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Abstract

We model the dynamic behavior of spot and futures commodity prices with an
infinite horizon rational expectations equilibrium model. A new type of proof of ex-
istence of the equilibrium is provided. Using simulations with minimal changes be-
tween scenarios, we explore the specific effects of market structure, autocorrelation
of production, and global risk aversion. The market structure can change a virtually
nonstorable commodity into a high-inventory one. A high autocorrelation soften the
apparent effects of storage in the short run. Global risk aversion typically decreases
when financialization is developed. The effects on the joint price dynamics, risk shar-
ing and physical choices are explored.
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1 Introduction

This paper aims at providing a theoretical perspective on the analysis of commodity prices
dynamics: since commodity markets are highly volatile, and since volatility is the subject
of many analyses and discussion, there is a need to understand why and how their prices
vary over time. Such a task is challenging, due to the existence of a large spectrum of
commodities: they can, indeed, be expensive to store, or not; they can be produced con-
tinuously, or not; they can be perishable, or not, etc. It is all the more important to reach
this objective that, since a few years, a least two possible additional sources of volatility
have emerged: the financialization of commodity markets and climate change. Yet many
other circumstances are at play and a theory-based tool to test the likelihood and consis-
tency of analytical claims could be useful.

To better understand the dynamics of commodity prices, we develop a micro-founded
model for spot and futures prices. This infinite-horizon rational-expectations equilib-
rium model is based on the interaction of heterogeneous risk-averse agents. The relevant
economic functions in commodity markets are represented: processing and storage on
the physical market; speculation and hedging (with short and long positions) on the fu-
tures market. In addition, random factors in primary production and the final demand
are included. Finally, commodities being material besides being reserves of value, non-
negativity constraints on inventories limit arbitrage and speculation.

On the theoretical point of view, the model is an extension, in a dynamic setting, of
the static model proposed by Ekeland et al. (2019). The flexibility of a static model is en-
hanced: our model allows to describe a wider range of commodities. This dynamic model
confirms important findings of the static model: qualitatively, most of the comparative
statics on the variability of prices or the effect of the markets structure are kept. Given the
‘last-period effect’ in finite-horizon storage models, this congruence has to be noted.

Yet, the fact that inventories can be prolonged limitless changes the model output in
critical ways. Statistical moments found in time series can be investigated for calibra-
tion or comparative statics. The cross-sectional differences between commodity markets
as well as longitudinal differences can be explained by parameter changes that are inter-
pretable in economic terms. Among the possible explorations, let’s mention the structural
aspects of the market (such as the number of operators or the characteristics of the stor-
age, processing, hedging and speculations functions) and the behavioral aspects of the
operators (such as risk aversion or expectations).

The proof of the existence of the equilibrium is based on a fixed-point argument and
is entirely new. This new equilibrium analysis shows that our model is a generalization
of Deaton and Laroque (1992) and Chambers and Bailey (1996). Compared to their frame-
work we add: i) risk-aversion; ii) non linear storage costs; iii) the processing function;
iv) the futures market. The Appendix provides a long presentation of the model and the
proof of existence of an equilibrium.

Thanks to the simulations, the model emphasizes the existing heterogeneity between
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different commodity markets and the impact of this heterogeneity on the dynamics of the
prices. We run three main sets of simulations.

• First we explore how minimally different market structures, in terms of numbers
of player of each categories, can dramatically change the equilibrium behavior. We
compare the dynamic behavior of prices for three categories of markets: ‘Contango’
commodity where inventories are prevalent so that the non-negativity constraint
almost never operates (e.g. gold or corn), the ‘Backwardation’ commodity where the
inventories are so low that arbitrage operations are very difficult (e.g. electricity),
and the ‘Intermediate’ commodity which stands in the middle of the two others (e.g.
crude oil or copper).

• Second we explore the smoothing effect of storage. Essentially, storage is very use-
ful where production is negatively autocorrelated (rare case) or slightly positively
correlated (most of the cases). When production is highly autocorrelated, storage
loses its thrust. The experiment consist in showing the intensity of this softening as
autocorrelation is reinforced.

• The third experiment shows what happens when the global risk aversion in the econ-
omy changes. The effects on risk premia and physical positions are shown.

The article is organized as follows: Section 2 reviews the relevant literature. Section 3
describes the economic framework of the model. The optimality and the market clearing
conditions are given in Section 4. The equilibrium is defined and its existence proved in
Section 5. Simulations are exposed in Section 6. Section 7 concludes.

2 Literature review

Our article is linked to different strands of the economic literature on commodity markets.
In term of modeling, our model is at the cross-road of two literatures: the one regarding
traditional competitive storage models (Williams and Wright 1991; Deaton and Laroque
1992; Routledge et al. 2000), and the one based on heterogeneous agents interacting in the
physicla and financial markets (Hirshleifer 1989a; Vercammen and Doroudian 2014; Baker
2016). The simulations performed with the model are connected to the empirical literature
on the behavior of commodity prices. Pure analysis on the impact of speculative analysis
contributes to the literature on the financialization of commodity markets.

The rational expectations competitive storage model described by Williams and Wright
(1991) is the reference framework for the study of the dynamic behavior of commodity
prices. Like theirs, our model has an infinite horizon. In their case the operators, how-
ever, are risk neutral: they are competitive storers who optimize their expected utility by
choosing an optimal nonlinear storage behavior. Moreover the only asset is the physical
commodity traded on a spot market: there is no futures market. The authors emphasize
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that in their dynamic rational expectations equilibrium, the presence of the non-negativity
constraint on the inventories creates a need for recursive methods to solve the equilibrium.
We also work in this direction. Finally the authors indicate that most of the time there are
no analytical solutions; numerical solutions are needed. In this article, we propose both of
them. Deaton and Laroque (1992) is an econometric prowess applying this framework to
real spot data. The article emphasizes storage as critical determinant of the price formation
process. Consequently, all models on commodity prices should incorporate this feature,
with all its complications. Routledge et al. (2000) provide the first rational-expectations
competitive-storage models to include futures markets in the analysis. This is an impor-
tant improvement, since they can analyze the whole term structure of commodity prices.
One limitation, however, is that the model features only homogeneous risk-neutral agents.
Consequently, hedging and risk premia cannot be addressed.

Hirshleifer (1989b), in his finite horizon model of storage (dynamic programming prin-
ciple up to maturity T), is the first to model an active futures market. Compared to the
previous models, he proposes an explicit modeling of the behavior of the heterogeneous
risk-averse traders on this market. By solving for the joint equilibrium in the spot and
the futures markets his model allows to study precisely the determinants of the risk pre-
mium. This model is an important reference for the present article. It indeed emphasizes
that storage and hedging decisions need to be studied in a dynamic framework. More
importantly, we adopt a trading structure on the futures market, between different het-
erogeneous hedgers having a naturally opposite position, which approaches the one used
by the author. The articles by Vercammen and Doroudian (2014) and Baker (2016) are
also close to ours, because they gather an infinite horizon storage model, heterogeneous
risk-averse agents, and an active futures market. The model proposed by Vercammen and
Doroudian (2014) is an extension of Routledge et al. (2000) where they add cross-asset
risk-averse speculators. As far as the modeling is concerned, we are also close to Baker
(2016), a study of the oil market; besides a preference for a more flexible model and a tech-
nical innovation (proof of existence), we are less centered than him on the study of the
financialization. We focus instead of experiments about the effect of critical parameters.

Through the simulations performed with the model our work is also connected to the
empirical literature on the behavior of commodity prices.

First, the analysis of arbitrage operations between the physical and the paper mar-
kets for commodity shows that, in the presence of large inventories, when prices are in
contango (i.e. the futures price is higher that the spot price), the basis should be stable
and bounded by storage costs. On the contrary, in backwardation (when the spot price is
higher than the futures prices), the basis should be volatile and unbounded because there
are no inventories to perform arbitrage operations. Nevertheless, as already emphasized
by Fama and French (1987) in an empirical study on a wide range of commodities, there
exists a more complicated link between the volatility of the basis and the storage cost. Our
model allows us discuss these issues.

