
Nonlinear Analysis: Real World Applications 8 (2007) 725–748
www.elsevier.com/locate/na

Equilibrium structure of a bidimensional asymmetric city

G. Carliera,∗, I. Ekelandb

aUniversité Paris 9 Dauphine, CEREMADE, Paris, France
bDepartment of Mathematics, Canada Research Chair in Mathematical Economics, University of British Columbia, Canada

Received 24 February 2006; accepted 27 February 2006

Abstract

We establish the existence of equilibrium configurations of a bidimensional, non-symmetric city with an arbitrary boundary and
an arbitrary transportation cost. The (non-constant) densities of land used for business and for residence are equilibrium outcomes.
The proof relies on the theory of optimal transportation.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper aims at explaining the internal structure of a city endogeneously, as an equilibrium solution between two
different possible uses of land, for residence and for business. In our model, the driving force for concentration, and
indeed for the existence of cities in the first place, is a positive externality of labor: the more workers are concentrated
at a given place, the more productive each of them becomes. The driving force for dispersion, on the other hand, is the
desire of every individual to spread his/her living quarters, occupying as much residential land as possible.

Firms will want to locate together, in order to benefit from the positive externality of labor. City dwellers will want
to have their residence near their work, because of the cost of commuting. So firms will enter in competition with
individuals for land use. It will be up to the landowners to apportion the land between business use and residential use,
by renting the land to the highest bidder.

These ideas are classical in urban economics. They can be found in the books of Fujita [6], Fujita, Krugman and
Venables [7] and Fujita and Thisse [9]. Fujita and Ogawa [15] and [8], were the first ones to combine them to into a
mathematical model from which the internal structure of the city could be derived endogeneously. This path has then
been followed by a number of authors, among which we want to single out Lucas and Rossi-Hansberg [13], which
provided the inspiration for the present work.

Our model is of the open-city, absentee-landlord type. The indirect utility level within the city is fixed at some
exogeneous level (presumably equal to the indirect utility level outside the city, so that there would be no incentive to
migrate). The boundary of the city is given and the population level will adjust to achieve the prescribed level of utility
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in equilibrium. Firms produce a single good, which is used as numéraire. The land is owned by absentee landlords,
who take away all the surplus of firms. In equilibrium, the market for land and the market for labor both clear.

Our model differs from the preceding ones in several respects. The lot size (amount of land occupied by one
residence) is not assumed to be constant, as in [15,9,1], but is determined endogeneously at each location by the
equilibrium condition. The cost c(x, y) of commuting from location x to location y is not assumed to be linear in the
distance |x − y|; in fact, no specific functional form is assumed, all that is required is that c is a continuous function of
x and y. Finally, and perhaps most importantly, our model is truly bidimensional: the (prescribed) shape of the city can
be any bounded domain � in the plane. In the preceding literature, the city is assumed either to be “long and thin”, in
fact one-dimensional, or to have a circular structure, so that the given boundary is a circle and every location is fully
characterized by its distance from the center. The recent model of Lucas and Rossi-Hansberg [13] is of that type; it is
not clear, however, how their method could be extended to the non-circular case, and this question was at the origin of
the present paper. To treat the general case, we had to change the cost structure (in [13], these are iceberg costs, time
is lost in transportation, in our work commuting has a monetary cost as in [15,1]), and to develop a new mathematical
method, which we hope is of general interest.

In the classical literature, the bid-rent function � (x, u) of households plays a crucial role: it is defined as the
maximum rent that an individual is willing to pay at a location x if he/she is to achieve utility level u (see [6,9],
particularly Chapter 6). Here, we work directly on the revenue function �(x) and the wage function �(y); here �(x) is
the revenue that individuals living at location x bring home (net of commuting costs), and �(y) is the wage that firms
located at y pay people who work there. The functions � and � are linked by free mobility of labor. Indeed, people
living at x rationally choose to work at a location y as to maximize their revenue �(y) − c(x, y), and the firms located
at y rationally choose to hire workers so as to minimize the wages. Hence, we have:

�(x) = sup{�(y) − c(x, y) : y ∈ �}, (1.1)

�(y) = inf{�(x) + c(x, y) : x ∈ �}. (1.2)

We are not sure whether these relations have appeared earlier in the urban economics literature. They are crucial to
our approach: if � (x) and �(y) are known, everything else can be derived: the density of households, the density of
firms, and the commuting patterns of workers. The mathematical tools to do so have been developed recently, within
the framework of optimal transportation theory (see [20] for a recent survey), and will be used in our proofs.

Our main result is an existence theorem: we prove that there is an equilibrium structure of the city, for any prescribed
utility level u and shape �. We make very general (and, to us at least, very natural) assumptions on the utility function
of consumers, the production function of firms, the externality of labor and the transportation costs. As a price to pay
for this generality, people living at the same location x do not all commute to the same location y = s(x) for work: there
is, for each location x, an equilibrium probability Px on �, so that Px(y) is the probability of working at y, conditional
on living at x. To have all individuals living at the same location x commute to the same location y = s(x) for work
requires an additional assumption on the transportation cost, for instance that c(x, y)=C (x − y), where C is a smooth
and strictly convex function. It will also be shown, under quite general assumptions, that, at equilibrium, some agents
do have to commute: the autarky situation where every agent works where he/she lives cannot be an equilibrium.

Because of the presence of externalities, of transportation costs, and of various constraints, this is not an equilibrium
result of Arrow–Debreu type. It shares, however, the defects of the Arrow–Debreu approach, namely that its very
generality makes qualitative analysis difficult. We have no uniqueness result, and therefore no comparative statics. We
have at the present time no efficient algorithm to compute the equilibrium structure, nor an example of interest simple
enough to be solved analytically. All this can be traced back to the method of proof, which is by a fixed-point theorem
in a suitable infinite-dimensional space.

It is not clear how to adapt our method to the closed-city model, where the total population, and not the utility level, is
prescribed. On the other hand, we believe that our method can solve other problems, such as a multi-sectorial industry,
inhomogeneous terrain, or residence externalities between households. We also hope that in the future we can develop
a model where the shape of the city is not prescribed, but is another outcome of equilibrium.

The structure of the paper is as follows. The model is introduced in Section 2. In Section 3, we describe the rational
behavior of agents, firms and landowners. In Section 4, we define equilibrium structures. In Section 5, we state our
main existence results under Cobb–Douglas specification of the production and utility functions and with transporta-
tion costs which are powers of the distance. In Section 6, we establish the existence of equilibria under more general
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assumptions. Section 7 is devoted to some specific comments and concluding remarks. Finally, proofs are gathered in the
Appendix.

2. The model

The city consists of inhabitants, who work and consume, of firms and of land owners all of whom have to fit inside
�, a given open bounded and connected subset of R2. The city produces a single good which is both consumed and
used as numéraire. We assume that whatever fraction of the production (respectively, consumption) is not consumed
(respectively, produced) within the city is sold (respectively, purchased from) abroad.

All the inhabitants are identical. They are equally productive and have the same utility function (c, S) �→ U(c, S),
where c is their consumption of the produced good and S is the amount of residential land they rent. We assume that
U is strictly concave, strictly increasing in both arguments and continuous. All workers are endowed with the same
quantity of labor that they supply inelastically to the productive activity.

There is a commuting cost c(x, y). Inhabitants who work at y and live at x get a wage � and bring home �− c(x, y).

All firms in the model have the same technology, with constant returns to scale. The production function per unit of
land at a given location is (z, n) �→ f (z, n), where z is the productivity at this location and n is number of workers per
unit of business land. It is assumed that f is continuous, strictly increasing with respect to both arguments and strictly
concave with respect to n.

Given the overall density of jobs (number of jobs per unit of land, irrespective of its use) �(x) at each location x of
the city, the productivity z at x reflects employment at neighboring locations through the formula:

z(x) = Z�(x) := g

(∫
�

�(x, y)�(y) dy

)
, x ∈ �, (2.1)

where the weighting kernel �(., .) is nonnegative and continuous on � × � (hence uniformly continuous, � × � being
compact) and g is a continuous increasing bounded function g : R+ → [z, z] with +∞ > z > z > 0. The fact that g
is increasing reflects the positive externality of labor. The bounds on g mean that productivity cannot tend to infinity
even if the density of employment is very high (people get in each other’s way), and that productivity is positive even
if there is no employment around.

City land is owned by absentee landlords: agents who play no role in the production or consumption processes. It is
assumed that they extract all surplus from workers and firms and that they let out their land to the highest bidder.

