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Abstract

The Chichilnisky criterion of intergenerational equity is time-inconsistent

and has no optimal solution in the Ramsey model. Hence, seeking optimality

is both irrelevant and futile. This paper investigates Markov-perfect equilibria

in the game that generations with Chichilnisky preferences play in the Ramsey

model. The time-discounted utilitarian optimum is the unique equilibrium path

when the initial stock is small, implying that the weight on the infinite future in

the Chichilnisky criterion plays no role. However, this part of the Chichilnisky

criterion may lead to more stock conservation than the time-discounted utili-

tarian optimum if the initial stock is large. Uniqueness is obtained by assuming

that each generation coordinates on a(n) (almost) best equilibrium and takes

into account that future generations will do as well. This analysis of uniqueness

is based on von Neumann-Morgenstern stability.
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1 Introduction

The Ramsey model (Ramsey, 1928) is the workhorse of growth theory, used to

analyze both the management of reproducible assets and stocks of environmental

and natural resources.

In the Ramsey model, output depends on a one-dimensional stock k and is split

between consumption c and stock accumulation k̇. One possibility is to interpret

the function that turns stock k into output c + k̇ as a production function and k

as reproducible capital. Then the initial capital stock can be assumed to be small,

and the question is to how much capital to accumulate. Another possibility is to

interpret the function that turns k into c+ k̇ as a natural growth function and k as

a renewable resource. Then the initial resource stock can be assumed to be large,

and the question is how much resource to conserve.

Economists usually apply the time-discounted utilitarian (TDU) criterion, which

seeks to maximize

δ

∫ ∞
0

e−δtu(c)dt

over all feasible paths. In this criterion, u is a utility function that turns consumption

into transformed value (‘utility’). When the TDU criterion is applied to the Ramsey

model, it leads to capital accumulation in the former interpretation, with a small

initial stock of reproducible stock, but does not lead to resource conversation in the

latter interpretation, with a large initial stock of a natural resource.

When considering the question of intertemporal distribution as a problem of

intergenerational equity, one might argue that the TDU criterion is deficient from

an axiomatic perspective – in spite of Koopmans’s (1960) axiomatization – as it

does not treat generations equally. The TDU criterion leads also to problematic

consequences in the Ramsey model, as it does not support the intuition that we

should be willing to assist an infinite future if all the future generations are worse

off than us.

Alternatives like undiscounted utilitarianism and (lexicographic or ordinary)

maximin treat generations equally. They entail that future generations are assisted

if they are worse off than us, but these alternatives provide extremely different an-

swered to question of our responsibility to save for the benefit of future generations

than are better than us (see Asheim, 2010): According to undiscounted utilitarian-

ism, the responsibility to save for the benefit of future generations than are better

than us is essentially unlimited, while there is no such responsibility when max-
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imin is applied. Hence, compared to the TDU criterion, undiscounted utilitarianism

and maximin might be claimed to lead to more desirable consequences when the

Ramsey model is interpreted as a model of resource conservation, but these criteria

lead to extreme and perhaps undesirable consequences when the Ramsey model is

interpreted as a model of capital accumulation.

Chichilnisky (1996) points out that the TDU criterion is a dictatorship of the

present, in the sense that consumption beyond some finite future time does not

play any role if two different consumption paths are strictly ranked. She suggests

sustainable preference as an alternative. A sustainable preference is a numerically

representable social welfare function satisfying the axiom of Strong Pareto (in the

sense of being sensitive to the interests of each generation), and being neither a

dictatorship of the present (also generations beyond any given T play a role) or a

dictatorship of the future (not only generations beyond any given T play a role).

The requirement that a sustainable preference not be a dictatorship of the present

rules out the TDU criterion. The requirement that a sustainable preference be

numerically representable rules out undiscounted utilitarianism and lexicographic

maximin. The requirement that a sustainable preference satisfy Strong Pareto rules

out ordinary maximin.

The following is a particular version of a sustainable preference that we will

apply in the continuous time framework considered in this paper:

(1− α)

(
δ

∫ ∞
0

e−δtu(c)dt

)
+ α lim

t→∞
u(c) , with 0 < α < 1.

In this version of a sustainable preference, the criterion is simply to maximize a

convex combination of the TDU value and limit of utility. This particular kind of a

sustainable preference can be used to rank paths for which consumption converges

when time goes to infinity, and on this domain it is within the class of representations

considered in Chichilnisky’s (1996) Theorems 1 and 2.

However, even in this simplified form, it is problematic to use Chichilnisky’s

criterion when applied on the set of converging consumption paths in the Ramsey

model. These problems are discussed extensively by Heal (1998). The problems of

applying the Chichilnisky criterion is two-fold:

• There is a generic problem of non-existence, as the value of the first TDU part

of the criterion is increased by the delaying the response to the second part of

the criterion, which captures the concern for the infinite future. This problem

of non-existence is present also when applied to the Ramsey model.
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• The criterion is time-inconsistent, as the weight on any absolute time t of the

first TDU part increases when the time of evaluation is advanced, while the

weight on the infinite future through the second part does not change.