We also contribute to the empirical literature regarding the classification of commodity
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markets, which most of the time have been tackled through large scale empirical studies.
For instance, the descriptive statistics in the paper of Kang et al. (2017) which is focused
on the liquidity provision on futures markets give a good overview of the basis and the
risk premia for 26 commodities.

Finally, our article is connected to the growing literature on the financialization of com-
modity markets.1 There is an important imbalance between the empirical and the theoret-
ical literature on this subject. On the empirical side, there is a significant and still growing
literature on different issues linked to the financialization for a large variety of commodi-
ties. Brunetti and Büyükçahin (2009), Buyukşahin and Harris (2011), Singleton (2014),
Hamilton and Wu (2015) are some references with mixed results for the direct link be-
tween Commodity Index Traders (CITs) and prices. Tang and Xiong (2012) show that the
correlations between different commodities have increased after 2004. Büyükçahin and
Robe (2014a) and Büyükçahin and Robe (2014b) show that the cross-asset correlation has
increased after 2008 and link this to the trading of hedge funds. Hamilton and Wu (2014)
have shown that the risk premium in oil futures markets has significantly decreased due
to the potential hedging pressure from financial investors. On the other hand, the theoret-
ical side of the literature is still scarce. One paper is the one of Basak and Pavlova (2016) to
assess the impact of institutional investors (and a benchmarked investment) on commod-
ity markets. Baker (2016) assesses the impact of the entry of households on the futures
markets by calibrating his model to the crude oil market. Finally Boons et al. (2014) study
the impact of hedging by investors of their commodity risk, on commodity returns. While
those three papers study the impact of the introduction of a new agent on the commodity
markets, in our model, we answer a different question, which is: how can we explain the
huge heterogeneity encountered in commodity markets?

3 The model

Time and the markets. This is an infinite horizon model. The interest rate r and the
associated discounting factor d = (1 + r)�1 are assumed to be positive and constant. At
each period t � 0, two markets are opened. On the spot market there are transactions for
the immediate delivery of the physical commodity at price pt. The clearing of this market
implies the equality between the total physical supply (the production and the inventories
that are released) and the total physical demand for final consumption and for storage. On
the futures market, one trades derivatives contracts based on the commodity. A futures
contract at date t implies no cashflow at date t. A random cashflow is realized at date
t + 1. It is equal to (pt+1 � ft), where ft is the futures price at t.2

1For a more detailed review see Cheng and Xiong (2014).
2 ft corresponds to Ft,t+1, a notation often used in other studies.
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The agents. There are four categories of agents. The first three are different types of
price-taking risk-averse agents: storers I, processors P and speculators S. The number of
agents of a certain type is ni (i = I, P, S). These three categories of agents maximize their
mean-variance objective. More precisely:

• The storer maximizes his profit from carrying over the commodity from one period
to the next for a quadratic storage cost. The inventories cannot be negative. He has
access to the spot market, where he buys and sells his inventories, and to the futures
market, where his natural position is short. At each period, he has to choose his
optimal level x? of inventories and his optimal position q?

I on the futures market.

• The processor maximizes his profit from transforming the commodity into a final
good, using a costly production process. His margin can not be negative. He has
to commit himself, one period in advance, to the level y? of input to be processed.
This rigidity in the processing activity is due to the commercial contracts he has
signed, plus the constraints on the organization of the production. The input ac-
quired on the spot market is processed immediately. The processor must chose his
optimal position q?

P on the futures contract. His natural hedging position is long.

• The speculator maximizes his profit from purely financial operations on the futures
market only. At each period, he has to choose the optimal position q?

S that he will
hold until the the next. He does not operate on the physical market, nor on on other
financial markets.

• The fourth type of agent is represented by a short-term excess demand function
D(·) which depends on the current price only, and on a shock. Since the value of
this excess demand is algebraic, it comprises nonstrategic producers.

The information structure and the uncertainty. At each period t the agents know the
quantity zt freely available on the physical market:

zt = Random new production + Inventories from period (t � 1) � Inputs pre-ordered at (t � 1)

Thus, zt depends on the random ‘harvest’ wt. The wt are assumed to follow a first-order
Markov process. In the applications, an AR(1) is taken. We work on some filtered prob-
ability space (W, F , (Ft)t�0, P), where the filtration (Ft)t�0 is the one generated by the
process w and enlarged by the P-null sets.

The zt also depends on predetermined variables: the storage and processing deci-
sions. Based on this information and relying on the expectation and variance of future
spot prices, the agents make new choices on the physical market. We consider only the
stochastic processes (zt, pt, ft)t�0 that are Ft-measurable for all t.
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4 Market clearing

In this section we derive the optimal positions of the agents and the equilibrium market
by market.

4.1 Optimal positions

We retain mean-variance objectives. A type-i agent maximises:

Et[pi,t+1] �
ai
2

Vt[pi,t+1] ,

where pi,t+1 is the random profit at date t + 1 and ai the risk aversion. Et[·] and Vt[·] are
respectively the expectation and the variance at date t of the variable.

The speculator S. His random profit pS,t+1 can be written

pS,t+1(qS,t) := d (pt+1 � ft) qS,t,

where qS,t is the number of futures contracts bought (qS,t > 0) or sold (qS,t < 0) at date t.
Maximizing the objective with respect to qS,t gives:

q?
S,t =

1
d

Et[pt+1] � ft
aS Vt[pt+1]

. (1)

The storer I. Storage has quadratic costs g
2 x2 (a linear part can be added, as we did in

the simulation code), so that the random profit of the storer is written:

pI,t+1(qI,t, xt) := d (pt+1 � ft) qI,t + (dpt+1 � pt) xt � g

2
x2

t .

Maximizing the expected utility according to the quantities hold on the futures market qI,t
and on the physical market xt gives:

x?
t =

1
g

max{d ft � pt, 0}, (2)

q?
I,t =

1
d

Et[pt+1] � ft
aI Vt[pt+1]

� x?
t . (3)

The processor P. We denote by Q the fixed price of the normalized output, the process-
ing costs being b

2 y2. We also assume that the processing activity is instantaneous. The
random profit of the processor becomes:

pP,t+1(qP,t, yt) := d (pt+1 � ft) qP,t + d (Q � pt+1) yt � b

2
y2

t .
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The optimal positions are:

y⇤
t =

d

b
max{Q � ft, 0}, (4)

q?
P,t =

1
d

Et[pt+1] � ft
aP Vt[pt+1]

+ y⇤
t . (5)

As in Anderson and Danthine (1983a), Anderson and Danthine (1983b), Boons et al.
(2014) and Ekeland et al. (2019), the storer and the processor have positions on the futures
market that can be decomposed into two components: a hedging one (short for the storer,
long for the processor) and a speculative one. Moreover, this speculative component has
the same structure as the one of the pure speculator’s.

Note also that the equations (1) to (5) express the quantities (q?
S,t, q?

I,t, q?
P,t, x?

t , y?
t ) as

functions of four numbers pt, ft, Et[pt+1] and Vt[pt+1], i.e. two current prices and two
beliefs about a yet unrealized price. Thus, prices and beliefs determine the positions of
the operators on all markets. For the sake of simplicity, and without loss of generality,
we set g = 1 and b = 1. This is similar to what is done in Ekeland et al. (2019). Indeed,
modifying the number of agents is equivalent to changing their costs. This observation
relies on the well-known fact that quadratic costs can be perfectly aggregated.

4.2 Spot net demand

The final consumers demand is not inter-temporally substitutable. It responds only to the
current price. Moreover, we assume that the lowest possible price is pmin: the commodity
can be destroyed if the price is too low (free disposal). Finally, the price never goes beyond
pmax: a substitute can replace the commodity when the price is too high. These three
assumptions enable us to represent the net demand (henceforth simply the demand) as
the following continuous correspondence:

D(p) :

8
<

:

2 [Dmax, +•) if p = pmin,
= d(p) if 0 < p < pmax,
2 (�•, 0] if p = pmax.