3. Rational behavior

We are looking for an equilibrium, that is, a situation where there is no incentive for inhabitants to change the place
they live nor the place they work, and no incentive for firms to move. This definition will be made more precise later on.
But already it has two important consequences: at equilibrium, all firms should make the same profit, and all inhabitants
should have the same utility level, so that firms have no incentive to move their location and inhabitants no incentive to
change their dwelling place. So, at equilibrium, all firms make profit 0, the surplus being appropriated by the landlord,
and all consumers have utility level u, exogeneously given (for instance, it could be the reservation utility inhabitants
could get from moving out of the city).

In this section, we first describe for given wages, revenues and productivities, the pointwise rational behavior of
consumer-workers, firms and landlords. In particular we shall determine rents for business use and for residential use as
functions of wages, revenues and productivities. Then we deduce from free mobility of labor that optimal commuting
choice imposes sharp restrictions on wages and revenues that take the form of conjugacy relations between these
quantities.

3.1. Agents

Assume that inhabitants dwelling at x ∈ � have an available revenue (take-home pay, net of commuting costs) �. It
is known that their utility level is u . An inhabitant of the city dwelling at x divides his revenue between consuming c
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and renting land S at respective prices 1 and Q. The available revenue � must be enough to yield utility u. Defining:

V (Q) := min{c + QS : U(c, S)�u} (3.1)

we have � = V (Q) and since V is obviously strictly increasing and continuous, one can invert this relation. The rent
Q is then given by Q = Q(�) = V −1(�), and it is easy to see that � �→ Q(�) is continuous and strictly increasing.

Inhabitants living at x with revenue � then solve program (3.1) with Q=Q(�) which yields the optimal consumption
level c(�) and residential space S(�). Let N be the number of inhabitants housed at x. Since each one occupies S(�)

units of land, we find that the relative density of residents (number of residents per unit of residential land) at x only
depends on the revenue � at x and is given by:

N = 1

S(�)
=: N(�).

3.2. Firms

Assume that the wage paid at a location y is � and the productivity is z, then firms located at y choose the level of
employment at y by solving the program:

q(z, �) := max{f (z, n) − � · n : n�0}. (3.2)

Let n(z, �) the corresponding optimal level of employment. The function q(z, �) is the rent for business use and
n(z, �) is the relative density of jobs (number of jobs per unit of land used for production) at y if productivity at y is z
and wage is �.

3.3. Landowners

At location x ∈ �, given rents for business and residential use q(z(x), �(x)) and Q(�(x)), landowners determine a
fraction �(x) ∈ [0, 1] devoted to business use that satisfies:

q(z(x), �(x)) > Q(�(x)) ⇒ �(x) = 1, (3.3)

q(z(x), �(x)) < Q(�(x)) ⇒ �(x) = 0. (3.4)

The previous conditions simply mean that the landowners rent their land to the highest bidders. If q =Q, landlords are
indifferent between allocating land for residential or for business use, hence they rationally may choose any � ∈ [0, 1].
The assumption that land is allocated to its highest value use clearly is a source of discontinuities that creates important
mathematical difficulties.

3.4. Free mobility of labor

In what follows, we shall denote by spt(	) (respectively, spt(�)) the support of the density of residents (respectively
of employment) 	 (respectively, �). We recall that the support of a nonnegative measure is the complement of the largest
open set which is negligible for that measure. It is therefore natural to interpret spt(	) as the set of possible residential
locations, a similar interpretation is also valid for spt(�). Let us denote by �(x) the available revenue at a possible
residential location x (i.e. x ∈ spt(	)) and by �(y) the wage paid at a possible job location y (i.e. y ∈ spt(�)). The
functions � and � are linked by free mobility of labor. Indeed, people living at x ∈ spt(	) rationally choose to work
at a location y ∈ spt(�) as to maximize their revenue �(y) − c(x, y). Hence, we have:

for all x ∈ spt(	), �(x) = sup{�(y) − c(x, y) : y ∈ spt(�)}. (3.5)

This condition implies that if y ∈ spt(�) then

�(y)� inf{�(x) + c(x, y) : x ∈ spt(	)}
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but if the inequality was strict at y then no one would work at y: residents from every area would bring home more
money by working somewhere else. Since y ∈ spt(�), there are firms located at y and hence people who work there.
Hence, we must have

for all y ∈ spt(�), �(y) = inf{�(x) + c(x, y) : x ∈ spt(	)}. (3.6)

This equality can also be interpreted as saying that firms located at y try to attract residents who would work for the
lowest wages.

In the sequel we shall say that a pair of functions (�, �) that satisfies (3.5) and (3.6) are conjugateto each other.
Indeed the previous conjugacy relations are incentive-compatibility conditions which express free-mobility of labor.
Note that the conjugacy relations written above not only depend on the cost function c but also on 	 and � through the
sets spt(	) and spt(�).

3.5. Densities and transportation plans

Given a productivity function z, a wage function �, a revenue function � and the landowner’s choice function � we
get an overall density of residents 	 and an overall density of jobs � defined for all (x, y) ∈ � × � by

	(x) = (1 − �(x))N(�(x)), �(y) = �(y)n(z(y), �(y)). (3.7)

It will naturally be required at equilibrium that the total labor supply equals the total labor demand i.e. 	 and � have
the same total mass.

A commuting plan (or transportation plan) is a nonnegative Borel measure 
 on � × � having 	 as first marginal
and � as second marginal. In other words, 
 is a commuting plan if, for every Borel function � on �, we have∫

�×�
�(x) d
(x, y) =

∫
�

�(x) d	,

∫
�×�

�(y) d
(x, y) =
∫
�

�(y) d�.

We denote the set of commuting plans by �(	, �). The economic interpretation is as follows. For every A and B
in �, the number 
(A × B) is the mass of people living in A and working in B. Associated with 
, there are two
conditional probabilities P



x (probability of working at y conditional on dwelling at x) and P

y

 (probability of dwelling

at x conditional on working at y), and we have


(A × B) =
∫

A

P


x (B) d	(x) =

∫
B

P
y

 (A) d�(y),

which can alternatively be rewritten as


 =
∫
�

P


x d	(x) =

∫
�

P
y

 d�(y).

Free mobility of labor implies that at equilibrium, residents of x choose a working place y so as to maximize wage
net of commuting cost, in view of (3.5), (3.6), this can be formulated as

�(y) − �(x) = c(x, y) 
-a.e.

Put differently, for 	-a.e. x, for P


x -a.e. y, one has

�(x) = �(y) − c(x, y) = sup{�(y′) − c(x, y′) : y′ ∈ spt(�)}.

4. Equilibria

Roughly speaking, an equilibrium in the present framework is a configuration (residents/jobs densities, wages/
revenues, fraction of land devoted to business use, transportation plan and productivity) in which each agent, firm,
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landowner solves his pointwise maximization program, wages, revenues and the commuting plan are consistent with
free-mobility of labor and finally, productivity reflects production externalities. This yields the formal definition.

Definition 4.1. An equilibrium for the transportation cost c consists of a pair (	, �) ∈ (L1(�, R+))2, a continuous
function z on �, a pair (�, �) ∈ (C0(�, R++))2, a Borel measurable function � with � ∈ [0, 1], and a nonnegative
Borel measure 
 on � × � such that

1.
∫
� 	 = ∫

� � > 0,
2. z = Z�,
3. for all (x, y) ∈ �2:

	(x) = (1 − �(x))N(�(x)), �(y) = �(y)n(z(y), �(y)),

4. (3.3) and (3.4) hold,
5. (�, �) are conjugate in the sense that (3.5) and (3.6) hold,
6. 
 ∈ �(	, �) and

�(y) − �(x) = c(x, y) 
-a.e.

Note that in the previous definition, the total population size is not fixed whereas the utility of residents u and the
shape of the city are. As already mentioned, an important mathematical difficulty lies in the discontinuities created by
the landowners’ behavior.

Of special interest are equilibria having the special feature that every consumer living at x has the same job location
s(x). This means that the transportation plan 
 is in fact a transport map s. Mathematically speaking, the conditional
probabilities are Dirac masses: P



x = �s(x). Such equilibria will be called pure.

Definition 4.2. An equilibrium (	, �, z, �, �, �, 
) for the transportation cost c is called pure if 
 is supported by the
graph of some measurable transport map s : � → � which, by definition means that for all Borel subsets of �, A and
B, one has


(A × B) =
∫

A∩s−1(B)

	(x) dx.

Note that if the transportation map s is as in the previous definition and since 
 ∈ �(	, �), then s is a measure
preserving map between 	 and �, i.e. for every Borel subset B of �, one has∫

s−1(B)

	 =
∫

B

�. (4.1)

The existence of pure equilibria depends on the structure of the commuting cost and will be discussed in detail in
Section 7.1.