The problems of non-existence and time-inconsistency imply that searching for a

optimal paths in the Ramsey model when applying the Chichilnisky criterion in the

Ramsey model is both futile and irrelevant. Consequently, this paper investigates

Markov-perfect equilibria in the game that generations with Chichilnisky preferences

play in the Ramsey model. We show that the equilibrium path always coincides with

the TDU optimum when the initial stock is small, implying that the weight on the

infinite future in the Chichilnisky criterion plays no role. However, we also show that

this part of the Chichilnisky criterion may lead to more stock conservation than the

time-discounted optimum if the initial stock is large.

These consequences of the Chichilnisky criterion might be considered attractive

as it supports the intuition that we should seek to assist future generations if they

are worse off than us, but not to save as much for their benefit if they turn out to

be better off.

The paper is organized as follows. In Section 2 we introduce the Ramsey model,

and investigate TDU optimal paths when the stock is constrained to remain within

restricted subintervals. This will serve as a building block for the analysis of Markov-

perfect equilibria when, in Section 3–6, applying the Chichilnisky criterion to the

Ramsey model. In Section 3 we first establish that there does not exist and optimal

path for the Chichilnisky criterion in the Ramsey model. In Section 4 we then

consider continuous Markov-perfect equilibria on subintervals, and establish that

the Chichilnisky criterion is outcome-equivalent to the TDU criterion.

In Section 5, we then show that this conclusion is changed when we consider

discontinuous Markov-perfect equilibrium. To be precise: The Chichilnisky crite-

rion is still outcome-equivalent to the TDU optimum when the Ramsey model is

interpreted as a model of capital accumulation with a small initial stock. However,

when the Ramsey model is interpreted as a model of resource conversation with a

large initial stock, the weight on the infinite future in the Chichilnisky criterion may

induce generations to conserve the resource stock to a larger extent than under the

TDU criterion.

In the penultimate Section 6 we address the problem of coordination: What

if the first generation coordinates on the discontinuous Markov-perfect equilibrium

that leads to an outcome maximizing the value of the Chichilnisky criterion? What
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if the first generation takes into account that future generations will do so in turn?

Our analysis indicates that uniqueness is obtained by assuming that each genera-

tion coordinates on a(n) (almost) best equilibrium and takes into account that future

generations will do as well. This uniqueness result allows us to perform comparative

statics with respect to the discount rate δ and the weight α on the infinite future.

In the final Section 7 we offer concluding remarks by comparing our results in the

context of the Chichilnisky criterion with other criteria that also support the intu-

ition that we should seek to assist future generations if they are worse off than us,

but not to save as much for their benefit if they turn out to be better off.

2 TDU optimum in the Ramsey model

Denote by k the stock of an augmentable good. In the Ramsey model, instanta-

neous output f(k) is split between flow of consumption c and stock accumulation

k̇. One possibility is to interpret f as a net production function and k as a stock of

reproducible capital. Then the initial capital stock k0 can be assumed to be small,

and the question is to how much capital to accumulate. Another possibility is to

interpret f as a natural growth function and k as a stock of a renewable resource.

Then the initial resource stock can be assumed to be large, and the question is how

much resource to conserve.

To allow for both these interpretations, let f : (0,K) → R++ be a strictly

concave and continuously differentiable function, with K finite or infinite, satis-

fying limk→0+ f(k) = 0, limk→K− f(k) = 0 if K < ∞, limk→0+ f
′(k) = ∞, and

limk→K− f
′(k) = 0 if K = ∞. This includes the case where f is an increasing

function satisfying the Inada conditions, but allows also for f having an interior

maximum, due to depreciation (in the former interpretation) or reduced natural

regeneration for stocks exceeding the maximum sustainable yield (in the latter in-

terpretation). In any case, the technology of the economy is described by the system:

k̇ = f (k)− c, k (0) = k0 ∈ (0,K) , (1)

c (t) > 0, k (t) > 0 . (2)

Note that if c ∈ L1 (0, T ), then k is absolutely continuous on (0, T ), and conversely.

We denote by L1
loc(0,∞) the space:

L1
loc(0,∞) =

⋂
T>0

L1 (0, T ) .
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Given k0 ∈ (0,K), any pair (c, k) satisfying (1) and (2), with c ∈ L1
loc(0,∞), will be

called feasible. The set of all feasible pairs (c, k) will be denoted by A (k0).

Let u : R++ → R be a twice differentiable strictly increasing and strictly concave

utility function satisfying limc→0+ u
′(c) =∞.