We assume that d(p) is a continuous decreasing function. To simplify matters, we set
pmin = 0, d(0) = Dmax and d (pmax) = 0. See Figure 1.

4.3 The clearing of the futures market

At t, the clearing implies zero net supply. That is:

nS q?
S,t + nP q?

P,t + nI q?
I,t = 0,

which gives

Et[pt+1] � ft = a d Vt[pt+1] ht, (6)
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p

D

pmax

Dmax
D(p)

Figure 1: (Net) demand functions

where the constant a represents the risk aversion at the market level:

a :=
1

nP
aP

+ nI
aI

+ nS
aS

,

and ht is the net hedging demand on the futures market, i.e. the hedging pressure:

ht := nI max{d ft � pt, 0} � nP max{d(Q � ft), 0}.

Equation (6) is known as the risk premium and provides the relation between the expected
spot price Et[pt+1] in t for t + 1 and the futures price ft in t. As implied by the theory of
normal backwardation of Keynes (1930), a risk premium exists only if: (i) agents are risk-
averse (a 6= 0); (ii) a risk exists (Vt[pt+1] 6= 0); (iii) physical hedgers want to hedge; (iv)
and there is an imbalance in the market (ht 6= 0).

4.4 The clearing of the spot market

At t, once the harvest wt is observed, the quantity zt available on the physical market is
known:

zt = ht�1 + wt. (7)

This quantity is fundamental in the model: it serves as the basic state variable with respect
to which all the other processes are conditioned. The state variables are zt only if crops
are i.i.d., and (zt, wt) for first-order Markov processes.

Let’s turn to the forward view of zt. The clearing of the spot market at date t implies:

zt 2 nI x?
t + D (pt) .

Given the definition of the demand, zt  0 is possible. Then, D (pt) < 0, which means
that p = pmax, and the net demand is in fact a supply, for example of a backstop substitute.
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The supply to the physical market is nI x?
t � zt. Taking into account the different aspects

of the demand gives:

zt � Dmax + nI x?
t = Dmax + nI max{d ft, 0} if pt = 0, (8a)

zt = D(pt) + nI x?
t = D(pt) + nI max{d ft � pt, 0} if 0 < pt < pmax, (8b)

zt  nI x?
t = nI max{d ft � pmax, 0} if pt = pmax. (8c)

In the case of a strict inequality, the gap is bridged either by destruction or substitution,
depending on the price.

5 The equilibrium

We define, analyze and characterize the equilibrium before giving a proof of its existence.
We search only for a stationary equilibrium. To find a fixed point of a natural operator, we
show in two steps how belief-based decisions and rational expectations shape the iterative
process.

5.1 Belief-consistent decisions and rational expectations

If two real numbers (e, v) are respectively the price expected in the next period and its
variance, then the spot price P and the futures price F verify the following equilibrium
equations:

z :

8
>><

>>:

� Dmax + nI max {dF � P, 0} if P = 0,
= D(P) + nI max {dF � P, 0} if 0 < P < pmax,
 nI max {dF � pmax, 0} if P = pmax,

F = e � advH,
H = nI max {dF � P, 0} � nP max {d(Q � F), 0} .

We call belief-consistent decisions the functions P(z, e, v) and F(z, e, v) which, to (z, e, v) 2
R ⇥ R ⇥ R+, associate a solution (P, F) of the equilibrium equations. We also define a
consistent hedging pressure:

H(z, e, v) := nI max {dF(z, e, v) � P(z, e, v) , 0} � nP max {d(Q � F(z, e, v)), 0} .

Let us define the mapping L :

L :
✓

P
F

◆
!

✓
D(P) + nI max {dF � P, 0}

F + dav [nI max {dF � P, 0} � nP max {d(Q � F), 0}]

◆
.

Clearly, consistent decisions solve the nonlinear system

L
✓

P
F

◆
=

✓
z
e

◆
.
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The equilibrium regimes. In order to analyze the equilibrium, we compute P(z, e, v)
and F(z, e, v). As in Ekeland et al. (2019), we start from the space (P, F). In this space,
for a given v, and because of the nonlinearity of the equilibrium equations, we consider 6
regions:

Region 1. 0  P  pmax, dF > P and Q > F. In this region, all agents are active.

Region 2. 0  P  pmax, dF > P and Q < F. In this region the processors are not active.

Region 3. 0  P  pmax, dF < P and Q < F. In this region, there is no activity on the
physical and the futures markets.

Region 4. 0  P  pmax, dF < P and Q > F. In this region the storers do not have an
incentive to operate.

Region 5. P  pmin = 0.

Region 6. P � pmax.

These regions in the space (P, F) are depicted by Figure 2. To have an interesting
economy where Region 3 is nonempty, we assume that:

pmin = 0  d Q  pmax.

The intersection of the first four regions is the point M = (dQ, Q). The other charac-
teristic points have obvious interpretations. The coordinates of these points and of their
images by L are reported in Table 1. We denote by Ri, with i = 1 to 6, the images by L
of the regions in the space (e, z). For example, the regions R1 to R4 are delimited by four
half-lines emanating from the point L(M). The regions in (e, z) are depicted by Figure 3.
Note that they are obtained for a given v. The details of the computations are given in the
Appendix A.1.

O = (0, 0) L(O) = (Dmax, �nPad2vQ)
A = (0, Q) L(A) =

�
Dmax + nIdQ, (1 + nIad2v)Q

�

B =
�

pmax, pmax
d

�
L(B) =

�
0, pmax

d

�

C = (pmax, Q) L(C) = (0, Q)
M = (dQ, Q) L(M) = (D(dQ), Q)

Table 1: Characteristic points

In each of the regions in the space (e, z), we can compute the values of P(z, e, v) and
F(z, e, v). For example, in region 1 there are storage as well as processing activities. Thus,
the equilibrium equations can be written:

z = D(P) + nI (dF � P) , (9)
e = F + adv [nI (dF � P) � dnP(Q � F)] . (10)
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F

B

CA

5 6

4

x⇤ = 0
y⇤ � 0

2

x⇤ � 0
y⇤ = 0

3

x⇤ = 0
y⇤ = 0

1

x⇤ � 0
y⇤ � 0

dQ

Q
M

pmax0

Figure 2: Regions in the space (P, F)

z

e

L(M)

L(O)

L(A)

L(B)

L(C)

R4

R2

R3

R1

R6

R5

D(dQ)

Q(1 + nI ad2v)

Dmax + nI dQ

Dmax

�nPavd2Q

Figure 3: Images of the regions by L in the space (z, e)
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Solving Equation (10) for F gives:

F =
e + adv(nI P + nPdQ)

1 + (nI + nP)ad2v
. (11)

Plugging this into Equation (9) gives:

z = D(P) � nI(1 + nPad2v)
1 + (nI + nP)ad2v

P +
nId

1 + (nI + nP)ad2v
e +

nInPad3Qv
1 + (nI + nP)ad2v

. (12)

The right-hand side of Equation (12) is strictly decreasing with respect to P, meaning
that there is a unique P(z, e, v). Plugging this expression into the Equation (11) gives a
unique F(z, e, v). The values of P(z, e, v), F(z, e, v) and H(z, e, v) in the case where D(·) is
piecewise linear can be found in the Appendix A.2.

Rational expectations. We say that E(z, w) and V(z, w), with V � 0, are rational expec-
tations if we have:

E(z, w) = E[P(h(z, w) + w•, E(h(z, w) + w•, w•) , V(h(z, w) + w•, w•)) | z, w] , (13)
V(z, w) = V[P(h(z, w) + w•, E(h(z, w) + w•, w•) , V(h(z, w) + w•, w•)) | z, w] . (14)

where w• is the successor of w in the process, and

h(z, w) := H(z, E(z, w) , V(z, w)) . (15)

Similarly, we define the functions p(z, w) and f (z, w):

p(z, w) := P(z, E(z, w) , V(z, w)) , (16)
f (z, w) := F(z, E(z, w) , V(z, w)) . (17)

5.2 Existence of the equilibrium: the fixed point theorem

We say that (zt, wt, pt, ft)t�0 is an equilibrium process if all markets clear at any time. More
precisely, the markets have to verify the equilibrium equations (7)–(6). An equilibrium
process is such that for all t, pt = p(zt, wt) and ft = f (zt, wt) for two real functions p and
f , is a stationary equilibrium process. We search only for a stationary equilibrium. In that
case, the expectations Et[pt+1] and Vt[pt+1] also depend only on (zt, wt), not on time. To
characterize a stationary equilibrium, we proceed with two perspectives in order to find
a fixed point.