5. Existence of equilibria in the Cobb–Douglas case

In this section, we prove the existence of equilibria under Cobb–Douglas specifications on the utility and production
functions. In the next section, we will extend this existence result to more general situations. We single out the
Cobb–Douglas case because it is transparent, and because the assumptions in Section 6 are made on derived quantities,
namely n, N, q and Q, rather than on the fundamentals.

So let us consider the Cobb–Douglas case

f (z, n) = z
n
,

U(c, S) = c�S1−�
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with 
 > 0 and (
, �) ∈ (0, 1)2. Explicit computations lead to:

n(z, �) =
(


z


�

)1/(1−
)

, (5.1)

N(�) = ��/(1−�)u−1/(1−�)��/(1−�). (5.2)

And the rents for business and residential use are given by

q(z, �) = (1 − 
)z
/(1−
)

(



�

)
/(1−
)

, (5.3)

Q(�) = (1 − �)

(
���

u

)1/(1−�)

. (5.4)

Let us further assume that � is an open bounded subset of R2 which is either convex (a polyhedron for instance) or
has a smooth boundary. Finally, assume that the cost function c is of the form:

c(x, y) = M|x − y|� for all (x, y) ∈ R2 × R2 (5.5)

with M and � positive constants. Note that we are in the strictly convex case when � > 1 and in the linear case when
� = 1. Note also that when � ∈ (0, 1) (sublinear case), c is not differentiable.

Theorem 5.1. Under the above assumptions, the following holds:

1. Strictly convex case: if � > 1 and 
�1/2 then there exists at least one equilibrium for the cost c and every equilibrium
is pure.

2. Sublinear case: if 0 < ��1 and ��2(1 − 
), then there exists at least one equilibrium for the cost c.

The proof is given in Appendix A. In fact, Theorem 5.1 directly follows from the more general Theorems 6.2
and 7.1.

6. Existence of equilibria in the general case

6.1. Assumptions

We shall prove existence of equilibria, under some assumptions listed below.

Assumption 1. � is an open bounded and connected subset of R2 such that |��| = 0, which satisfies an additional
regularity condition: there exists �0 > 0 and �0 ∈ (0, �) such that for every y ∈ �, there is some � ∈ [0, 2�) such that
� − y contains the intersection of the open ball of radius �0 with a cone of angle 2�0

{y + (t cos(v), t sin(v)), t ∈ [0, �0], v ∈ [� − �0, � + �0]} ⊂ �.

Note that the previous assumption is satisfied when � is a bounded domain of R2 which is either convex or of
class C1.

Let us define for x ∈ R2

d(x, �) := inf{|x − y| : y ∈ �},
and for r > 0, define

�r := {x ∈ R2 : d(x, �)�r}. (6.1)
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Assumption 2. There exists r > 0 such that the cost function satisfies c ∈ C0(�r × �r , R+) and c(x, x) = 0 for all
x ∈ �r (where �r is defined by (6.1)).

We define, for further reference, the modulus of continuity of c with respect to its first argument by, for all t �0

�1(t) := sup{|c(x1, y) − c(x2, y)| : (x1, x2, y) ∈ �
3
r , |x1 − x2|� t}. (6.2)

Similarly, we define

�2(t) := sup
{
|c(x, y1) − c(x, y2)| : (x, y1, y2) ∈ �

3
r , |y1 − y2|� t

}
. (6.3)

Finally, set

�(t) := sup
{
|c(x1, y1) − c(x2, y2)| : (x1, x2, y1, y2) ∈ �

4
r , |x1 − x2| + |y1 − y2|� t

}
. (6.4)

Assumption 3. Both functions N and Q are continuous from R++ to R++, increasing and

lim
�→+∞ N(�) = lim

�→+∞ Q(�) = +∞.

Assumption 4. Both functions n and q from [z, z]×R++ to R++ are continuous, and satisfy the monotonicity relations:

[z′ �z, �′ > �] �⇒ n(z′, �′) < n(z, �) and q(z′, �′) < q(z, �).

Assumption 5. The function h �→ n(z, �2(|h|)) is not integrable near h = 0.

Note that Assumptions 4 and 5 imply that for all fixed z ∈ [z, z]:
lim
�→0

n(z, �) = +∞.

Assumption 6. The function q satisfies:

lim
�→0

q(z, �) = +∞.

Before going further, let us note that conjugate functions satisfy the following regularity whose proof is elementary
and therefore left to the reader.

Lemma 6.1. If (�, �) are conjugate in the sense that (A.2) and (A.3) hold, then for all (x1, x2, y1, y2) ∈ �4, one has

|�(x1) − �(x2)|��1(|x1 − x2|), |�(y1) − �(y2)|��2(|y1 − y2|).

Our existence proof relies heavily on Monge–Kantorovich optimal transportation theory. The basic results we shall
use are recalled below, we refer to the recent book of Villani [20] for a detailed treatment of this rich theory and its
wide spectrum of applications (see also the seminal article of Brenier [2]).

6.2. Kantorovich duality

Given two nonnegative Borel measures 	 and � on � with common positive total mass, let us consider the Monge–
Kantorovich optimal transportation problem

(M	,�) inf

{∫
�×�

c(x, y) d
(x, y) : 
 ∈ �(	, �)

}
. (6.5)
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If 
 ∈ �(	, �) solves (M	,�), 
 is called an optimal transportation plan between 	 and � (for the cost c). It is customary
in the Monge–Kantorovich theory to consider also the so-called dual problem:

(D	,�) sup
�,�

{∫
�

� d� −
∫
�

� d	 : �(y) − �(x)�c(x, y), (x, y) ∈ �2
}

.

The main results from optimal transportation theory (we refer to [16,20] for proofs) that we shall need are summarized
in the following:

Theorem 6.1. Let 	 and � on � be two Borel nonnegative measures on � with common positive total mass and c be a
continuous transportation cost function on � × �, then we have:

1. The supremum in (D	,�) is attained by a pair (�, �) of functions that satisfy the conjugacy relations (A.2) and
(A.3).

2. The infimum in (D	,�) is attained by some 
 ∈ �(	, �).
3. The duality relation inf(M	,�) = sup(D	,�) holds.
4. If (�, �) solves (D	,�) and 
 solves (M	,�) then

�(y) − �(x) = c(x, y)
-a.e.

5. If the pair (�, �) satisfies the conjugacy relations (A.2) and (A.3), and 
 ∈ �(	, �) is such that:

�(y) − �(x) = c(x, y) 
-a.e.,

then (�, �) solves (D	,�) and 
 solves (M	,�).

We shall also use the following uniqueness result which is proven in Appendix A.

Proposition 6.1. If, in addition c ∈ C1(� × �, R), and (	, �) are absolutely continuous with respect to the Lebesgue
measure and have positive densities on � then (D	,�) admits a unique solution (�, �) up to equality almost everywhere
and the addition of the same constant to both functions.

When the cost function is smooth (an assumption which is not realistic since it does not include the Euclidean
distance) Theorem 6.1 and Proposition 6.1 are of particular interest in our equilibrium problem since they imply that
wages and revenues can be deduced from densities. Indeed, those results from optimal transportation imply that, given
a continuous positive density of residents 	, and a continuous positive density of employment �, with same total mass
there is a unique (up to the addition of a constant) pair of wage and revenue functions � and � which induce a consistent
transportation plan. We refer to Appendix A for details and a rigorous construction.

6.3. Main result

Our main existence result finally reads as:

Theorem 6.2. Under Assumptions 1–6, there exists at least one equilibrium for the transportation cost c.

To the best of our knowledge, Theorem 6.2 and the general approach of the present paper, exhibit some features that
seem to be novel. Firstly, our result is really two-dimensional and does not require any radial symmetry assumption as
in [13] for instance. Precisely because we deal with a really two-dimensional case, standard methods based on ordinary
differential equations just do not work here. For special (quadratic) cost functions however, the existence of equilibria
is, at least formally, linked to some fully nonlinear partial differential equations of Monge–Ampère type. Secondly,
the cost functions we consider are quite general: they do not need to be smooth, to depend only on distance, or to
have particular symmetry or convexity/concavity properties (however the convex case will be discussed in Section 7.1).
Finally, using the optimal transportation framework also allows to deduce commuting plans in an easy and general way
from the wages and revenues patterns. Some generalizations are discussed in Section 7.3.
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Most of the Appendix is devoted to the proof of Theorem 6.2. The proof is quite long, and we wish at this point to
briefly indicate its main steps:

• Regularize the cost function and approximate the landowner’s discontinuous behavior by a continuous one, this leads
to a notion of approximated equilibria we call �-equilibria (see Section A.1).

• Prove that �-equilibria are associated to fixed-points of a certain operator defined on densities and related to the
optimal transportation problem.