Define k∞ : R++ → (0,K) by f ′(k∞(δ)) = δ. It follows from the assumptions

on f that k∞ is well-defined continuous and strictly decreasing function.

The following result is classical:

Proposition 1 The unrestricted TDU problem:

sup
(c,k)∈A(k0)

∫ ∞
0

e−δtu(c)dt

has a unique solution (c∗ (t) , k∗ (t)) for every initial stock k0 ∈ (0,K). Both k∗ and

c∗ are monotonic in t, and:

lim
t→∞

k∗ (t) = k∞(δ) , lim
t→∞

c∗ (t) = f (k∞(δ)) .

To study the implications of the Chichilnisky criterion in the Ramsey problem,

we need to understand first the restricted TDU problem. Fix k0 ∈ (0,K), and let

I ⊆ (0,K) be a nonempty interval with I 3 k0. The interval I may be unrestricted

and coincide with (0,K) or be an open, half-closed or closed subinterval of (0,K)

within which the stock k is constrained to remain. Given k0 ∈ (0,K), any pair (c, k)

satisfying (1) and (2), with k(t) ∈ I for all t ∈ [0,∞) and c ∈ L1
loc(0,∞), will be

called I-feasible. The set of all I-feasible pairs (c, k) will be denoted by A (k0, I).

Say that the pair (k∗, c∗) is I-optimal if, for any other I-feasible pair (k, c), we have:

lim infT→∞

∫ T

0
e−δt

(
u(c∗(t))− u(c(t))

)
dt ≥ 0 .

Lemma 1 If the I-optimum exists, then it is unique.

Proof. It is easily checked that the set of all I-feasible consumption paths is

convex. Since u is strictly concave, the TDU criterion is strictly concave, and the

maximum, if it exists, is unique.

With any I-feasible pair (k, c) we associate the path of present-value consumption

prices p : [0,∞)→ R++ defined by:

p(t) = e−δtu′(c(t)) .
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We say that (k∗, c∗) is I-competitive if c∗ is absolutely continuous, so that the associ-

ated present-value price path p∗ is differentiable almost everywhere, and, for almost

all t ∈ [0,∞), k∗(t) satisfies profit-maximization:1

k∗(t) = arg maxk∈I{p∗(t)f(k) + ṗ∗(t)k} . (3)

Say that (k∗, c∗) satisfies the capital value transversality (CVT) condition if

limT→∞p
∗(T )k∗(T ) = 0 .

We are now in a position to state a sufficient condition for optimality.

Lemma 2 If an I-feasible pair (k∗, c∗) is I-competitive, satisfies the CVT condition,

and
∫∞

0 e−δtu (c∗ (t)) dt <∞, then (k∗, c∗) is I-optimal.

Proof. Assume that the I-feasible pair (k∗, c∗) is I-competitive, satisfies the

CVT condition, and
∫∞

0 e−δtu (c∗ (t)) dt <∞. For any other I-feasible pair (k, c) we

have, using the definition of p∗ and the concavity of u:∫ T

0
e−δt (u(c∗(t))− u(c(t))) dt ≥

∫ T

0
p∗(t) (c∗(t)− c(t)) dt .

Hence, by equation (1) and the property that (3) holds for almost all t:∫ T

0
e−δt (u(c∗(t))− u(c(t))) dt ≥

∫ T ′

0
p∗(t)

(
k̇(t)− k̇∗(t)

)
+ ṗ∗(t) (k(t)− k∗(t)) .

Integrating by parts the right-hand side, and using the fact that k (0) = k0 = k∗ (0):∫ T

0
e−δt (u(c∗(t))− u(c(t))) dt ≥ p∗ (T ) (k (T )− k∗ (T )) .

Letting T →∞ and using the CVT condition:

lim inf
T→∞

∫ T

0
e−δt (u(c∗(t))− u(c(t))) dt ≥ 0 .

Hence, (k∗, c∗) is I-optimal.

This provides us with three cases where the I-optimal consumption paths exists

and is unique. Note that uniqueness follows immediately from the convexity of the

feasible set and the concavity of the utility function u. Write k := k∞(δ).

1The first term, pf(k), is the value of net production, while the negative of the second term,

−ṗk = (−ṗ/p)pk, is the cost of holding capital, with −ṗ/p being the consumption interest rate.

Hence, pf(k) + ṗk can be interpreted as profit. Note that (3) cannot be defined at time at which c

and thus p is not differentiable.
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(a) If k ∈ I, k = sup I /∈ I or k = inf I /∈ I, then there exists a unique I-

competitive pair (k, c) satisfying the CVT condition. If k0 = k, we have

k (t) = k for all t. If k0 6= k, then k (t) belongs to the interior of I for

all t > 0, and converges to, but never reaches, k. Condition (3) is satisfied

for all t ∈ [0,∞), implying that net marginal productivity f ′(k) equals the

consumption interest rate −ṗ/p. This leads to the Euler equation,

u′′(c)ċ = (δ − f ′(k))u′(c) ,

and the Keynes-Ramsey rule,

f ′(k) = δ + η ċc ,

where η = −u′′(c)c/u′(c).