Definition 1. The functions (p, f , E, V) support a stationary rational expectations equilib-
rium if and only if they verify the equations (13)–(17).
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Equipped with (p, f , E, V), we can compute the processes of interest, for example:

pt = p(zt, wt),
ft = f (zt, wt),

zt+1 = h(zt, wt) + wt+1.

Assume that the process can be represented by the conditional density j(w•|w), where
w• is the successor of w. The fonction j : R ⇥ R ! [0, •] is assumed to be C1 jointly with
respect to (w, w•). In addition, we assume that there is some kj such that:

Z
∂w j(w•|w) dw•  kj, 8w. (18)

Note that this is satisfied if j is kj-Lipschitz. We define:

µj = sup
w

E [(zmin (w) , zmax (w)) |w] . (19)

and we assume:
µj (w) < 1. (20)

These properties are satisfied with many usual distributions, in particular normal and
those with finite support, provided they are absolutely continuous (in particular, they
should be non-atomic). We shall refer to kj and µj as measures of the statistical concentra-
tion of harvests, and to (nI , nP, nS, a, d, Q, D(p)) as the market data.

The following result shows that if the law is not too concentrated, a stationary equilib-
rium will exist.

Theorem 1. Assume the market data are given. Then there are µ̄ > 0, k̄ > 0 such that, if
j satisfies conditions (18), (19), (20) with µj  µ̄ and kj  k̄, the market has a stationary
equilibrium ( p̄, f̄ , Ē, V̄) where p̄, f̄ , Ē and V̄ are Lipschitz functions of (z, w).

The proof in Appendix B is constructive. We shall compute explicitly µ̄ and k̄ (although
we shall not attempt to get the best estimates) and shall define an operator G � Y such that
the iterated sequence (pn+1, hn+1) = G � Y(pn, hn) converges uniformly to ( p̄, h̄). The
functions f̄ , Ē and V̄ are directly calculated from these limits. This is quite interesting
from the algorithmic and economic viewpoints. On the one hand, the iteration is easy to
implement and converges geometrically to the solution. On the other, the agents (storers,
processors, and speculators) can reach the equilibrium by trial and error.

Note that in the case where wt+1 = rwt + #t, with the #t i.i.d. and Gaussian, the condi-
tions on j will be achieved provided the variance of #t is large enough.

6 Simulations for contrasted commodities

The simulations presented in this section test the ability of the model at capturing and ex-
plaining the huge variability encountered in commodity markets. This heterogeneity has
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been largely documented by the empirical literature and there are many possible markers
for it: the sign and the volatility of the basis; the sign, level and volatility of the hedging
pressure; the sign, level and volatility of the risk premium; the quantities stored and the
commitments taken on the physical market; the level of the autocorrelation in prices and
returns, etc.

This heterogeneity has two dimensions. First, there is huge cross-sectional variation:
if we take the sign of the basis as an example, some commodities are most of the time in
contango, while others are most often in backwardation. Second, there is a longitudinal
instability in price behavior: some markets are sometimes in backwardation, sometimes
in contango, with various degrees of persistence of a temporary state. To grasp such a
heterogeneity we rely on the equilibrium depicted by Figure 3, where the four regions
depict various situations. For example, Region 1 is characterized by contango, and Region
4 by backwardation (among other markers). Our questions become: why is a commodity
market situated in one region rather than in another one? Why would a market move
from one region to the other?

6.1 Calibration

Our model is very flexible and contains 15 parameters. We thus prioritize the regions to
study and the type of behaviors to focus on.

Regions 1 and 4 are the most important. In Region 1, all operators are active; prices
are in contango and the premium can be positive or negative. In Region 4, prices are in
backwardation. Region 2 is qualitatively a continuation of Region 1; and the industrial
operators do not have any incentive to operate in Region 3. Looking at what happens in
Regions 2 and 3 is an option we don’t expose. It suffices, for example, to decrease the price
of the output Q, which reduces the activity of the processors.

Table 2 exhibits the reference values retained across simulations presented in this pa-
per. All the ‘external parameters’ of the model, situated on the top, are fixed: the discount
factor d, the parameters describing the linear demand (M and m) and the law of the pro-
duction wt. Bellow are presented the values retained for the parameters describing the
two industrial activities : storage and processing. Then, the structure of the market, de-
picted by the number of agents ni belonging to each category. And finally, risk aversion
ai.

We set the quadratic storage costs (g) and the quadratic processing costs (b) equal to
one: according to the remark made in the end of paragraph 4.1, modifying the number
of agents is an alternative and equivalent way to changing their aggregate cost. Finally,
for a preliminary set of simulations, we set the autocorrelation coefficient r to zero. This
parameter demands a focused study that is presented in Subsection 6.3.3.

The parameter a aggregates risk aversion at the market level. It embeds six others
representing, for each category of agents, the specific risk aversions ai, and the number
of operators of every type ni. Therefore changing nP, nI and nS has an impact on a that
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Contango Intermediate Backwardation
Parameters Notation (Region 1) (Regions 1/4) (Region 4)
Discount factor d 1/1.01 1/1.01 1/1.01
Demand: D(p) = M � mp
Maximum demand Dmax M 100 100 100
Price elasticity of the demand m 0.5 0.5 0.5
Maximum price pmax M/m 200 200 200
Production w:
Mean of the Normal Law µ 60 60 60
Variance of the Normal Law s2 10 10 10
Autocorrelation coefficient r 0 0 0
Total variance s2/(1 � r2) 10 10 10
Storage and processing:
Quadratic storage costs g 1 1 1
Quadratic processing costs b 1 1 1
Price of the output Q 150 150 150
Number of processors (P) nP 0.01 0.01 1
Number of storers (I) nI 60 20 10
Number of speculators (S) nS 1 1 1
Risk aversion of a processor (P) aP 2 2 2
Risk aversion of a storer (I) aI 2 2 2
Risk aversion of a speculator (S) aS 2 2 2
Risk tolerance, all processors (P) nP/aP 0.005 0.005 0.5
Risk tolerance, all storers (I) nI/aI 30 10 5
Risk tolerance, all speculators (S) nS/aS 0.5 0.5 0.5
Global risk aversion a = (Âi ni/ai)

�1 0.033 0.095 0.166

This table gives the reference values of the model’s parameters, for three main categories of commodities:
‘Contango’ represents markets that are most of the time in contango, ‘Backwardation’ illustrates situations
where backwardation is frequent, and ‘Intermediate’ is in between. We assume that the demand function is
linear.

Table 2: Reference values of the parameters, for three main categories of commodities.
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cannot be neutralized without further assumptions. Yet we have limited the range of a
to focus on the intensity of activity by storers and processors (and thus their hedging
behavior). Risk aversion indeed have second order effects in this experiment.

Focusing on Regions 1 and 4 allows us to target three main categories of commodities.
The first category is representative of all markets that are most of the time in contango
and situated mainly in Region 1 – possible candidates could be gold or corn. The second
category stands for the markets with significant frequencies for both positive and negative
carrying charges, and between Regions 1 and 4 – it could be represented by crude oil, or
copper. The third category represents the markets where backwardation prevails; it is ex-
pected mainly in Region 4 – possible candidates could be electricity or live cattle. In what
follows, for the convenience of the exposition, we will label this types of commodities as
‘Contango’, ‘Intermediate’, and ‘Backwardation’.