• Prove that this operator satisfies the assumptions of Schauder’s theorem so that there exist approximated equilibria.
• Let the approximation parameter � tend to zero and prove that one can recover an equilibrium as a limit point of

approximated equilibria.

7. Concluding remarks

7.1. On cost functions and pure equilibria

At this point, we aim to emphasize some important effect of the structure of commuting costs on equilibria. Indeed,
when the cost satisfies a certain structural assumption that we call the generalized Spence–Mirrlees condition, at
equilibrium commuting plans are really commuting maps. In other words, in such a case, every equilibrium is pure
hence the commuting plan 
 is of the form 
 = ∫

� �s(x) d	(x). Assuming that the cost function c is smooth, the
Spence–Mirrlees condition reads as the injectivity requirements

∇xc(x, y1) = ∇xc(x, y2) = 0 ⇒ y1 = y2, (7.1)

∇yc(x1, y) = ∇yc(x2, y) = 0 ⇒ x1 = x2. (7.2)

Assume now that (	, �, z, �, �, �, 
) is an equilibrium and write


 =
∫
�

P


x d	(x).

We know then (see formula (A.30)) that if � is differentiable at x (which is the case a.e. by Rademacher’s theorem and
Lemma 6.1) then, for P



x a.e. y one has ∇�(x) = −∇xc(x, y). With (7.1), this in turn implies that the support of P



x is

reduced to a single point s(x) satisfying

∇�(x) = −∇xc(x, s(x)). (7.3)

Under the Spence–Mirrlees assumption, at equilibrium, the job’s location of an agent is then a deterministic function
of his/her address. More is true: commuting is reversible in the sense that there is a reverse map t (t = s−1 in some
weak sense) mapping job’s location into the worker’s address. Combining the previous arguments with Theorem 6.2,
we have the following result on existence of pure equilibria.

Theorem 7.1. If, in addition to Assumptions 1–6, the cost function c is smooth on �r × �r and satisfies (7.1), (7.2)
on �r × �r then there exists at least one equilibrium for the transportation cost c and every equilibrium is pure.

It is well-known in optimal transportation theory that the Spence–Mirrlees assumption is important if one wants to
find optimal maps rather than optimal plans (see [12,3]). An important class of costs satisfying (7.1), (7.2) is the class
of convex costs: c(x, y)=C(x −y) with C strictly convex, smooth and minimal at 0. For this class of costs, considered
by McCann and Gangbo [14], using the identity (7.3), we find that the commuting map s is linked to the gradient of
the revenue function by

s(x) = x − (∇C)−1(−∇�(x)).

In that case, the equilibrium condition of conservation of the densities leads to a certain fully nonlinear partial differential
equation (of Monge–Ampère type if C(x) = |x|2).
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In the concave case (c(x, y) = C(|x − y|) with C strictly concave), the picture is totally different. In that case, also
considered in [14], conditions (7.1), (7.2) is satisfied on spt(	) × spt(�) only if those supports are disjoint, which is
of course an irrelevant situation in our equilibrium setting. In that concave case, Mc Cann and Gangbo [14] actually
characterized optimal transportation plans between 	 and � and proved that it involves some “splitting”. The “mass”
that is common to 	 and � stays where it is and after substracting this mass one is left with the optimal transportation
of (	 − �)+ to (� − 	)+. Put differently, at a given location x where 	(x) > �(x), there are both residents working at x
and residents working at some location s(x) 
= x with �(s(x)) > 	(s(x)).

7.2. Equilibrium involves commuting

Under quite natural additional assumptions, in our model, the autarky situation (in which every agent lives where
he/she works, hence 	 = �) cannot happen at equilibrium. In other words, agents do have to commute at equilibrium.
This in fact follows from production externalities and is quite independent from the rest of the paper. In addition to
Assumptions 1–6 of the paper, let us further assume:

• The kernel � is of the form �(x, y) = f (|x − y|) with f smooth and such that f ′ < 0 on R+.
• For all � ∈ R2++ z �→ q(z, �) is increasing on [z, z].
• The cost function c is of class C1 on �

2
and such that c(x, y) > 0 when (x, y) ∈ �

2
and x 
= y.

Let us remark that since c vanishes on the diagonal of �
2
, the last condition implies ∇xc(x, x) = ∇yc(x, x) = 0 for

all x ∈ �. Under these assumptions, there necessarily is commuting at equilibrium, that is

Proposition 7.1. Under Assumptions 1–6 and the additional assumptions of this paragraph, if (	, �, z, �, �, �, 
) is
an equilibrium then 	 
= �.

7.3. On zoning restrictions, space homogeneity and externalities

In the present paper, we have considered the classical case of absentee landlords allocating land to its highest value
use. Hence, we have imposed conditions (3.3) and (3.4) on �, z, �, and � in the definition of equilibria. As already
mentioned, because of discontinuities and zero densities, those conditions actually make the problem mathematically
complicated. However, one can rule out zero densities, by assuming that there are zoning restrictions (imposed, say,
by city regulations) that prevent the landlords from renting all their land either for one use only. Such regulations may
be justified by urban planning and legal considerations; indeed, zoning restrictions, imposing a mixed use of land are
used in many cities, Paris for instance. Our main result and constructions remain valid if one imposes such zoning
restrictions, and the proofs are actually simpler. In fact, zoning restrictions are one of the mathematical artefacts that
we use in Section A.1 to construct approximate equilibria. It should then be clear to the reader from our proof that
Theorem 6.2 still holds in models with additional zoning restrictions.

In our model, we have assumed that space in the city is homogeneous from both consumers’ and producers’ point of
view and we have taken production externalities given by formula (2.1). Even though such assumptions are classical,
we claim that our existence proof and our optimal transportation approach can easily be adapted to the following
cases:

• Non-homogeneous space: location-dependent utility and production functions (due to purely geographical factors
for instance).

• More general production externalities i.e. a productivity function of the form:

z(x) = g

(∫
�

�(x, y)�(y) dy, x

)
with a general function g: g non-monotonic with respect to its first argument (congestion effect, say), g only depending
on x (exogeneous productivity), . . . .
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• Externalities (positive or negative depending on the phenomenon one aims to capture: attraction or repulsion) among
residents: utility function at location x depending on a parameter of the form:∫

�
�(x, z)	(z) dz.
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Appendix A. Proofs

A.1. �-Equilibria

One mathematical difficulty to prove existence of equilibria lies in the fact that one has to deal with measures
that vanish on unknown sets and have discontinuities. This is due to conditions (3.3), (3.4) i.e. to the requirement
that landowners allocate land to the highest bidder. One possibility to overcome this difficulty is to regularize the
landowner’s behavior as follows. Let � ∈ (0, 1/2) and consider the program

max{�q(z, �) + (1 − �)Q(�) − �

2
�2 : ����1 − �}. (A.1)

This determines the function (z, �, �) �→ ��(z, �, �) by

��(z, �, �) =

⎧⎪⎨⎪⎩
�−1(q(z, �) − Q(�)) if q(z, �) − Q(�) ∈ [�2, � − �2],
� if q(z, �) − Q(�)��2,

1 − � if q(z, �) − Q(�)�� − �2.

Finally define the functions:

	̃�(z, �, �) := (1 − ��(z, �, �))N(�),

�̃�(z, �, �) := ��(z, �, �)n(z, �)

and let us consider the free-mobility of labor conditions when there are jobs and residents all over the city

�(x) = sup{�(y) − c(x, y) : y ∈ �}, (A.2)

�(y) = inf{�(x) + c(x, y) : x ∈ �}. (A.3)

Definition A.1. Let � ∈ (0, 1/2). An �-equilibrium for the transportation cost c consists of a pair (	, �) ∈ (L1(�, R+))2,
a continuous function z on �, a pair (�, �) ∈ (C0(�, R++))2 and a nonnegative Borel measure 
 on � × � such that

1.
∫
� 	 = ∫

� � > 0,
2. z = Z�,
3. for all (x, y) ∈ �2:

	(x) = 	̃�(z(x), �(x), �(x)), �(y) = �̃�(z(y), �(y), �(y)),

4. (�, �) are conjugate in the sense that (A.2) and (A.3) hold,
5. 
 ∈ �(	, �) and

�(y) − �(x) = c(x, y) 
-a.e.
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A.2. Existence of �-equilibria

In order to be able to deduce wages and revenues from densities in a unique way as in Proposition 6.1, we first need
to regularize the cost function as follows. Let n be an integer, first set c̃n(x, y) := max(0, c(x, y) − �(2/n)) for all

(x, y) ∈ �
2
r . For n�r−1, define then for all (x, y) ∈ �

2
:

cn := (�n � c̃n)(x, y) =
∫

B(0,1/n)

∫
B(0,1/n)

�n(u, v)̃cn(x − u, y − v) du dv,

where �n(u, v) := n4�(nu)�(nv) and � is a C∞ nonnegative function with support in the unit ball of R2 and integral 1.
We let the reader verify that by construction, for every n�r−1, we have the following:

• cn �0 on �
2

and cn(x, x) = 0 for all x ∈ �.