(b) If k > sup I ∈ I, then there exists a unique I-competitive pair (k, c) satisfying

the CVT condition. The stock path reaches max I in finite time T with k̇(T ) =

0, and stays at max I, with c(t) = f(max I), for t ≥ T . We have that f ′(k) >

−ṗ/p for t > T , implying that the Euler equation is satisfied only in the interior

phase, for 0 < t < T . Note that (3) is not satisfied for t = T , as c and thus p

are not differentiable at this point in time.

(c) If k < inf I ∈ I, then there exists a unique I-competitive pair (k, c) satisfying

the CVT condition. The stock path reaches min I in finite time T with k̇(T ) =

0, and stays at min I, with c(t) = f(min I), for t ≥ T . We have that f ′(k) <

−ṗ/p for t > T , implying that the Euler equation is satisfied only in the interior

phase, for 0 < t < T . Note that (3) is not satisfied for t = T , as c and thus p

are not differentiable at this point in time.

We claim that in the remaining cases, that is, k > sup I /∈ I or k < inf I /∈ I, there

is no I-optimal pair. Indeed, suppose for instance k > sup I /∈ I. Set J = I∪{sup I}.
Clearly, the set of I-feasible pairs A(k0, I) is a subset of the set of J-feasible pairs

A(k0, J), so the maximum of the TDU criterion over all J-feasible pairs is at least

as large as the supremum over all I-feasible pairs:

max
A(k0,J)

∫ ∞
0

e−δtu (c (t)) dt ≥ sup
A(k0,I)

∫ ∞
0

e−δtu (c (t)) dt

We know from case (b) above that the J-maximum is unique, and is achieved by a

pair (k∗, c∗) where k∗ stays in I for 0 ≤ t < T and is equal to sup I for t ≥ T . We
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approximate (k∗, c∗) by a sequence of I-feasible pairs (kn, cn) as follows. Denote by

Tn the time when k∗ (t) = sup I − 1
n , and set:

kn (t) =

{
k∗ (t) for 0 ≤ t ≤ Tn
max I − 1

n for Tn ≤ t

with cn being the associated consumption path. Clearly:

sup
A(k0,I)

≥
∫ ∞

0
e−δtu (cn (t)) dt→

∫ ∞
0

e−δtu (c∗ (t)) dt = max
A(k0,J)

so supA(k0,I) = maxA(k0,J). On the other hand, the maximum on the right-hand side

is achieved only at (k∗, c∗), which does not belong to A (k0, I). So the supremum is

not achieved.

3 Chichilnisky criterion in the Ramsey model

Fix k0 ∈ (0,K), and consider the class K of (0,K)-feasible paths for which the

corresponding consumption path is converging. For any stock path k ∈ K with

associated converging consumption path c, write c∞ = limt→∞ c(t).

Say that the stock path k∗ ∈ K with associated converging consumption path c∗

is Chichilnisky-optimal if

(1− α)δ

∫ ∞
0

e−δt (u(c∗(t))− u(c(t))) dt+ α (c∗∞ − c∞) ≥ 0 (4)

for any stock path k ∈ K with associated converging consumption path c.

The Chichilnisky criterion, as given by (4), consists of a TDU part and a part

that depends on the limit of the path. This particular form is a special case of what

Chichilnisky (1996) calls a sustainable preference. It is clearly time-inconsistent

[INCLUDE A PROOF, BUT NOT A PRIORITY AT THIS POINT IN TIME], as

the weight on the stream in TDU part is increased when the time of evaluation is

advanced, while the weight on the limit is not affected with the time of evaluation

is advanced. Furthermore, the following result can be established.

Proposition 2 There does not exist an optimal path for the Chichilnisky criterion,

as given by (4), when applied in the Ramsey model

Sketch of proof. [THIS PROOF CAN EASILY BE MADE STRINGENT,

BASED ON YOUR NOTES, BUT THIS SHOULD BE PRIORITY AT THIS POINT
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INT TIME.] Step 1: A stock path k ∈ K with associated consumption path c satisfy-

ing c∞ ≤ f(k) is not Chichilnisky-optimal. Since f ′(k) = δ > 0 and f is continuously

differentiable, there is k′ > k with f(k′) > f(k). By following the (0,K)-optimal

stock path converging to k sufficiently long before the deviating to a stock path con-

verging to some k′ with associated consumption path converging to f(k′), any stock

path with associated consumption path converging to c∞ ≤ f(k) can be improved.