6.2 Numerical solution

The algorithm’s search for a fixed point follows the same steps as the proof of existence.
We choose a finite grid in the space (z, w) over which all relevant functions are defined
and we use linear interpolation when necessary.

1. We start by a guess of the expectation Ê(z, w) and the variance V̂(z, w).

2. We compute estimations for the spot price P̂(z, w) = P(z, Ê(z, w), V̂(z, w)), the fu-
tures prices F̂(z, w) = F(z, Ê(z, w), V̂(z, w)) and the hedging pressure Ĥ(z, w) =
H(z, Ê(z, w), V̂(z, w)), where P, F and H are known exact functions.

3. We obtain Monte-Carlo estimates for the expectation and variance based on

Ê(z, w) = E
⇥
P̂
�

Ĥ(z, w) + w•, w•
�

| z, w
⇤

, (21)
V̂(z, w) = V

⇥
P̂
�

Ĥ(z, w) + w•, w•
�

| z, w
⇤

. (22)

where w• is the successor of w in the process.

4. We iterate and stop when two successive estimates are close enough, according to
the uniform norm.

5. We simulate the shock process to obtain trajectories of any length of all variables of
interest.

All is implemented with Python 3.

6.3 Numerical experiments and relevance of the model

An important step of the simulations is to check for the relevance of the model. We focus
on the storage function and ask whether or not the relative number of industrial hedgers
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Contango Intermediate Backwardation
(R1) (R1, R4) (R4)

Indicator nI = 60 nI = 20 nI = 10
Bases
Percentage of contango 84.6 77.2 23.8
Volatility in contango 0.12 0.17 0.36
Percentage of backwardation 15.4 22.8 76.2
Volatility in backwardation 3.16 3.35 3.38
Hedging pressure and risk premium
Frequency of positive values 71.5% 47.3% 0%
Volatility of the hedging pressure 2.45 1.13 0.97
Volatility of the risk premium 0.32 1.81 0.09
Autocorrelations
Spot prices, lag 1 0.4 0.27 0.1
Spot returns, lag 1 �0.3 �0.37 �0.45

This table gathers the results obtained for the three main categories of commodities: the first represents
markets that are most of the time in contango, the third illustrates situations where backwardation is fre-
quent, and the second represents intermediate situations. The parameters are those depicted in Table 2. The
grid for (z, w) is 100 ⇥ 100. The Monte-Carlo integration of expected values is based on 5,000 draws. The
trajectories have 1,000 periods. The tolerance level for the convergence test is s/4.

Table 3: Bases, autocorrelations, hedging pressure and risk premia for the three categories
of commodities.

is a way to recover the three targeted market categories3. We then look at the impact
of the speculation, and finally the fundamental structures of the economy, through the
autocorrelation coefficient of the production.

6.3.1 The three categories of commodity markets

We first look at the ability of the model at representing correctly the three market cate-
gories. We retain a large number of indicators: the sign and volatility of the bases, the
autocorrelations in spot prices and spot returns, the sign and the volatility of the hedging
pressure and the risk premium. An important starting point is that high spot prices come
with low available quantities zt on the physical market, as depicted by Fig 4.

Second point, the simulations give rise to contrasted and relevant results on the dy-
namic behavior of the bases and prices, and of the quantities recorded on the futures and
physical markets. The ‘Contango’ market is expected to exhibit a majority of positive
bases and to be situated mainly in Region 1, which is the case, as depicted by Table 3. The

3Another preliminary question is about the possibility of an economy to reach all the regions over time.
This has been verified. For the sake of simplicity we do not expose the results on this point.
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‘Intermediate’ market is 77% of the time in contango, in Region 1 and 23% in backwarda-
tion (Region 4). Finally the ‘Backwardation’ category is in Region 4 in 76% of the cases.
Moreover, in each cases, the volatility of the basis is higher in backwardation than in con-
tango, which reflects the difficulty to undertake arbitrage operations in backwardation.

The Contago scenario is illustrated by Figure 5 and the second column of Table 3, rep-
resenting the prices, hedging pressure, basis ( ft � pt)/pt and risk premium (Et � ft)/ ft.
As the inventories are generally substantial, the hedging pressure is positive: the stor-
ers are the dominant hedgers, and they have short hedging positions. Consistently with
Equation (6), the risk premium has the same sign. Finally, the futures prices do not exhibit
peaks, contrary to the spot prices. In other words, physical arbitrage via storage is visibly
active. The basis is stable and limited in contango, when futures prices are higher than the
spot price, whereas it can peak when the market is in backwardation. This corresponds
to the classical set of predictions of the storage theory and is comforted by the fact that in
contango, the basis is less volatile than in backwardation. Finally, the comparison between
the three cases depicted by Table 3 shows that the realized autocorrelation of the spot price
is bigger when the inventories are higher. This comforts a very common view: inventories
and the behavior of the operators on the physical markets are responsible for the autocor-
relation in the spot prices (see for example Deaton and Laroque 1992; Bessembinder et al.
1996).
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These graphs plot times series for the Intermediate case, synthesized in the third column of Table 3. Only
200 periods over 1,000 are plotted. The quantities available on the physical market, zt, are on the top. Below
are the spot prices pt.

Figure 4: Physical quantities z and spot prices p in the Intermediate case
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These graphs illustrate the different results obtained for the ‘Contango’ case, synthesized in the second
column of Table 3. Only 200 periods over 1,000 are reproduced. The hedging pressure ht is situated on the
top ; in the middle, pt stands for the spot prices, ft for the futures prices and Et for the expected spot prices;
the basis ( ft � pt)/pt is represented in the bottom, with the risk premium (Et � ft)/ ft.

Figure 5: Hedging pressure, prices, basis and risk premium in the Contango case
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6.3.2 The impact of speculation

The analysis of the impact of speculation further confirms the global relevance of the
model. Table 4 shows what happens, in the Intermediate case, when the number of spec-
ulators rises in the market, from 1 to 50. A first remark is that the market risk aversion
decreases. Further, the volatility of the risk premium decreases; this results from an in-
creased competition among speculators. The level of the risk premium also decreases, as
illustrated by Figure 6. Another intuitive result (that we do not reproduce here), is that
the speculative activity encourages the building of inventories and has a positive impact
on the level of the hedging positions.

Finally, we can also observe a rise in the percentages of contango, which means that
the increase in the speculative activity moves the market deeper into Region 1. Besides
the relative position of the industrial hedgers, the financial activity influences the position
of a market. This is all the more important that, contrary to the number of industrial
operators, which describes a fundamental economic structure of the market, the number
of speculators can change quickly.

6.3.3 Autocorrelation in, autocorrelation out

In what follows, we explore the ‘Intermediate’ case when the autocorrelation coefficient of
the production, r, varies. This parameter indeed describes one of the market’s fundamen-
tal structures: it represents the rigidity in the production process that characterizes many
commodity markets. Economic intuition suggests that if production is highly correlated,
low prices tend to follow low prices and storage is globally less profitable.

Table 5 shows what happens when r increases from zero (its reference value in Table 2)
to 0.95. Other things being equal, the frequency of the contango situation increases, from
77.2 to 98.2%. A market tends to be on the upper zone of Region 1 when the autocorrela-
tion in the production is high. This evolution is very clearly illustrated by Figure 7, that
depicts the basis for different values of r: backwardation becomes less pronounced when
r increases.

The behavior of the risk premium depicted by Figure 8 further witnesses that the po-
sition of a commodity market on the map is influenced by the level of production’s auto-
correlation: the risk premium can indeed be positive or negative, according to the level of
r. Thus the market will be situated in the Upper Region 1 or the Lower Region 1 (or even
in Region 4), depending on this correlation parameter.

Figure 9 shows that, besides the position on the map represented by Figure 3, the auto-
correlation has also an influence on the dynamics of the spot, the futures and the expected
prices. While the spot prices seems to be a bit less volatile when the autocorrelation in-
creases, the contrary is true for the futures and expected prices.