• For all (x1, x2, y) ∈ �
3
, |cn(x1, y) − cn(x2, y)|��1(|x1 − x2|).

• For all (y1, y2, x) ∈ �
3
, |cn(x, y1) − cn(x, y2)|��2(|y1 − y2|).

• cn converges uniformly to c on �
2
.

Also note that if (�, �) are conjugate with respect to the cost cn, then by Lemma 6.1 they are both Lipschitz
continuous with Lipschitz constant less than the Lipschitz constant of cn.

Let us define:

� :=
{
(	, �) ∈ C0(�, R++)2,

∫
�

	 dx =
∫
�

� dy

}
.

We will prove existence of �-equilibria for the cost cn by reformulating the problem as a fixed-point problem for some
operator on some subset of � and using Schauder’s fixed-point Theorem. We will then prove existence of �-equilibria
for the cost c by letting n tend to +∞.

A.2.1. Deducing wages and revenues from densities
Theorem 6.1 and Proposition 6.1 are of particular interest in our equilibrium problem since they imply that wages

and revenues can be deduced from densities. Indeed, those results from optimal transportation imply that, given a
continuous positive density of residents 	, and a continuous positive density of employment �, with same total mass
there is a unique (up to the addition of a constant) pair of wage and revenue functions � and � which induce a consistent
transportation plan. More precisely, assume that � and � are linked by the free mobility of labor conjugacy relations

�(x) = sup{�(y) − cn(x, y) : y ∈ �}, (A.4)

�(y) = inf{�(x) + cn(x, y) : x ∈ �} (A.5)

and that the transportation plan 
 ∈ �(	, �) is consistent with free-mobility of labor:

�(y) − �(x) = cn(x, y) 
-a.e. (A.6)

The previous conditions, together with Theorem 6.1 mean that (�, �) is a solution of

(Dn
	,�) sup

�,�

{∫
�

� d� −
∫
�

� d	 : �(y) − �(x)�cn(x, y), (x, y) ∈ �2
}

and 
 is an optimal transportation plan between 	 and � for the cost cn. Finally, since cn is smooth, Proposition 6.1
shows that (Dn

	,�) admits a unique solution (�, �) up to the addition of the same constant to both functions. Let us also
remark that (�, �) satisfies the conjugacy relations (with respect to the regularized cost cn). If we impose the additional
normalization condition inf� � = 1, this defines wages and revenues as functions of densities (	, �) ∈ �.
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For fixed (	, �) ∈ �, define a wage function � and a revenue function � as the unique solution of the program (Dn
	,�)

which satisfies the normalization condition inf� �=1 and set (�, �)=T n
1 (	, �). Let us remark that by Ascoli’s theorem,

Lemma 6.1, our normalization condition and the conjugacy relations, the set T n
1 (�) is included in some compact subset

(independent of both � and n) of C0(�, R)2 for the uniform topology. More precisely, the following holds

Lemma A.1. Let (�, �) ∈ T n
1 (�), then

• for all (x1, x2, y1, y2) ∈ �
4
, one has

|�(x1) − �(x2)|��1(|x1 − x2|), |�(y1) − �(y2)|��2(|y1 − y2|).
• 1 + �2(diam(�))�����1 on �.

Proof. The first assertion follows from Lemma 6.1, it implies in particular sup�� − inf����2(diam(�)).
Since cn(x, x) = 0, from the conjugacy relations, we have ����1 and since cn �0 we get ��sup��
�1 + �2(diam(�)). �

A.2.2. Deducing densities from wages and revenues
Given densities 	 and � as before, so that they have the same total mass, assume now that we are given the wage

function � and the revenue function � satisfying the normalization min � = 1 as in the previous paragraph. We now
aim to prove that there exists a unique constant � > − 1 (so that � + � and � + � remain positive) such that∫

�
	̃�(Z�(x), �(x) + �, �(x) + �) dx =

∫
�

�̃�(Z�(x), �(x) + �, �(x) + �) dx.

So 	̃�(Z�(x), �(x) + �, �(x) + �) and �̃�(Z�(x), �(x) + �, �(x) + �) will be a new density of residents and a new
density of jobs, still having same total mass.

Proposition A.1. Let � ∈ (0, 1/2), n�r−1, (	, �) ∈ � and (�, �) := T n
1 (	, �). The equation∫

�
	̃�(Z�(x), �(x) + �, �(x) + �) dx =

∫
�

�̃�(Z�(x), �(x) + �, �(x) + �) dx, (A.7)

admits a unique root � ∈ (−1, +∞). This root satisfies � ∈ [�1, �2], where �2 ��1 > − 1 and those two constants do
not depend on (	, �, �, n).

Proof. For � > − 1 define:

F�(�) :=
∫
�

	̃�(Z�(x), �(x) + �, �(x) + �) dx,

G�(�) :=
∫
�

�̃�(Z�(x), �(x) + �, �(x) + �) dx.

Because of Assumptions 3 and 4, F� is continuous increasing and G� is continuous decreasing on (−1, +∞) . Using
Assumptions 3 and 4 again, and since ����1 and z�Z� �z on �, we first find that:

F�(�)� F̃ (�) := |�|N(1 + �)(1 − ��(z, 1 + �, 1 + �)). (A.8)

By definition of �� and using Assumptions 3, 4 and 6, there exists 
 ∈ (−1, +∞) such that ��(z, 1 + �, 1 + �)�1/2
for all ��
 and all � ∈ (0, 1/2). Hence for ��
, (A.8) yields

F�(�)� F̃ (�)� |�|
2

N(1 + �). (A.9)
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Similarly, one gets

G�(�)�G̃(�) := |�| · n(z, 1 + �). (A.10)

Note that F̃ is increasing and G̃ decreasing, that both are obviously continuous, and by (A.9) and Assumption 3, we
have

(F̃ − G̃)(�)� |�|(N(1 + �) − n(z, 1 + �)) for ��
,

lim
�→+∞

(N(1 + �) − n(z, 1 + �)) = +∞.

Hence there exists a constant �2 ∈ (
, +∞), that does not depend on (	, �, �, n), such that on (�2, +∞), one has

F� − G� � F̃ − G̃ > 0. (A.11)

Using Lemma A.1, setting c1 := 1 + �2(diam(�)), for all x ∈ �, we have

1��(x)��(x)�c1.

Using Assumption 3, we first get:

F�(�)�F(�) := |�|N(c1 + �).

Note that F is an increasing function of �. Let y0 ∈ � be such that �(y0) = 1 = min �. Using Lemma A.1 again, we
also get

�(y)�1 + �2(|y − y0|), ∀y ∈ �. (A.12)

With Assumptions 3 and 4, we obtain then

G�(�)�
∫
�

�̃�(z, 1 + � + �2(|y − y0|), c1 + �) dy.

Using Assumption 1, we then get

G�(�)�G(�),

where G is the function defined by

G(�) := �0

�

∫
B(0,�0)

��(z, 1 + � + �2(|x|), c1 + �)n(z, 1 + � + �2(|x|)) dx.

By definition of �� and using Assumptions 3, 4 and 6, we deduce that there exists � ∈ (0, 2) such that for every � ∈
(0, 1/2) and all t ∈ (0, �] one has ��(z, t, c1)�1/2. Now let ���0 be such that �2(�)��/2, for all � ∈ (−1, −1+�/2],
one has

G(�)�G(�) := �0

2�

∫
B(0,�)

n(z, 1 + � + �2(|x|)) dx. (A.13)

When � → −1+, the integrand in (A.13), n(z, 1 + � + �2(|x|)), converges monotonically to n(z, �2(|x|)). Using
Assumption 5 and the monotone convergence Theorem we obtain that G (which is decreasing and does not depend on
(	, �, �, n)) tends to +∞ as � tends to −1. Hence, there exists �1 ∈ (−1, −1 + �/2] such that on (−1, �1) one has

F� − G� �F − G�F − G < 0. (A.14)

Finally, from (A.14), (A.11), and the monotonicity and continuity properties of F� and G� we deduce that the equation
F� = G� admits a unique root � ∈ (−1, +∞) and �2 ����1. Since �2 and �1 do not depend on (	, �, �, n), we are
done. �

Note that with � determined as in the previous proposition the two functions � + � and � + � are strictly positive,
of course they still are conjugate with respect to cn and still solve the program (Dn

	,�).
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Besides, under our continuity assumptions, we have obtained the two new densities (	′, �′) ∈ �:

	′ := 	̃�(Z�(x), �(x) + �, �(x) + �),

�′ := �̃�(Z�(x), �(x) + �, �(x) + �).