Step 2: A stock path k ∈ K with associated consumption path c satisfying c∞ >

f(k) is not Chichilnisky-optimal. Assume that there is a Chichilnisky-optimal stock

path k ∈ K with associated consumption path c satisfying c∞ > f(k). There

is k∞ with f(k∞) = c∞. By following the (0,K)-optimal stock path converging

to k sufficiently long before the deviating to a stock path converging to k∞ with

associated consumption path converging to f(k∞) = c∞, the stock path k can be

improved, leading to a contradiction.

The fact that the Chichilnisky criterion is time-inconsistent and does not have

an optimal path in the Ramsey model, implies that seeking an optimal path is both

irrelevant and futile. For the rest of the paper, we therefore investigate Markov-

perfect equilibria in the game that generations with Chichilnisky preferences play in

the Ramsey model.

4 Continuous equilibrium strategies

We first consider continuous Markov-strategies on subintervals in this section in

order to prepare the ground for the analysis of discontinuous Markov-strategies in

the subsequent sections.

Definition 1 A continuous Markov-strategy is a pair (I, σ), where I ⊆ (0,K) is a

nonempty interval and σ : I → R++ is continuously differentiable on the interior of

I, such that, for any initial k0 ∈ I, there is a unique solution k∗ : [0,∞) → I to

k(0) = k0 and k̇ = f(k)− σ(k) for t ∈ [0,∞) which satisfies that:

• the stock path k∗ is I-feasible

• there is some k∞ ∈ I, not depending on k0, such that limt→∞ k
∗ = k∞.

There are two possible situations. Either k∞ belongs to the interior of I, in which

case σ is continuously differentiable at k∞, which is an attracting fixed point for the
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one-dimensional dynamical system k̇ = f(k) − σ(k). Or k∞ is a boundary point of

I. In either case, since k(t)→ k∞ when t→∞, we must have f(k(t))−σ(k(t))→ 0,

so σ(k(t))→ f(k∞) and since σ is continuous, we find σ(k∞) = f(k∞). Hence, the

solution k∗ is in K, so we can compute the associated value of the C-criterion:

J(I, σ, k0) := (1− α)
(
δ

∫ ∞
0

e−δtu(c∗(t))dt
)

+ αu(f(k∞))

where c∗(t) is the consumption path generated by (I, σ) and k0 ∈ I
We now introduce the concept of continuous Markov-perfect equilibrium strategy,

henceforth denoted by CES: it is a strategy such that deviating on any bounded time

interval is not profitable, provided that the stock k remains in I. To formalize this,

let (I, σ) be a strategy with solution converging to some k∞, take the initial stock

k0 ∈ I and two times T1 and T2, with 0 ≤ T1 ≤ T2 < ∞, and any control c(t) > 0,

T1 ≤ t ≤ T2. Extend it to a control ck0,T1,T2(t) on t ≥ 0 by:

ck0,T1,T2(t) =


σ(k) for 0 ≤ t ≤ T1

c(t) for T1 ≤ t ≤ T2

σ(k) for T2 ≤ t

(5)

We shall say that ck0,T1,T2 is I-admissible if there is a unique solution k : [0,∞)→
I to k(0) = k0 and k̇ = f(k)−ck0,T1,T2(t) for t ∈ [0,∞) which satisfies that k remains

in I for all t ∈ [0,∞) and there is some k∞ ∈ I such that limt→∞ k = k∞.

Definition 2 A continuous Markov-strategy (I, σ) is a continuous equilibrium strat-

egy (CES) if, for every k0 ∈ I and every I-admissible choice of ck0,T1,T2 ,

J(I, σ, k0) ≥ (1− α)
(
δ

∫ ∞
0

e−δtu(ck0,T1,T2(t))dt
)

+ αu(f(k∞)) .

Proposition 3 The pair (I, σ) is a CES if and only if, for every k0 ∈ I, the solution

k∗ : [0,∞)→ I to k(0) = k0 and k̇ = f(k)− σ(k) for t ∈ [0,∞) is I-optimal.

Proof. Assume that the solution k∗ : [0,∞) → I to k(0) = k0 and k̇ = f(k) −
σ(k) for t ∈ [0,∞) is I-optimal. Then deviating from k∗ on any bounded time

interval cannot improve the TDU part of J(I, σ, k0) and cannot influence the part

that depends on the limit of the path. Therefore, the pair (I, σ) is a CES.

Suppose that the solution k∗ : [0,∞)→ I to k(0) = k0 and k̇ = f(k)− σ(k) for

t ∈ [0,∞) is not I-optimal. By following the I-optimal stock path sufficiently long
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before the deviating to a stock path converging to k∗∞ = limt→∞ k
∗(t), the TDU

part of J(I, σ, k0) can be improved, while not influencing the part that depends on

the limit of the path. Therefore, the pair (I, σ) is not a CES.

Proposition 3 implies that, in the Ramsey model, the Markov-perfect equilibrium

strategy of the Chichilnisky criterion yields the same outcome as the TDU-optimal

path, if the Markov-perfect equilibrium strategy is required to be continuous. For

later use, denote by ((0,K), σ∗) the CES on (0,K).