The most interesting point of Table 5 is that the autocorrelation in the spot prices,
induced by the inventories, is reinforced by the autocorrelation in the production (from
0.27 to 0.95). Even if such result is intuitive, to the best of our knowledge, it has never
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Intermediate case nI = 20 nS = 1 nS = 10 nS = 20 nS = 30 nS = 40 nS = 50
Total risk aversion 0.095 0.067 0.05 0.04 0.033 0.028
Bases
Percentage of bases in contango 77.2 78.9 80.5 82.2 83 83.1
Volatility of the basis in contango 0.17 0.17 0.17 0.19 0.18 0.18
Percentage of bases in backwardation 22.8 21.1 19.5 17.8 17 16.9
Volatility of the basis in backwardation 3.35 3.36 3.34 3.26 3.24 3.24
Hedging pressure and risk premium
Frequency of positive signs 52.7% 59.1% 64.2% 66.9% 68.9% 69.8%
Volatility of the hedging pressure 1.13 1.51 1.82 1.87 2.15 2.18
Volatility of the risk premium 1.81 1.04 0.65 0.47 0.37 0.32
Autocorrelations
Spot prices at lag 1 0.3 0.35 0.38 0.4 0.4 0.4
Spot returns at lag 1 -0.37 -0.35 -0.3 -0.3 -0.3 -0.3

This table gathers the results obtained for the intermediate case, when different levels of speculation are
taken into account. All prices, for all simulations are either in R1 or in R4. The grid for (z, w) is 100 ⇥ 100.
The Monte-Carlo integration of expected values is based on 5,000 draws. The trajectories have 1,000 periods.
The tolerance level for the convergence test is s/4.

Table 4: Intermediate case, with different levels of speculation (nS)
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This graphic plots time series of risk premiums in percentage, for the Intermediate case, synthesized in the
third column of Table 3, for different levels of speculation nS. Only 200 periods over 1,000 are plotted.

Figure 6: Risk premium in percentage in the Intermediate case, for different level of spec-
ulation.
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Intermediate case (nI = 20) r = 0 r = 0.25 r = 0.5 r = 0.75 r = 0.95
Variance of the production (wt) 10 10 10 10 10
Variance of shock (s2) 10 9.375 7.5 4.375 0.975
Bases
Percentage of contango 77.2 80.6 83.8 89.2 98.2
Volatility in contango 0.17 0.16 0.18 0.2 0.28
Percentage of backwardation 22.8 19.4 16.2 10.8 1.8
Volatility in backwardation 3.35 2.47 1.58 0.65 0.11
Hedging pressure and risk premium
Frequency of negative values 47.3% 46.6% 48.6% 56.9% 98.8%
Volatility of the hedging pressure 1.13 0.99 0.91 0.75 0.4
Volatility of the risk premium 1.81 1.45 0.87 0.34 0.04
Autocorrelation
Spot prices at lag 1 0.27 0.42 0.6 0.78 0.95
Spot returns at lag 1 -0.37 -0.25 -0.20 -0.1 -0,05

This table gathers the results obtained for the Intermediate case, synthesized in the second column of Table
3, when different levels of autocorrelation are taken into account, and when the level of the global variance
remains the same. All prices, for all simulations are either in R1 or in R4. The second column of this table
is identical to the third column of Table 3. The grid for (z, w) is 100 ⇥ 100. The Monte-Carlo integration of
expected values is based on 5,000 draws. The trajectories have 1,000 periods. The tolerance level for the
convergence test is s/4.

Table 5: Intermediate case, with different levels of autocorrelation r in the production,
when the global variance of the process remains the same.
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This graph represents the bases, in the Intermediate case, when the autocorrelation in the production in-
creases and the global variance is maintained at the same level. Only 200 periods over 1,000 are reproduced.

Figure 7: Basis in the Intermediate case when the autocorrelation increases
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Figure 8: This graphics reproduces the risk premium for different values of the autocorrelation coefficient
r, in the Intermediate case, when the level of the total variance is maintained at the same level. Only 200
periods over 1,000 are reproduced.
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These graphs represent the different results found in the Intermediate case when the autocorrelation in the
production increases and the global variance is maintained at the same level. Only 200 periods over 1,000
are reproduced. The spot prices pt are situated on the top. Below are the futures prices ft and the expected
spot prices Et.

Figure 9: Spot, futures and expected spot prices when the autocorrelation increases
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Figure 10: This graphics plots the futures prices against the spot prices for the Intermediate case, synthe-
sized in the second column of Table 3, when r is equal to zero. The blue points are those situated in Region
1, the purple ones are situated in Region 4.
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Figure 11: This graphics plots the futures prices against the spot prices for the Intermediate case, when r
is equal to 0.5. The blue points are those situated in Region 1, the purple ones are situated in Region 4.

25



been taken into account in a structural model. Nor have its consequences been thoroughly
investigated.

It is very common, in commodity markets, to stress that through arbitrage operations,
inventories insure the existence of a relation between the physical and the paper mar-
kets and consequently, between the present and the future. Figure 10, a scatter plot of
the futures prices against the spot prices, illustrates that point: it shows that in Region 1
(blue points), the futures prices rise with the spot prices, when the market is in contango.
This parallelism in the behavior of the prices is a well-known phenomenon in commodity
markets and is explained by arbitrage operations. On the contrary, in Region 4 (purple
points), the futures prices do not depend anymore on the spot price, since the inventories
that would be necessary for arbitrage operations are not available.

This result, however, is obtained with a coefficient of production’s autocorrelation that
is equal to zero. Figure 11, that illustrates the relation between the spot and futures prices
when the autocorrelation is equal to 0.5, gives a very different picture. In this case, in-
deed, a strong positive relation between the two prices remains, even when there are no
inventories.4 In other words, the production replaces the inventories. The usual distinc-
tion between storable and non storable commodities is not be so important when there is
a high rigidity in the production process.

7 Conclusion

Our infinite horizon rational expectations equilibrium model explains the interaction, in
a dynamic setting, between spot and futures markets for commodities. In equilibrium,
this model is able to reproduce the dynamic behavior of spot and futures prices for a wide
range of commodities including non-storable ones like electricity. We can obtain a con-
tango or a backwardation, the futures prices can be higher or lower than the expected
spot prices, inventories can be held or not, the commodity can be processed or not, and
adding speculators decreases the risk premiums, while encouraging the building of in-
ventories on the physical market. This variety of situations is found in real commodity
markets. Moreover, the analysis of the autocorrelation in the prices shows that the usual
distinction between storable and non storable commodities is not so important when one
take into account the role of the production process. In other words, when stocks are rare,
production replaces inventories.

4When the autocorrelation is equal to 0.95, there is no more distinctions between the Regions 1 and 4, as
far as the relationship between the spot and futures prices is concerned. This is however quite an extreme
value. We thus focus on the intermediate value r = 0.5.
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A Appendix: Equilibrium

A.1 The images of the regions at the equilibrium

We assume that:

pmin = 0  dQ  pmax,
0  D(dQ)  Dmax.

• R1 and R2 are separated by the arc D12, the image of the segment AM, for which
F = Q, and P < dQ:

D12 =

⇢✓
D(t) + nI (dQ � t)
Q + nIadv (dQ � t)

◆
| 0 < t < dQ

�
.

• R2 and R3 are separated by D23, the image of the segment MB, for which dF = P,
with F > Q:

D23 =

⇢✓
D(t)

t
d

◆
| dQ < t < pmax

�
.

• R3 and R4 are separated by D34, the image of the segment MC, for which F = Q,
with P > dQ:

D34 =

⇢✓
D(t)

Q

◆
| dQ < t < pmax

�
.

• R4 and R1 are separated by D41, the image of the segment OM, for which P = dF,
with F < Q:

D41 =

⇢✓
D(t)

t
d � nPadv (dQ � t)

◆
| 0 < t < dQ

�
.
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• R4 and R5 are separated by D45, the image of the half-line P = 0, F  0:

D45 =

⇢✓
Dmax

(1 + nPad2v)t � nPad2vQ

◆
| t  0

�
.

