

ξ1
m

2nI +m+ nP + nInPm
−1

]
.

As we have ρ > 1 and nP > nP , the volatility of P1 is reduced by the presence of the
futures market, at least if nI and nI are not too different. In fact, the reduction of the
volatility by futures markets is not guaranteed. Assume for example that αI is large (or
any other reason making global risk aversion substantial). Then, nI is very small, clearly
making the volatility in the NF scenario smaller.

This case illustrates that financial market may “destabilize” markets, though the term
is inappropriate since it only refers to a statistical property. Of course a higher price
volatility doesn’t mean a lower welfare, quite the contrary: more volatility means that
prices are more effective/informative signals. The impact of markets on prices volatilities
is often a naïve aspect of welfare analysis. We shall go further in section 6.

To understand the higher volatility, remark that the storer could react quite differently
to different ξ1 under different market organizations. If the absence of futures frightens
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the storers, so that they hardly store, their impact on the market in the second period
would be negligible. On the contrary, if speculators were not very risk averse, they would
accentuate the dependency of actual inventories on the current ξ1. These more reactive
actions will transport, in a sense, the volatility of the first period to the second one. This
explanation is close to the analysis in Newbery (1987).
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