As we will see in the following section, considering discontinuous strategies yields

additional possibilities.

5 Discontinuous equilibrium strategies

A discontinuous Markov-strategy combines a finite number of continuous Markov-

strategies so that the flow of consumption is determined for all positive stock levels.

Definition 3 A discontinuous Markov-strategy is a collection

σ = {(I1, σ1), . . . , (In, σn)}

where {I1, . . . , In} is a partition of the set of possible stock sizes (0,K) and, for every

i = 1, . . . , n, (Ii, σi) is a continuous Markov-strategy.

If, for every i = 1, . . . , n, (Ii, σi) is a CES, we can define the associated value

function Vσ : (0,K)→ R as follows: For every k ∈ (0,K),

Vσ(k) = J(I, σj , k) ,

where j satisfies that k ∈ Ij . Since J(I, σi, ·) is a continuous function on Ii for every

i = 1, . . . , n, it follows that Vσ is a piecewise continuous function. Furthermore,

since J(I, σi, ·) is a continuously differentiable function on the interior of Ii for every

i = 1, . . . , n, it follows that Vσ is a piecewise continuously differentiable function.

By Propositions ?? and 3 that we have three cases to consider for each Ii:

(a) If k ∈ Ii, k = sup Ii /∈ Ii or k = inf Ii /∈ Ii, then, for any k0 ∈ Ii\{k}, the

solution k∗ converges to, but never reaches, k. (If k0 = k, then the stock equals

k for all t.)

(b) If k > sup Ii, then sup Ii ∈ Ii and, for any k0 ∈ Ii, the solution k∗ reaches

sup I in finite time.
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(c) If k < inf Ii, then inf Ii ∈ Ii and, for any k0 ∈ I, the solution k∗ reaches inf Ii

in finite time.

It follows that Vσ is continuous from the left for k < k and continuous from the

right for k > k. Furthermore, since k cannot be a point of discontinuity, points of

discontinuity are reached in finite time.

If, at points of discontinuity, the value function Vσ jumps upwards, then a de-

viation would increase value, and therefore be profitable. If, on the other hand, at

points of discontinuity, the value function Vσ jumps downwards, then a deviation

would decrease value, and therefore not be profitable. [ADD FIGURE] Hence, only

in this latter case, where it is possible to remain at the top of “cliffs”, is discon-

tinuity compatible with equilibrium. [EXPLAIN BETTER] Mathematically, this

corresponds to the value function Vσ being upper semi-continuous, thereby motivat-

ing the following definition.

Definition 4 A discontinuous Markov-strategy σ = {(I1, σ1), . . . , (In, σn)} is a dis-

continuous equilibrium strategy (DES) if

(i) for every i = 1, . . . , n, (Ii, σi) is a CES, and

(ii) the value function Vσ : (0,K)→ R is upper semi-continuous.

Lemma 3 Let σ = {(I1, σ1), . . . , (In, σn)} be a DES. If k is a point of discontinuity

of Vσ : (0,K)→ R, then k > k.

Sketch of proof. For all k′ ∈ (0,K), there is σ = {(I1, σ1), . . . , (In, σn)}
where, for every i = 1, . . . , n, (Ii, σi) is a CES, satisfying that, for some j, k′ ∈ Ij and

σj(k
′) = f(k′). Hence, the solution k∗j : [0,∞) → I to k = k′ and k̇ = f(k)− σj(k)

for t ∈ [0,∞) leads to a constant consumption path c∗j : [0,∞)→ R++ with c∗(t) =

f(k′) for all t ≥ 0 and Vσ(k′) = u(f(k′)). We also have that Vσ(k) = u(f(k))

since k is an attracting fixed point in I` for the one-dimensional dynamical system

k̇ = f(k)− σ`(k), where ` satisfies that k ∈ I` and σ` is the restriction of σ∗ to I`.

It can be shown [WHAT IS THE BEST WAY TO SHOW THIS RESULT?] that,

for k ∈ (0,K) such that Vσ is differentiable,

V ′σ(k) = (1− α)δu′(σ(k)) .

Because, at a point of discontinuity k′ ∈ (0,K), we have that Vσ(k′) = u(f(k′)),

and Vσ is continuous from the left for k ≤ k, it follows that Vσ(k) ≥ u(f(k)) for
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all k ∈ (0, k]. Hence, a point of discontinuity k′ ∈ (0, k) would contradict that Vσ

is upper semi-continuous. The result follows since Vσ cannot be discontinuous at

k′ = k.