• R1 and R5 are separated by D15, is the image of the segment OA, for which P = 0,
0  F  Q:

D15 =

⇢✓
Dmax + nIdt

(1 + (nI + nP)ad2v)t � nPad2vQ

◆
| 0  t  Q

�
.

• R2 and R5 are separated by D25, the image of half-line P = 0, F � Q:

D25 =

⇢✓
Dmax + nIdt
(1 + nIad2v)t

◆
| t � Q

�
.

• R4 and R6 are separated by D46, the image of the half-line P = pmax, F  Q:

D46 =

⇢✓
0

(1 + nPad2v)t � nPad2vQ

◆
| t  Q

�
.

• R3 and R6 are separated by D36, the image of the segment CB, for which P = pmax,
Q  F  pmax:

D36 =

⇢✓
0
t

◆
| Q  t  pmax

d

�
.

• R2 and R6 are separated by D26, the image of the half-line P = pmax, F � pmax:

D26 =

⇢✓
nIdt � nI pmax

(1 + nIad2v)t � nIadvpmax

◆
| t � pmax

d

�
.

A.2 The values of P(z, e, v), F(z, e, v) and H(z, e, v) in the Regions R1 to
R6.

In the case where D(P) = M � mP in the flexible part of demand, we have:

Region 1.

P(z, e, v) =
nId

⇥
e + ad2vnPQ

⇤
+ (M � z)

⇥
1 + ad2v (nI + nP)

⇤

m + nI + ad2v (nPm + nPnI + nIm)
, (23)

F(z, e, v) =
(m + nI)

⇥
e + ad2vnPQ

⇤
+ advnI (M � z)

m + nI + ad2v (nPm + nPnI + nIm)
. (24)

Thus we have:

H(z, e, v) =
ed [nPm + nPnI + nIm] � nPdQ (m + nI) � nI (M � z)

m + nI + ad2v (nPm + nPnI + nIm)
. (25)

Region 1 being the most complicated one, the values of P(z, e, v), F(z, e, v) and H(z, e, v)
in the other regions can be found easily. The details can be found in the Appendix A.2.
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Region 2. If (z, e) 2 R2, the processors are inactive in the physical market. The equations
are as if nP = 0 in the expression of Region 1:

P(z, e, v) =
ednI + (M � z)

⇥
1 + ad2vnI

⇤

m + nI + ad2vnIm
, F(z, e, v) =

e (m + nI) + advnI (M � z)
m + nI + ad2vnIm

,

H(z, e, v) =
ednIm � nI (M � z)
m + nI + ad2vnIm

.

Region 3. If (z, e) 2 R3, nobody operates. The equilibrium equations can be written:

z = D(P), e = F,

which gives:

F(z, e, v) = e, P(z, e, v) =
M � z

m
, H(z, e, v) = 0.

Region 4. If (z, e) 2 R4, the storers are inactive in the physical market. With nI = 0, the
equilibrium equations become:

z = D(P), e = F � ad2vnP (Q � F) .

Thus:

F(z, e, v) =
e + ad2vnPQ
1 + ad2vnP

, P(z, e, v) =
M � z

m
, H(z, e, v) =

dnP (e � Q)
1 + ad2vnP

.

Region 5. In this case (z, e) 2 R5, and:

P(z, e, v) = 0.

We will note:
H(z, e, v) = H(p5 (e) , e, v) ,

where p5 parameterize the frontier of R5.

Region 6. If (z, e) 2 R6 we have:

P(z, e, v) = pmax.

We will note:
H(z, e, v) = H(p6 (e) , e, v) ,

where p6 parameterize the frontier of R6.
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B Proof of Theorem 1

B.1 Some properties of probability distributions.

Let j and F denote respectively the density and the CDF of a real random variable. In the
following, expected values and variances are calculated with respect to that distribution.
In the sequel, we shall only use the upper bound in formula (26).

Lemma 1. Let g : R ! [0, +•) be a measurable function such that
8
<

:

g(x) = b > 0 for x  0,
0  g(x)  b for 0 < x < a,
g(x) = 0 for x � a > 0.

Then:
E [(�•, 0)] E [(a, +•)]

E [(0, a)]
b2  Var[g]  1

4
b2. (26)

Proof. Denote by Cab the set of all functions g satisfying all the prescribed conditions. It is
a convex, closed and bounded subset of L2(P), and hence weakly compact. Consider the
optimization problem:

min {Var[g] | g 2 Cab} .

By standard optimization arguments, it can be shown that the minimum is attained, and
that the minimizer gmin, which is equal to b on (�•, 0] and to 0 on [a, +•), must also be
constant on (0, a), with:

gmin(x) = E[g] =
Z +•

�•
g dF for 0 < x < a.

Let us make the right-hand side explicit:
Z +•

�•
g dF = bF(0) + gmin(x)(F(a) � F(0)).

This becomes an equation for g(x), yielding:

gmin(x) =
bF(0)

1 � F(a) + F(0)
for 0 < x < a,

to which we should add gmin(x) = b for x  0 and g(x) = 0 for x � a. Computing the
variance of gmin, we get the lower bound.

Consider now the optimization problem:

max {Var[g] | g 2 Cab} .
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The variance also attains its maximum, but this time the constraints 0  g  b are
binding: the maximum is attained at some step function gmax 2 Cab, with g(x) 2 {0, b}
for all x 2 [0, a]. For any such step function g, set q = P[g(x) = b, 0  x  a]. We get:

E[g] = b(q + F(0)),
Var[g] = b2(1 � q � F(0))(q + F(0)).

If F(0) � 1/2, the variance is maximal for q = 0, so gmax = b 1x0. If F(a)  1/2,
the variance is maximal for q = F(a) � F(0), so gmax = b 1xa. If F(0) < 1

2 < F(a), the
variance is maximal for q = 1

2 � F(0). Finally:

Var[g] =

8
<

:

b2F(0)(1 � F(0)) if F(0) � 1/2,
1
4 b2 if F(0) < 1/2 < F(a),
b2F(a)(1 � F(a)) if F(a)  1/2.

Note that, in all cases we have Var[g]  1
4 b2, which gives the upper bound.

In our model, since 0  pt  pmax, we have:

0  E[pt | zt�1, wt�1]  pmax, (27)

Var[pt | zt�1, wt�1]  1
4

p2
max. (28)

B.2 From prices to expectations

Now consider the mapping Y which associates to every pair (p(z, w), f (z, w)) of price
functions (and thus implicitly h(z, w)) the corresponding pair of expectations (E(z, w), V(z, w)).
More precisely, Y(p, f ) = (E, V), where:

E(z, w) =
Z

p(h(z, w) + w•, w•) j(w•|w) dw•,

V(z, w) =
Z

p(h(z, w) + w•, w•)
2 j(w•|w) dw• � E(z, w)2.

Lemma 2. Suppose p and h are Lipschitz functions with respective constants kp and kh:

|p(z1, w1) � p(z2, w2)|  kp |z1 � z2| + kp |w1 � w2| ,
|h(z1, w1) � h(z2, w2)|  kh |z1 � z2| + kh |w1 � w2| .

Then E and V are Lipschitz functions of (z, w) with respective constants:

kE = µjkpkh + pmaxkj,
kV = 4µj pmaxkpkh + 3p2

maxkj.
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Proof. By a theorem of Rademacher, since p and h are Lipschitz, they are differentiable
almost everywhere. We have kh  max |∂zh(z, w))| with similar relations for the other
Lipschitz constants. Differentiating under the integral:

∂zE(z, w) =
Z

∂z p(h(z, w) + w•, w•)∂zh (z, w) j(w•|w) dw•.

Note that p(z, w) is constant outside the interval [zmin (w) , zmax (w)], so that ∂w p and ∂z p
vanish outside that interval. Using condition (19), we find:

|∂zE(z, w)|  µj max
z,w

|∂z p| |∂zh|  µj kp kh.

Now for the other derivative, which is more complicated:

∂wE(z, w) =
Z

∂z p(h(z, w) + w•, w•) ∂wh (z, w) j(w•|w) dw•

+
Z

p(h(z, w) + w•, w•) ∂w j(w•|w) dw•.