A.2.3. Fixed-point formulation
In what follows, we assume � ∈ (0, 1/2), n�r−1. We sum up the preceding results by showing that the existence

of �-equilibria for the regularized transportation cost cn reduces to a certain fixed-point problem for an operator T �,n :
� → � which we construct as follows.

Start from (	, �) ∈ �, a pair of densities.
Step 1: Define the productivity function z by: z = Z�. In view of formula (2.1), it is immediate to check that

z ∈ C0(�, [z, z]).
Step 2: Let (�, �) be the only solution of problem (Dn

	,�) such that min� � = 1. Denote (�, �) := T n
1 (	, �). Note

that �, � are continuous functions and that ����1.
Step 3: Find the only constant � > − 1 such that∫

�
	̃�(Z�(x), �(x) + �, �(x) + �) dx =

∫
�

�̃�(Z�(x), �(x) + �, �(x) + �) dx

and define (� + �, � + �) := T �
2 (�, �, Z�). Proposition A.1 guarantees that T �

2 (�, �, Z�) is well-defined and
T �

2 (�, �, Z�) is a pair of strictly positive continuous functions on �.
Step 4: Compute the new element (	′, �′) of �, defined for all x ∈ � by

	′(x) := 	̃�(Z�(x), �(x) + �, �(x) + �) = �̃�(Z�(x), T �
2 (T n

1 (	, �), Z�)(x)),

�′(x) := �̃�(Z�(x), �(x) + �, �(x) + �) = �̃�(Z�(x), T �
2 (T n

1 (	, �), Z�)(x))

and denote by T �,n(	, �) := (	′, �′) this new pair of densities. It is immediate to check that by construction
T �,n(	, �) ∈ �.

Existence of an �-equilibrium for the transportation cost cn actually reduces to the existence of fixed-points of T �,n.
This is the content of the next result.

Proposition A.2. Let (	, �) ∈ �, (�, �) := T �
2 (T n

1 (	, �), Z�) and let 
 ∈ �(	, �) be an optimal transportation plan
between 	 and � for the transportation cost cn. The next statement are equivalent:

1. (	, �) is a fixed-point of T �,n,
2. (	, �, Z�, �, �, 
) is an �-equilibrium for the transportation cost cn.

Proof. Assume first that (	, �) ∈ � and (	, �) = T �,n(	, �). By definition, requirements 1 and 2 in the definition of an
�-equilibrium are satisfied. The conjugacy requirement 4 follows from Theorem 6.1, Lemma 6.1 and the definition of
T n

1 and T �
2 . Requirement 5 follows from Theorem 6.1 and the fact that (�, �) solves (Dn

	,�). Finally since (	, �) is a
fixed-point of T �,n and by definition of (�, �), we have:

	(.) = 	̃�(Z�(.), �(.), �(.)), �(.) = �̃�(Z�(.), �(.), �(.))

so that requirement 3 is satisfied. The converse implication follows from requirement 3 in the definition of an �-
equilibrium and the definition of T �,n. �

A.2.4. Existence of �-equilibria in the smooth case
We shall prove here that the operator T �,n satisfies the assumptions of Schauder’s fixed-point theorem, on some

closed convex subset of � so that it admits at least one fixed-point.



G. Carlier, I. Ekeland / Nonlinear Analysis: Real World Applications 8 (2007) 725–748 741

Lemma A.2. Let � ∈ (0, 1/2) and n�r−1. Under Assumptions 1–6, there exist three positive constants 
1, 
2, 
3 such
that

T �,n(�) ⊂ ��
1,
2,
3 :=
{
(	′, �′) ∈ C0

(
�, [�
1, 
2]

)2
:
∫
�

	′ =
∫
�

�′ �
3

}
.

Proof. Let (	, �) ∈ � and (	′, �′) := T �,n(	, �). Defining z := Z� and (�, �) := T �
2 (T n

1 (	, �), Z�), we then have, for
all x ∈ �:

	′(x) = (1 − ��(z(x), �(x), �(x)))N(�(x)),

�′(x) = ��(z(x), �(x), �(x))n(z(x), �(x)).

By construction, ����(., ., .)�1 − � and z�z(.)�z. Using Lemma A.1 and Proposition A.1, setting C0 = 1 + �1 > 0
and C1 := 1 + �2 + �2(diam(�)), one gets:

C0 ���C1 and C0 ���C1 on �. (A.15)

Using (A.15), Assumptions 3 and 4, we then obtain, for all x ∈ �

N(C0)�N(�(x))�N(C1), (A.16)

n(z, C1)�n(z(x), �(x))�n(z, C0). (A.17)

Defining


1 := min(N(C0), n(z, C1)), 
2 := max(N(C1), n(z, C0)),

we therefore have (	′, �′) ∈ C0(�, [�
1, 
2])2. Finally, the fact that 	′ and �′ have the same total mass yields∫
�

��(z(x), �(x), �(x))(n(z(x), �(x)) + N(�(x))) dx =
∫
�

N(�(x)) dx

since n(z(x), �(x)) + N(�(x))�n(z, C0) + N(C1) and N(�(x))�N(C0) for all x ∈ �, we get∫
�

��(z(x), �(x), �(x)) dx� |�|N(C0)

n(z, C0) + N(C1)

hence ∫
�

	′ =
∫
�

�′ �
3 = |�|N(C0)n(z, C1)

n(z, C0) + N(C1)
. �

In what follows, C0(�, R)2 will be equipped with the topology of uniform convergence, i.e. with the norm

‖(	1, �1) − (	2, �2)‖∞ := sup
x∈�

|	1(x) − 	2(x)| + sup
y∈�

|�1(y) − �2(y)|.

Note then that ��
1,
2,
3 is a closed convex subset of C0(�, R)2.

Lemma A.3. Let � ∈ (0, 1/2) and n�r−1. Under Assumptions 1–6, T �,n is a continuous mapping on ��
1,
2,
3

equipped with the norm ‖.‖∞.

Proof. Let (	, �) ∈ ��
1,
2,
3 and (	k, �k) be a sequence of elements of ��
1,
2,
3 converging to (	, �). Define then

zk := Z�k
, (�k, �k) := T �

2 (T n
1 (	k, �k), zk).

From Lemma A.5, we know that zk converges uniformly to Z� on �. Using Lemma A.1, Proposition A.1 and Ascoli’s
Theorem, (�k, �k) admits a converging subsequence that we denote (�kj

, �kj
) and we denote (�, �) its limit. Note
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that by Proposition A.1, � and � are strictly positive on �. By definition of T �,n and Proposition 6.1, for all k, (�k, �k)

is characterized by the conditions∫
�

	̃�(zk(x), �k(x), �k(x)) dx =
∫
�

�̃�(zk(x), �k(x), �k(x)) dx (A.18)

and (�k, �k) solves the optimization problem

(Dn
	k,�k

) sup
�,�

{∫
�

� d�k −
∫
�

� d	k : �(y) − �(x)�cn(x, y), (x, y) ∈ �2
}

. (A.19)

It is easy to see, letting j go to ∞, that (�, �) solves:

(Dn
	,�) sup

�,�

{∫
�

� d� −
∫
�

� d	 : �(y) − �(x)�cn(x, y), (x, y) ∈ �2
}

. (A.20)

Passing to the limit in (A.18), yields∫
�

	̃�(Z�(x), �(x), �(x)) dx =
∫
�

�̃�(Z�(x), �(x), �(x)) dx. (A.21)

Together with (A.20) and Propositions 6.1 and A.1, this implies (�, �) = T �
2 (T n

1 (	, �), Z�) and that (�, �) is the only
cluster point of the sequence (�k, �k). Hence, by compactness, the whole sequence (�k, �k) converges uniformly to
(�, �) on �. Finally, by continuity of 	̃�(., ., .) and �̃�(., ., .), T �,n(	k, �k) converges uniformly to T �,n(	, �) on �. �

Lemma A.4. Let � ∈ (0, 1/2) and n�r−1. Under Assumptions 1–6, T �,n(��
1,
2,
3) is relatively compact in C0(�, R)2

equipped with the norm ‖.‖∞.

Proof. Let (	k, �k) be a sequence of elements of ��
1,
2,
3 and define (	′
k, �

′
k) := T �,n(	k, �k). Define then

zk := Z�k
, (�k, �k) := T �

2 (T n
1 (	k, �k), zk).