It follows from Lemma 3 that any point of discontinuity must exceed k. Hence,

for any DES σ = {(I1, σ1), . . . , (In, σn)}, there is j and k > k, such that I` = (0, k)

and k is an attracting fixed point in I` for the one-dimensional dynamical system

k̇ = f(k) − σ`(k), where σ` is the restriction of σ∗ to I`. Therefore, for any initial

stock k0 ≤ k, the stock will converge towards k. However, if the initial stock k0

exceeds k, then there might be points of discontinuity k′ > k such that the stock

will converge towards k′. This is summarized in the following proposition.

Proposition 4 Let σ = {(I1, σ1), . . . , (In, σn)} be a DES. For every k0 ∈ (0,K),

write k∗∞ := limt→∞ k
∗
j (t), where j satisfies that k0 ∈ Ij and k∗j : [0,∞) → I is the

solution to k(0) = k0 and k̇ = f(k)− σj(k).

(i) If k0 ∈ (0, k), then k∗∞ = k.

(ii) If k0 ∈ [k,K), then k∗∞ ≥ k.

The former case corresponds to the interpretation of f as a net production func-

tion and k as a stock of reproducible capital. Then the initial capital stock k0 can

be assumed to be small, and the question is to how much capital to accumulate.

Proposition 4 implies that in a DES, capital is accumulated as in the TDU-optimal

path. Hence, the Chichilnisky criterion leads to the same behavior as the TDU

criterion.

The latter case corresponds to the interpretation of f as a natural growth func-

tion and k as a stock of a renewable resource. Then the initial resource stock can be

assumed to be large, and the question is how much resource to conserve. Proposition

4 implies that in a DES, more resource might be conserved than in the TDU-optimal

path. Hence, the Chichilnisky criterion leads to more conservation than the TDU

criterion does.

6 Coordinating on a DES

To study the scope of resource conservation for the Ramsey model under the Chichil-

nisky criterion, it is sufficient to consider the class of DESs of the form

σκ = {(I1, σ1), (I2, σ2)}
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where (0,K) is partitioned into two elements I1 = (0, κ) and I2 = [κ,K) with κ > k.

In particular, σ1 is the restriction of σ∗ to I1.

To determine what values of κ are compatible with σκ being a DES, consider

the CES ((0,K), σ∗). Define the associated value function Vσ∗ : (0,K)→ R by:

Vσ∗(k) = J ((0,K), σ∗, k) .

Since σ∗(k) = f(k), it follows that Vσ∗(k) = u(f((k)). Moreover:

V ′σ∗(k) = (1− α)δu′(σ∗(k)) = (1− α)f ′(k)u′(f(k)) < u′(f(k))f ′(k) ,

since f ′(k) = δ and α > 0. From the assumptions on f and the property that Vσ∗ is

continuously differentiable on (0,K), it follows that there is κ∗ such that

Vσ∗(k)



> u(f(k)) for 0 < k < k

= u(f(k)) for k = k

< u(f(k)) for k < k < κ∗

= u(f(k)) for k = κ∗

> u(f(k)) for κ∗ < k < K .

(6)

Since σ∗(κ) = f(κ), we have that the value function corresponding to σκ, Vσκ ,

has the property that Vσκ(κ) = u(f(κ)). Furthermore, because Vσκ coincides with

Vσ∗ on (0, κ), it follows that σκ is upper semi-continuous if and only if k < κ ≤ κ∗.
This analysis shows that κ∗ is the maximum stock that can be conserved if the

initial stock k0 exceeds κ∗. If the initial stock k0 satisfies k ≤ k0 ≤ κ∗, then k0 is

the maximum stock that can be conserved, as stock accumulation is not possible in

a DES if the stock k exceeds k. If the initial stock is smaller than k, then in any

DES the stock accumulates to k.

Assume now that the generation at time 0 is endowed with the stock k0 and

seeks to coordinate on a DES that leads to an outcome maximizing the value of

the Chichilnisky criterion. Of central interest for the analysis of this question is the

stock k̄ := k∞ ((1− α)δ). Hence, k̄ is defined by

f ′(k̄) = (1− α)δ .

The stock k̄ has the property that

limk→k̄+V
′
k̄(k) = u′(f(k̄))f ′(k̄) .
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This entails that k̄ is the maximum stock at which the generation at time 0 would

want to conserve the initial stock when coordinating on a DES that leads to an

outcome maximizing the value of the Chichilnisky criterion.

If the initial stock is larger than k̄, then the increase of TDU part of the

Chichilnisky criterion achieved by running down the stock – and thus temporarily

increasing consumption – more than compensates for the reduced value of infinite

part of the criterion that such a run-down of the stock leads to. However, if the

initial stock is smaller than k̄, then it pays to conserve the stock at the initial stock,

given that a DES does not allow the stock to be accumulated beyond k. Finally, if

the initial stock does not exceed k, then any DES leads to accumulation of the stock

to k.

These results can be summarized as follows: Assume that the generation at time

0 has the stock k0 and coordinates a DES σ designed to maximize the value of the

Chichilnisky criterion.