Proceeding as above for the first term, and using condition (18) on the second:

|∂wE(z, w)|  µj kp kh + pmax kj.

We now turn to V(z, w). We have:

V(z, w) =
Z

p(h (z, w) + w•, w•)
2 j(w•|w) dw• � E(z, w)2.

Differentiating w.r.t. z, we get:

∂zV(z, w) =
Z

2∂z p(h (z, w) + w•, w•) p(h (z, w) + w•, w•) ∂zh (z, w) j(w•|w) dw•

� 2E(z, w) ∂zE(z, w).

Using the estimate for ∂zE(z, w), this yields:

|∂zV(z, w)|  2µj pmaxkpkh + 2 max |E(z, w)| µj kp kh.

Differentiating V(z, w) w.r.t. w, we get:

∂wV(z, w) = 2
Z

∂z p(h (z, w) + w•, w•) p(h (z, w) + w•, w•) ∂wh (z, w) j(w•|w) dw•

+
Z

p(h (z, w) + w•, w•)
2 ∂w j(w•|w) dw• � 2E(z, w) ∂wE(z, w).

This gives:

|∂wV(z, w)|  2µj pmaxkpkh + p2
maxkj + 2 max |E(z, w)|

�
µj kpkh + pmaxkj

�
.

From the definition of E (z, w) it follows that max |E(z, w)|  pmax. Hence the result.
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B.3 From expectations to prices

Consider the domain D ⇢ R4 defined by:

D =

⇢
(z, e, v) | 0  e  pmax, 0  v  1

4
p2

max

�
.

It follows from the explicit formulas for P(z, e, v) and H(z, e, v) that they are both Lip-
chitz functions on D (the fact that v is bounded is important here). Note that they are
constant on z  zmin (w) and on z � zmax (w). Denote by cP and cH the Lipschitz con-
stants, and take c = max (cP, cH):

|P(z1, e1, v1) � P(z2, e2, v2)|  c (|z1 � z2| + |e1 � e2| + |v1 � v2|) , (29)
|H(z1, e1, v1) � H(z2, e2, v2)|  c (|z1 � z2| + |e1 � e2| + |v1 � v2|) . (30)

Consider the mapping G which associates to every pair of expectations (E, V) the cor-
responding pair (p, h) of prices and transfers:

G(E, V) = (p, h),
p(z, w) = P(z, E(z, w), V(z, w)),
h(z, w) = H(z, E(z, w), V(z, w)).

Lemma 3. Suppose E and V are Lipschitz functions of (z, w) with respective constants kE and
kV. Suppose:

0  E(z, w)  pmax,

0  V(z, w)  1
4

p2
max.

Then p and h are Lipschitz functions of (z, w) with respective constants:

kp  c (1 + kE + kV) ,
kh  c (1 + kE + kV) .

Proof. Obvious: just substitute.

B.4 Setting up the fixed point

We are looking for a pair (p, h) such that G � Y(p, h) = (p, h), and

E(z, w) =
Z

p(h(z, w) + w•, w•) j(w•|w) dw•,

V(z, w) =
Z

p(h(z, w) + w•, w•)
2 j(w•|w) dw• � E(z, w)2,

p(z, w) = P(z, E(z, w), V(z, w)),
h(z, w) = H(z, E(z, w), V(z, w)).
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Lemma 4. Suppose µj and kj satisfy the smallness condition:

4µj (1 + 4pmax)
�
1 + pmaxkj (1 + 3pmax)

�
 1

c2 . (31)

Then there exists k̄ such that the operator G � Y sends the set of functions (p, h) which are both
k̄-Lipschitz into itself.

Proof. Suppose (p, h) are k̄-Lipschitz. Set (q, g) = G � Y(p, h). It follows from the above
that q and g are Lipschitz, with constants

max
�

kq, kg
 

 c
⇣

1 + µj (1 + 4pmax) k̄2 + pmaxkj (1 + 3pmax)
⌘

.

A sufficient condition for kq  kp and kg  kh is:

1 + µj (1 + 4pmax) k̄2 + pmaxkj (1 + 3pmax)  k̄
c

.

This is an inequality of the second degree in k̄. To have a solution, we must have a
non-negative discriminant, that is:

1
c2 � 4µj (1 + 4pmax)

�
1 + pmaxkj (1 + 3pmax)

�
� 0.

B.5 Existence and uniqueness

Suppose µj and kj satisfy condition (31). Apply the preceding lemma, so that G � Y sends
the set C of bounded functions p (z, w) and h (z, w) which are k̄-Lipschitz into itself. We
endow C with the metric of uniform convergence:

k f1 � f2k = sup
(z,w)

| f1 (z, w) � f2 (z, w)|

It is a closed convex subset of the space of all continuous and bounded functions.

Proposition 1. There are µ̄j and k̄j so small that if µj  µ̄j and kj  k̄j the restriction of G � Y
to C is contracting.

Proof. We know that G � Y sends C into itself. We have to prove that if (p0
i, h0

i) = G �
Y(pi, hi) for i = 1, 2, if p1, p2, p0

1, p0
2,are Lipschitz with constants k̄ and h1, h2, h0

1, h0
2 are

Lipschitz with constants k̄, then there is some r < 1 such that:

max
z,w

��p0
1(z, w) � p0

2(z, w)
��  r kp1 � p2k ,

max
z,w

��h0
1(z, w) � h0

2(z, w)
��  r kh1 � h2k .
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Write:

E2(z, w) � E1(z, w) =
Z

(p2(h2(z, w) + w•, w•) � p1(h1(z, w) + w•, w•)) j(w•|w) dw•

=
Z

(p2(h2(z, w) + w•, w•) � p2(h1(z, w) + w•, w•)) j(w•|w) dw•

+
Z

(p2(h1(z, w) + w•, w•) � p1(h1(z, w) + w•, w•)) j(w•|w) dw•.

So:
kE2 � E1k  µj(k̄ kh1 � h2k + kp1 � p2k). (32)

Similarly:

V2(z, w) � V1(z, w) =
Z ⇣

p2(h2(z, w) + w•, w•)
2 � p1(h1(z, w) + w•, w•)

2
⌘

j(w•|w) dw•

� E2(z, w)2 + E1(z, w)2

=
Z ⇣

p2(h2(z, w) + w•, w•)
2 � p2(h1(z, w) + w•, w•)

2
⌘

j(w•|w) dw•

+
Z ⇣

p2(h1(z, w) + w•, w•)
2 � p1(h1(z, w) + w•, w•)

2
⌘

j(w•|w) dw•

� (E2(z, w) � E1(z, w)) (E2(z, w) + E1(z, w)) .

Hence:

kV2 � V1k  2pmax µj k̄ kh1 � h2k + 2pmax µj kp1 � p2k + 2pmax µj (k̄ kh1 � h2k + kp1 � p2k)
(33)

 4pmax µj (k̄ kh1 � h2k + kp1 � p2k).

Finally, we have, for i = 1, 2:

p0
i(z, w) = P(z, Ei(z, w), Vi(z, w)),

h0
i(z, w) = H(z, Ei(z, w), Vi(z, w)).

Recalling (29) and (30), we get:
��p0

2 � p0
1
��  c (kE2 � E1k + kV2 � V1k) ,

��h0
2 � h0

1
��  c (kE2 � E1k + kV2 � V1k) .

Substituting (32) and (33), we see that:
��p0

2 � p0
1
��  c µj (1 + 4pmax) (k̄ kh1 � h2k + kp1 � p2k),

��h0
2 � h0

1
��  c µj (1 + 4pmax) (k̄ kh1 � h2k + kp1 � p2k).
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The coefficients on the right-hand side can be made smaller than 1 if µj is small
enough, namely:

c µj (1 + 4pmax) k̄ < 1.

The map (p, h) ! (p0, h0) is then contracting, the fixed point ( p̄, h̄) is unique and can be
reached by iteration. Once we have the fixed point, then the determination of Ē, V̄ and f̄
is straightforward.
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