Arguing as in the proof of Lemma A.3, we deduce that (�k, �k) admits a converging subsequence that we denote
(�kj

, �kj
) and we denote (�, �) its limit. From Lemma A.6, we may also assume that zkj

converges to some function

z. By continuity of 	̃�(., ., .) and �̃�(., ., .), we deduce that 	′
kj

and �′
kj

converge uniformly on �, respectively, to
	̃�(z(.), �(.), �(.)) and �̃�(z(.), �(.), �(.)). �

Combining Proposition A.2, with Lemmas A.2–A.4 and invoking Schauder’s fixed-point Theorem, we finally obtain
the existence of �-equilibria for the transportation cost cn.

Theorem A.1. Let � ∈ (0, 1/2) and n�r−1. Under Assumptions 1–6, there exists at least one �-equilibrium for the
transportation cost cn.

Proof. From Lemmas A.2–A.4, the continuous operator T �,n maps the closed convex set ��
1,
2,
3 into itself and has
a relatively compact image. By Schauder’s fixed-point Theorem (see for instance [4]), T �,n admits at least one fixed-
point on ��
1,
2,
3 . Using Proposition A.2, this implies that there exists at least one �-equilibrium for the transportation
cost cn. �

A.2.5. Existence of �-equilibria when c is continuous
Letting the mollifying parameter n tend to ∞ (for fixed � > 0) and using Theorem A.1, we then get existence of

�-equilibria.

Theorem A.2. Let � ∈ (0, 1/2). Under Assumptions 1–6, there exists at least one �-equilibrium for the transportation
cost c.
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Proof. From the results of the previous paragraphs, for every n�r−1, there exists an �-equilibrium for the transport cost
cn that is of the form (	n, �n, zn, �n, �n, 
n) with (	n, �n) a fixed-point of T �,n on ��
1,
2,
3 , zn := Z�n , (�n, �n) =
T �

2 (T n
1 (	n, �n), zn) and 
n an optimal transportation plan between 	n and �n for the cost cn. Using Lemma A.1,

Proposition A.1 and Ascoli’s Theorem, (�n, �n) admits a converging subsequence, that we do not relabel, and we
denote(�, �) its limit (note that � and � are strictly positive on � by Proposition A.1). By Lemma A.6, we may
also assume that zn converges uniformly to some function z on �. By continuity of 	̃�(., ., .) and �̃�(., ., .), we have
uniform convergence of 	n and �n to 	 := 	̃�(z(.), �(.), �(.)) and � := �̃�(z(.), �(.), �(.)), respectively. Note that
(	, �) ∈ ��
1,
2,
3 . With Lemma A.5, we also have z = Z�.

Due to Lemma A.7, (�, �) are conjugate with respect to the cost c, i.e. fulfill (A.2) and (A.3). For all n, 
n ∈ �(	n, �n)

is a nonnegative Borel measure on � × � and 
n(� × �)�
2|�| by Lemma A.2. We may therefore assume that 
n

converges weakly * to some measure 
. By weak * convergence of marginals, we must have 
 ∈ �(	, �). Finally,
passing to the limit in the identity:∫

�×�
cn d
n =

∫
�

�n d�n −
∫
�

�n d	n =
∫
�×�

(�n(y) − �n(x)) d
n(x, y)

and using � − ��c, we get

�(y) − �(x) = c(x, y) 
-a.e.

We thus have proven that (	, �, z, �, �, 
) is an �-equilibrium for the transportation cost c. �

Let us remark that the �-equilibrium (	, �, z, �, �, 
) we have obtained in the previous proof satisfies: (	, �) ∈
��
1,
2,
3 , z ∈ Z(C0(�, [0, 
2])). Moreover, by Lemmas A.2 and 6.1, � and � belong to some uniformly equicontinuous
subset of C0(�, [C0, C1]) for some positive constants C0 and C1 that do not depend on �. By Ascoli’s theorem and
Lemma A.6, we deduce that (z, �, �) belong to some compact subset (that does not depend on �) of C0(�, [z, z]) ×
C0(�, [C0, C1]) × C0(�, [C0, C1]) equipped with the uniform topology.

A.3. From �-equilibria to equilibria: Proof of Theorem 6.2

From the results of Section A.2.5, for every � ∈ (0, 1/2), there exists an �-equilibrium for the transportation cost c,
(	�, ��, z�, ��, ��, 
�) such that (	�, ��) ∈ ��
1,
2,
3 and the family (z�, ��, ��) is relatively compact in C0(�, [z, z])×
C0(�, [C0, C1]) × C0(�, [C0, C1]) equipped with the uniform topology where C0 and C1 are positive constants (see
Lemma A.2). There exists then �k , a sequence converging to 0 as k tends to ∞, and (z, �, �) ∈ C0(�, [z, z]) ×
C0(�, [C0, C1]) × C0(�, [C0, C1])such that (z�k , ��k , ��k ) converges uniformly on � to (z, �, �). For notational
conveniency we shall simply relabel quantities as follows:

(	k, �k, zk, �k, �k, 
k) := (	�k , ��k , z�k , ��k , ��k , 
�k ).

Let us also define

�k := ��k (zk, �k, �k, 
k), Nk := N(�k), nk := n(zk, �k).

and Qk := Q(�k), qk := q(zk, �k). We then have the following uniform convergence on �.

lim
k

(Nk, nk, Qk, qk) = (N(�), n(z, �), Q(�), q(z, �)). (A.22)

Since �k ∈ [0, 1], taking subsequences if necessary, we may also assume that �k converges weakly ∗ in L∞(�) to some
function � (of course, 0���1). This implies that 	k and �k converge weakly ∗ in L∞(�) to 	 := (1 − �)N(�) and
� := �n(z, �), respectively. By weak ∗ convergence and Lemma A.2, we get∫

�
	(x) dx =

∫
�

�(y) dy�
3 > 0. (A.23)

Since �k converges weakly ∗ in L∞(�) to �, for all x ∈ �,
∫
� �(x, y)�k(y) dy converges to

∫
� �(x, y)�(y) dy. Hence

zk converges pointwise to Z� so that z = Z�. By Lemma A.8, requirements (3.3) and (3.4) in the definition of an
equilibrium are satisfied.
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Since 
k ∈ �(	k, �k), 
k(�×�)�
2|�| by Lemma A.2. Taking a subsequence if necessary, we may therefore assume
that 
k converges weakly * to some measure 
. By weak * convergence of marginals, we must have 
 ∈ �(	, �). Passing
to the limit in the identity:∫

�×�
c d
k =

∫
�

�k d�k −
∫
�

�k d	k =
∫
�×�

(�k(y) − �k(x)) d
k(x, y)

and using �(y) − �(x)�c(x, y) (this inequality is obtained by passing to the limit in �k(y) − �k(x)�ck(x, y)),
we get

�(y) − �(x) = c(x, y) 
-a.e. (A.24)

To prove that (	, �, z, �, �, �, 
) is an equilibrium it remains to prove that the free-mobility of labor conditions (3.5)
and (3.6) are satisfied. Note that (3.5) is equivalent to � = �̃ on spt(	), with �̃ defined by

�̃(x) := sup{�(y) − c(x, y) : y ∈ spt(�)}.
On the one hand, we know from Lemma A.7 that � and � satisfy the conjugacy relations (A.2) and (A.3). This implies
���̃ on �. On the other hand, using the conditional probabilities


 =
∫
�

P


x d	(x),

we get

�(�) = �(spt(�)) =
∫
�

P


x (spt(�)) d	(x) =

∫
�

P


x (�) d	(x).

Hence for 	-a.e. x, we have P


x (�\spt(�)) = 0. From (A.24), we also have, for 	-a.e. x, �(x) = �(y) − c(x, y) for

P


x -a.e. y. Combining those two conditions, we obtain ���̃ hence � = �̃ 	-a.e.. Since � and �̃ are continuous, the

previous extends to � = �̃ on spt(	).
The proof of (3.6) is similar. This finally proves that (	, �, z, �, �, �, 
) is an equilibrium.

A.4. Auxiliary lemmas

In what follows 
2 > 0 is as in Lemma A.2.

Lemma A.5. The mapping Z:

Z :
{

C0(�, [0, 
2]) −→ C0(�, [z, z]),
� �−→ Z�

is continuous where C0(�, [0, 
2]) and C0(�, [z, z]) are endowed with the sup norm.

Proof. The fact that Z maps C0(�, [0, 
2]) into C0(�, [z, z]) is straightforward. First note that for � and �′ in
C0(�, [0, 
2]) we have:

max
x∈�

∫
�

�(x, y)|�(y) − �′(y)| dy�C‖� − �′‖∞, (A.25)

where

C = max
x∈�

∫
�

�(x, y) dy.