(a) If 0 < k0 ≤ k: All DESs induce the same behavior as the TDU-optimum,

accumulating the stock to k. It is not possible to accumulate beyond k.

(b) If <k0 ≤ k̄: Stay put, e.g. by choosing σk̄. It is not possible to accumulate,

and not worthwhile to decrease the stock, given the trade-off between the two

parts of the Chichilnisky criterion.

(c) If k̄ < k0 < K: It is not worthwhile to stay put, as the increase of TDU part

of the Chichilnisky criterion achieved by running down the stock exceeds the

cost in terms of a reduced value of the part depending on the infinite future.

The path will converge to some k∞ satisfying k̄ ≤ k∞ ≤ κ∗.

In case (c), convergence to k∞ > k̄ is not consistent with taking into account that

future generations will coordinate in turn. However, due to the time-inconsistency

of the Chichilnisky criterion, it might indeed be the case that initially the value of

the Chichilnisky criterion is maximized by choosing k∞ > k̄.

To handle this kind of time-inconsistency in the coordination of DES, we present

a modeling that is inspired by the analysis of renegotiation-proofness in repeated

games. In particular, our formulation is based on Asheim (1997), but where we

maintain the restriction to Markov-perfect strategies. This analysis of uniqueness is

based on von Neumann-Morgenstern stability.

16



Let Σ = {σ = {(I1, σ1), . . . , (In, σn)} | σ is a DES} denote the class of DES.

Consider a partition (Gε, Bε) of Σ and define V ε : (0,K)→ R by

V ε(k) = sup
σ∈Gε

Vσ(k) for every k > 0 .

Gε is ε-internally stable if, for all σ ∈ Gε, and every k > 0,

Vσ(k) ≥ V ε(k)− ε .

Gε is ε-externally stable if, for all σ ∈ Bε, there is k > 0 s.t.

Vσ(k) < V ε(k)− ε .

Gε is ε-stable if it is ε-internally stable and ε-externally stable.

The following lemma paves the way for the proposition below.

Lemma 4 For every ε > 0, there is a unique ε-stable Gε.

Proposition 5 For all δ > 0 and k ∈ (k, k̄), there exists ε > 0 such that if σ ∈ Gε,
then σ has a discontinuity in (k − δ, k + δ).

For all δ > 0, there exists ε > 0 such that if σ ∈ Gε, then σ has no discontinuity

in [k̄ + δ,K).

The interpretation is that, in the limit, when ε→ 0:

• If 0 < k < k, then σ(k) = σ∗(k).

• If k ≤ k ≤ k̄, then σ(k) = σk(k).

• If k̄ < k < K, then σ(k) = σk̄(k).

This is essentially a uniqueness result, although the limiting strategy is not a DES.

Rather, as ε → 0, the points of discontinuity appear closer and closer, so that the

outcome from any initial k0 satisfying k ≤ k ≤ k̄ approaches the path where the

stock remains constant at k0.

The uniqueness result allows for comparative statics.

• As δ → 0 for fixed α ∈ (0, 1), the outcome for any k0 ∈ (0,K) becomes iden-

tical with the TDU-optimal path, which in turn approaches the undiscounted

utilitarian optimum (if it exists). Hence, the weight on the infinite future in

the Chichilnisky criterion plays no role.
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• As α → 1 for fixed δ > 0, the outcome is the TDU optimum for k0 ∈ (0, k),

while k0 is conserved if k ≤ k < k̂, where k̂ satisfies f ′(k̂) = 0 if f reaches a

maximum or k̂ = ∞ otherwise. Hence, increasing the weight on the infinite

future in the Chichilnisky criterion does not change the behavior for small k0,

but ensures that resource conservation is the outcome any initial k0 unless

conserving the stock at k0 is inefficient.

7 Concluding remarks

We have shown that the Markov-perfect equilibria, when the Chichilnisky criterion

is applied in the Ramsey model, support the intuition that we should seek to assist

future generations if they are worse off than us, but not to save as much for their

benefit if they turn out to be better off.

This reinforces the results obtained by Asheim and Mitra (2010) and Zuber

and Asheim (2012) for the criteria of sustainable discounted utilitarianism (SDU)

and rank discounted utilitarianism (RDU) respectively. These criteria are also nu-

merically representable, and they are neither a dictatorship of the present (also

generations beyond any given T play a role) nor a dictatorship of the future (not

only generations beyond any given T play a role). However, they do not satisfy the

axiom of Strong Pareto, and are thus not examples of a sustainable preference.

When applied to the Ramsey model, both SDU and RDU lead to capital accu-

mulation (leading to outcomes that are identical to the TDU optimal path) when

(0 < k < k), while k0 is conserved if k ≤ k ≤ k̂. Moreover, these optimal paths are

time-consistent so that a game-theoretic analysis is not called for.
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