Since g is uniformly continuous on [0, 
2C], for all � > 0 there exists � > 0 such that |g(t) − g(t ′)|�� for all (t, t ′) ∈
[0, 
2C]2 such that |t − t ′|��. This proves that if ‖� − �′‖∞ ��/C then ‖Z� − Z�′ ‖∞ ��. �
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Lemma A.6. The set Z(C0(�, [0, 
2])) is relatively compact in C0(�, [z, z]) endowed with the sup norm.

Proof. Define first the linear operator K by

K :
{

C0(�, [0, 
2]) −→ C0(�, R),

�(.) �−→ K�(.) := ∫
� �(., y)�(y) dy.

Note first that K is continuous and maps C0(�, [0, 
2]) into C0(�, [0, �C]) (see Lemma A.5). Let us prove now that
the set K(C0(�, [0, 
2])) is uniformly equicontinuous. Let � > 0 and let � > 0 be such that

sup
{
|�(x, y) − �(x′, y)| : (x, x′, y) ∈ �

3
, |x − x′|��

}
� �


2|�|

then for all � ∈ C0(�, [0, 
2]) and all (x, x′) ∈ �
2

such that |x − x′|��, we have |K�(x) − K�(x
′)|��. Hence

K(C0(�, [0, 
2])) is uniformly equicontinuous.
Since K(C0(�, [0, 
2])) is bounded and uniformly equicontinuous, by Ascoli’s Theorem it is relatively compact in

C0(�, R). The desired result follows from composition with the continuous function g. �

Lemma A.7. Assume that ck is a sequence of continuous cost functions on �
2

that converges uniformly to c on �
2

as
k tends to ∞. Assume that, for all k, �k and �k are continuous functions on � that satisfy the conjugacy relations with
respect to ck:

�k(x) = sup{�k(y) − ck(x, y) : y ∈ �}
�k(y) = inf{�k(x) + ck(x, y) : x ∈ �}.

If (�, �) is a cluster point (for the uniform topology) of (�k, �k) then (�, �) are conjugate with respect to the cost c
in the sense that they satisfy (A.2) and (A.3).

Proof. First note that for all k and (x, y) ∈ �
2
, we have �k(y)−�k(x)�ck(x, y) hence �(y)−�(x)�c(x, y). Hence

we have, for all x ∈ �

�(x)� sup{�(y) − c(x, y) : y ∈ �}.
By compactness and continuity arguments, there exists yk ∈ � such that �k(x) = �k(yk) − ck(x, yk). Taking sub-
sequences if necessary, we may assume that yk converges to some y ∈ �, we then obtain �(x) = �(y) − c(x, y).
Hence

�(x)� sup{�(y) − c(x, y) : y ∈ �}.
This proves (A.2), the proof of (A.3) is similar. �

Lemma A.8. Ifq(z(x), �(x)) > Q(�(x)) then�(x)=1,	(x)=0 and �(x)=n(z(x), �(x)). Similarly, ifq(z(x), �(x)) <

Q(�(x)) then �(x) = 0, 	(x) = N(�(x)) and �(x) = 0.

Proof. Define

�+ := {x ∈ � : q(z(x), �(x)) > Q(�(x))}
and assume that x ∈ �+. For k large enough q(zk(x), �k(x)) − Q(�k(x))��k − �2

k so that �k(x) = 1 − �k for k
large enough. In particular �k converges to 1 pointwise on �+ and in L1(�+). Since �k converges to � for the weak ∗
topology of L∞(�+) we have � ≡ 1 on �+. Similarly on �+, �k = �kn(zk, �k) converges pointwise and in L1(�+)

to n(z, �), hence �(x) = n(z(x), �(x)) a.e. on �+. Finally, on �+, 	k = (1 − �k)N(�k) converges a.e. and in L1(�+)

to 0, hence 	(x) = 0 a.e. on �+. The proof of the other assertion is similar. �
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A.5. Proof of Proposition 6.1

Let (�, �) be a solution of (D	,�). Due to the constraints of (D	,�), we first have ���̃ where

�̃(y) := inf{�(x) + c(x, y) : x ∈ �}. (A.26)

By definition of �̃, we also have ���̃ where

�̃(x) := sup{�̃(y) − c(x, y) : y ∈ �}. (A.27)

Using (A.26) and ���̃, we get

�̃(y) := inf{�̃(x) + c(x, y) : x ∈ �} (A.28)

so that the pair (�̃, �̃) satisfies the conjugacy relations (A.2) and (A.3). By construction the pair (�̃, �̃) satisfies the
constraints of (D	,�), ���̃ and ���̃. Hence, one must have �= �̃, �= �̃ a.e.. In the sequel we may therefore assume
that the pair (�, �) satisfies the conjugacy relations (A.2) and (A.3). By Lemma 6.1, and the regularity assumption on
c, we deduce that � and � are Lipschitz continuous hence differentiable almost everywhere by Rademacher’s Theorem
(see [5]).

Let 
 be a solution of (M	,�) then we have

�(y) − �(x) = c(x, y) 
-a.e. (A.29)

Let us write


 =
∫
�

P


x d	(x).

Let x ∈ � be a point of differentiability of � such that (A.29) holds for P


x -a.e. y. For h ∈ R2 small enough, we then

have for P


x -a.e. y

�(x + h) = �(x) + ∇�(x) · h + o(h)��(y) − c(x + h, y)

= �(y) − c(x, y) − ∇xc(x, y) · h + o(h) = �(x) − ∇xc(x, y) · h + o(h).

We then get that, for P


x -a.e. y

∇�(x) = −∇xc(x, y). (A.30)

Hence, we have

∇�(x) = −
∫
�

∇xc(x, y) dP


x (y). (A.31)

Since the previous holds almost everywhere and a similar formula holds for � we finally deduce the uniqueness result
from the assumption that � is connected.

Let us remark that, under the assumptions of Proposition 6.1, solutions of (D	,�) necessarily satisfy the conjugacy
relations (A.2) and (A.3).

A.6. Proof of Theorem 5.1

The strictly convex case, � > 1: Let us check that the assumptions of Theorem 6.2 are satisfied. Assumption 6.1
directly follows from the definition of c. Assumptions 3, 4 and 6 follow from the explicit expressions 5.1–5.4. As for
Assumption 5, first remark that c is C1 on R2 × R2 hence Lipschitz on �r × �r then �2(t)�Kt for some positive
constant K. Using (5.1), we then get

n(z, �2(|h|))�
(


z


K

)1/(1−
)

|h|−1/(1−
).
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Hence Assumption 5 is satisfied provided 1�2(1 − 
) i.e. 
�1/2. Using Theorem 6.2, we then obtain existence of
equilibria. Finally, the fact that equilibria are pure follows from the fact that c satisfies (7.1)–(7.2) when � > 1 and from
Theorem 7.1.

The sublinear case, ��1: As previously, it is enough to check that Assumption 5 is satisfied. First note that when
��1, the cost c satisfies the triangle inequality (see [14])

c(x, y1)�c(x, y2) + c(y1, y2)

this implies that �2(t)�Mt� hence

n(z, �2(|h|))�
(


z


M

)1/(1−
)

|h|−�/(1−
).

Hence Assumption 5 is satisfied provided ��2(1 − 
).

A.7. Proof of Proposition 7.1

Assume by contradiction that (	, �, z, �, �, �, 
) is an equilibrium and 	 = �, in this case � ∈ (0, 1) hence spt(	) =
spt(�) = � which implies

q(z(x), �(x)) = Q(�(x)) for all x ∈ �. (A.32)

Since 	 = � and 
 ∈ �(	, �) is an optimal plan between 	 and � = 	 and since c vanishes only on the diagonal of �
2
, 


has to be supported on the diagonal of �
2

i.e. 
 = ∫
� �x d	(x) (�x being the Dirac mass at x). Using the fact that � is

differentiable a.e. and formula (A.31), we get, for a.e. x

∇�(x) = −∇xc(x, x) = 0.

Hence � is constant and so is � by a similar argument. Since �(x) = �(x) − c(x, x), we obtain that � = � = A for
some constant A. Condition (A.32) then becomes

q(z(x), A) = Q(A) for all x ∈ �

this implies that z is constant on � hence so is f (|.|) ∗ �; differentiating this function yields∫
�

f ′(|x − y|) x − y

|x − y|�(y) dy = 0 for all x ∈ �. (A.33)

The smoothness of f permits to extend the previous identity to the boundary of �. Now let x0 ∈ � ∩ � co(�) and let
p ∈ R2, p 
= 0 be such that

〈p, x0〉 = min{〈p, y〉 : y ∈ co(�)}. (A.34)

Take x = x0 in (A.33) and take the inner product with p to obtain∫
�

f ′(|x0 − y|)
〈

x0 − y

|x0 − y| , p
〉
�(y) dy = 0

since the integrand is positive on � we get the desired contradiction.
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